Degradation analysis based on an extended inverse Gaussian process model with skew-normal random effects and measurement errors

•Extend traditional IG process by incorporating skew-normal random effects.•Derive analytically the lifetime distribution for the proposed EIG process model.•Develop MLEs of the model parameters for perfect and perturbed measurements.•Show the advantages of the proposed model through simulation and...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Reliability engineering & system safety Ročník 189; číslo September; s. 261 - 270
Hlavní autori: Hao, Songhua, Yang, Jun, Berenguer, Christophe
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Barking Elsevier Ltd 01.09.2019
Elsevier BV
Elsevier
Predmet:
ISSN:0951-8320, 1879-0836
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •Extend traditional IG process by incorporating skew-normal random effects.•Derive analytically the lifetime distribution for the proposed EIG process model.•Develop MLEs of the model parameters for perfect and perturbed measurements.•Show the advantages of the proposed model through simulation and case study. As an important degradation model for monotonic degradation processes, the inverse Gaussian (IG) process model has attracted a lot of attention. To characterize random effects among test samples, the traditional IG process model usually assumes a normal distributed degradation rate. However, the degradation rates in some applications may manifest some asymmetric and non-normal behaviors, such as the GaAs laser degradation data. Therefore, we propose an extended inverse Gaussian (EIG) process model by incorporating skew-normal random effects, and derive its analytical lifetime distribution. Furthermore, considering that available studies about IG process models are limited on the aspect of measurement errors, parameter estimation methods for the proposed degradation model are developed for two scenarios, i.e., the maximum likelihood estimations (MLEs) for perfect measurements, and an extended Monte Carlo (MC) integration algorithm for the MLEs for perturbed measurements. Then a simulation study is adopted to show the effectiveness of the proposed MLEs, and two illustrative examples of GaAs laser degradation and fatigue crack growth are provided to illustrate the advantages of the proposed EIG process model, i.e., the improvement in degradation data fitting performance and lifetime evaluation accuracy by incorporating skew-normal random effects and measurement errors.
AbstractList •Extend traditional IG process by incorporating skew-normal random effects.•Derive analytically the lifetime distribution for the proposed EIG process model.•Develop MLEs of the model parameters for perfect and perturbed measurements.•Show the advantages of the proposed model through simulation and case study. As an important degradation model for monotonic degradation processes, the inverse Gaussian (IG) process model has attracted a lot of attention. To characterize random effects among test samples, the traditional IG process model usually assumes a normal distributed degradation rate. However, the degradation rates in some applications may manifest some asymmetric and non-normal behaviors, such as the GaAs laser degradation data. Therefore, we propose an extended inverse Gaussian (EIG) process model by incorporating skew-normal random effects, and derive its analytical lifetime distribution. Furthermore, considering that available studies about IG process models are limited on the aspect of measurement errors, parameter estimation methods for the proposed degradation model are developed for two scenarios, i.e., the maximum likelihood estimations (MLEs) for perfect measurements, and an extended Monte Carlo (MC) integration algorithm for the MLEs for perturbed measurements. Then a simulation study is adopted to show the effectiveness of the proposed MLEs, and two illustrative examples of GaAs laser degradation and fatigue crack growth are provided to illustrate the advantages of the proposed EIG process model, i.e., the improvement in degradation data fitting performance and lifetime evaluation accuracy by incorporating skew-normal random effects and measurement errors.
As an important degradation model for monotonic degradation processes, the inverse Gaussian (IG) process model has attracted a lot of attention. To characterize random effects among test samples, the traditional IG process model usually assumes a normal distributed degradation rate. However, the degradation rates in some applications may manifest some asymmetric and non-normal behaviors, such as the GaAs laser degradation data. Therefore, we propose an extended inverse Gaussian (EIG) process model by incorporating skew-normal random effects, and derive its analytical lifetime distribution. Furthermore, considering that available studies about IG process models are limited on the aspect of measurement errors, parameter estimation methods for the proposed degradation model are developed for two scenarios, i.e., the maximum likelihood estimations (MLEs) for perfect measurements, and an extended Monte Carlo (MC) integration algorithm for the MLEs for perturbed measurements. Then a simulation study is adopted to show the effectiveness of the proposed MLEs, and two illustrative examples of GaAs laser degradation and fatigue crack growth are provided to illustrate the advantages of the proposed EIG process model, i.e., the improvement in degradation data fitting performance and lifetime evaluation accuracy by incorporating skew-normal random effects and measurement errors.
Author Berenguer, Christophe
Hao, Songhua
Yang, Jun
Author_xml – sequence: 1
  givenname: Songhua
  surname: Hao
  fullname: Hao, Songhua
  organization: School of Reliability and Systems Engineering, Beihang University, Beijing, China
– sequence: 2
  givenname: Jun
  surname: Yang
  fullname: Yang, Jun
  email: tomyj2001@buaa.edu.cn
  organization: School of Reliability and Systems Engineering, Beihang University, Beijing, China
– sequence: 3
  givenname: Christophe
  surname: Berenguer
  fullname: Berenguer, Christophe
  organization: Univ. Grenoble Alpes, CNRS, Grenoble INP, GIPSA-lab, Grenoble, France
BackLink https://hal.science/hal-02121916$$DView record in HAL
BookMark eNp9kT9vFDEQxS0UJC6BL0BliYpiF__Z3bMlmihAgnQSDdTWnD1LfOzawbN3IRVfHV8OGopUoxm_39h-75ydpZyQsddStFLI4d2uLUjUKiFtK7pWaPmMraRZ20YYPZyxlbC9bIxW4gU7J9oJITrbr1fs9wf8XiDAEnPikGB6oEh8C4SBP044_lowhdrGdMBCyK9hTxTryV3Jvt7K5xxw4vdxueX0A--blMsMEy-QQp45jiP6heqqwGcE2hecMS0cS8mFXrLnI0yEr_7WC_bt08evVzfN5sv156vLTeM7MSzN2OtebHUA620YQ9cj2nU3GO3XnVIeEYw2whi7DWrQfhAh9GsNMMJYeRv0BXt72nsLk7srcYby4DJEd3O5cceZUFJJK4eDrNo3J2394M890uJ2eV-qN-SU6rUZein7qjInlS-ZqODofFwefVwKxMlJ4Y7RuJ07RuOO0TjRuRpNRdV_6L8XPQm9P0FYbTpELI58xOQxxFINdiHHp_A_ThasXQ
CitedBy_id crossref_primary_10_1080_16843703_2022_2146904
crossref_primary_10_1109_JSEN_2023_3326487
crossref_primary_10_1016_j_ejor_2021_10_049
crossref_primary_10_3390_app11094133
crossref_primary_10_1109_ACCESS_2024_3441530
crossref_primary_10_1016_j_ress_2020_107343
crossref_primary_10_1016_j_ijpvp_2022_104834
crossref_primary_10_1177_1748006X211067299
crossref_primary_10_1016_j_ress_2019_106631
crossref_primary_10_1016_j_apm_2019_08_024
crossref_primary_10_1016_j_ejor_2024_06_032
crossref_primary_10_1002_qre_3622
crossref_primary_10_1016_j_ress_2024_110651
crossref_primary_10_1016_j_amc_2025_129340
crossref_primary_10_1016_j_ress_2021_108200
crossref_primary_10_1016_j_ress_2022_108746
crossref_primary_10_1016_j_ress_2023_109419
crossref_primary_10_1016_j_ress_2023_109897
crossref_primary_10_1016_j_ress_2021_108084
crossref_primary_10_1177_1748006X241259833
crossref_primary_10_1016_j_ress_2021_108162
crossref_primary_10_1109_ACCESS_2019_2945823
crossref_primary_10_1109_ACCESS_2019_2958570
crossref_primary_10_1175_JAS_D_20_0077_1
crossref_primary_10_1002_asmb_2824
crossref_primary_10_1016_j_ress_2021_107592
crossref_primary_10_1016_j_ress_2021_108087
crossref_primary_10_1016_j_measurement_2023_113156
crossref_primary_10_1016_j_psep_2022_12_041
crossref_primary_10_1016_j_microrel_2022_114609
crossref_primary_10_1016_j_ress_2021_107928
crossref_primary_10_1080_24725854_2025_2476194
crossref_primary_10_1016_j_ress_2022_108815
crossref_primary_10_1109_ACCESS_2020_2987332
crossref_primary_10_1177_1748006X241227300
crossref_primary_10_1080_24725854_2025_2531049
crossref_primary_10_1108_IJQRM_06_2022_0168
crossref_primary_10_1016_j_heliyon_2024_e34625
crossref_primary_10_1080_24725854_2024_2434125
crossref_primary_10_1080_03610918_2020_1740264
crossref_primary_10_1016_j_ress_2021_107445
crossref_primary_10_1016_j_ress_2021_108099
crossref_primary_10_1016_j_ress_2021_107440
crossref_primary_10_1016_j_apm_2021_12_048
crossref_primary_10_1016_j_measurement_2025_117284
crossref_primary_10_1016_j_ress_2020_107361
crossref_primary_10_3390_fractalfract8100556
crossref_primary_10_1002_qre_3646
crossref_primary_10_1016_j_cie_2021_107599
crossref_primary_10_1016_j_psep_2023_08_070
crossref_primary_10_1080_02664763_2022_2036707
crossref_primary_10_1002_qre_3729
crossref_primary_10_1016_j_cie_2020_106539
crossref_primary_10_1016_j_ress_2021_108104
crossref_primary_10_1007_s10479_024_06334_5
crossref_primary_10_1016_j_ress_2020_107038
crossref_primary_10_1109_TIM_2024_3381295
crossref_primary_10_1016_j_ress_2021_108105
crossref_primary_10_1016_j_ress_2025_111349
crossref_primary_10_1016_j_cie_2022_108274
crossref_primary_10_1016_j_microrel_2021_114277
Cites_doi 10.1016/j.neucom.2015.12.041
10.1016/j.ress.2018.06.019
10.1080/03610918.2014.894057
10.1016/j.ress.2016.03.024
10.1109/TR.2009.2026784
10.1002/qre.2049
10.1016/j.ress.2015.02.005
10.1016/j.apm.2018.04.025
10.1016/j.ress.2018.06.013
10.1016/j.ejor.2018.02.033
10.1016/j.ress.2018.07.003
10.1016/j.ress.2017.11.003
10.1016/S0266-8920(02)00053-X
10.1016/j.ress.2014.06.005
10.1016/j.jmva.2008.12.007
10.1109/TII.2017.2684821
10.1016/j.spl.2018.03.009
10.1002/asmb.2063
10.1016/j.ejor.2014.11.029
10.1016/j.jspi.2011.06.008
10.1198/TECH.2009.08197
10.1016/j.ymssp.2017.02.031
10.1109/TR.2016.2635149
10.1016/j.ymssp.2016.10.027
10.1007/s11709-013-0207-9
10.1109/TR.2013.2257055
10.1016/j.ress.2004.10.004
10.1109/TR.2017.2757768
10.1080/00401706.2013.830074
10.1080/00401706.2013.879077
10.1109/TR.2015.2513038
10.1080/03610918008812164
10.1016/j.corsci.2013.04.020
10.1109/TR.2018.2869572
10.1109/TR.2012.2194351
10.1111/1467-9868.00194
10.1016/j.ress.2017.12.012
10.1093/biomet/83.4.715
10.1109/TR.2014.2315773
10.1016/j.ress.2015.12.016
10.1007/s12206-014-0904-x
10.1109/TR.2018.2885133
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright Elsevier BV Sep 2019
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright Elsevier BV Sep 2019
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7ST
7TB
8FD
C1K
FR3
SOI
1XC
VOOES
DOI 10.1016/j.ress.2019.04.031
DatabaseName CrossRef
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Environment Abstracts
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Environment Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList

Engineering Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Statistics
EISSN 1879-0836
EndPage 270
ExternalDocumentID oai:HAL:hal-02121916v1
10_1016_j_ress_2019_04_031
S095183201831442X
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
9JO
AABNK
AACTN
AAEDT
AAEDW
AAFJI
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABJNI
ABMAC
ABMMH
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PRBVW
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SSB
SSO
SST
SSZ
T5K
TN5
WUQ
XPP
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7ST
7TB
8FD
AGCQF
C1K
FR3
SOI
1XC
VOOES
ID FETCH-LOGICAL-c406t-f5350b3da9c9dfd45ee974683c7422ceea8380889bd263c60dd573aafaf4069d3
ISICitedReferencesCount 66
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000474493000021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0951-8320
IngestDate Tue Oct 14 20:53:34 EDT 2025
Wed Aug 13 06:37:20 EDT 2025
Sat Nov 29 01:49:53 EST 2025
Tue Nov 18 21:16:50 EST 2025
Fri Feb 23 02:28:02 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue September
Keywords Measurement errors
The MLE method
Extended inverse Gaussian process model
Skew-normal random effects
Extended MC integration algorithm
the MLE method
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c406t-f5350b3da9c9dfd45ee974683c7422ceea8380889bd263c60dd573aafaf4069d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4620-4976
0000-0003-3000-5390
OpenAccessLink https://hal.science/hal-02121916
PQID 2253865115
PQPubID 2045406
PageCount 10
ParticipantIDs hal_primary_oai_HAL_hal_02121916v1
proquest_journals_2253865115
crossref_citationtrail_10_1016_j_ress_2019_04_031
crossref_primary_10_1016_j_ress_2019_04_031
elsevier_sciencedirect_doi_10_1016_j_ress_2019_04_031
PublicationCentury 2000
PublicationDate 2019-09-01
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Barking
PublicationPlace_xml – name: Barking
PublicationTitle Reliability engineering & system safety
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier BV
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
– name: Elsevier
References Wang (bib0025) 2010; 101
Zhang, Si, Hu, Lei (bib0033) 2018; 271
Peng, Liu, Li, Zhu, Huang (bib0020) 2014; 28
Pan, Liu, Yang (bib0029) 2018; 138
Azzalini, Valle (bib0031) 1996; 83
Owen (bib0044) 1980; 9
Pan, Wei, Fang, Yang (bib0037) 2018; 320
Chen, Ye, Xiang, Zhang (bib0011) 2015; 243
Lu, Pandey, Xie (bib0039) 2013; 227
Li, Wang, Zhang, Liu, Fu (bib0046) 2018; 173
Peng (bib0027) 2015; 57
Huang, Xu, Ke, Wang, Sun (bib0036) 2017; 87
Li, Wang, Zhang, Fu, Liu, Krishnaswamy (bib0045) 2017; 94
Pan, Liu, Cao (bib0012) 2016; 185
Wang, Li, Ma, Zhang, Fu, Krishnaswamy (bib0047) 2017; 33
Wang, Balakrishnan, Guo (bib0035) 2016; 45
Zhai, Ye (bib0005) 2017; 13
Ye, Chen (bib0009) 2014; 56
Peng, Li, Yang, Huang, Zuo (bib0019) 2014; 130
Wu, Ni (bib0049) 2003; 18
Peng, Tseng (bib0043) 2009; 58
Guo, Wang, Cabrera, Elsayed (bib0017) 2018; 178
Azzalini (bib0030) 1985; 12
Zhang, Si, Hu, Kong (bib0002) 2015; 229
Tsai, Tseng, Balakrishnan (bib0048) 2011; 141
Zhai, Chen, Hong, Shen (bib0028) 2018; 180
Hao, Yang, Berenguer (bib0024) 2017; 172
Tsai, Tseng, Balakrishnan (bib0026) 2012; 61
Ye, Xie (bib0003) 2015; 31
Wang, Xu (bib0008) 2010; 52
Azzalini, Capitanio (bib0032) 1999; 61
Shen, Wang, Zhai, Tang (bib0016) 2018
Peng, Li, Yang, Zhu, Huang (bib0013) 2016; 65
Rodríguez-Picón, Rodríguez-Picón, Alvarado-Iniesta (bib0014) 2018
Meeker, Escobar (bib0001) 1998
Pulcini (bib0040) 2016; 152
Paroissin (bib0007) 2017; 66
Li, Hu, Zio, Kang (bib0022) 2017; 5
He, Wang, Chang (bib0023) 2018; 61
Kallen, van Noortwijk (bib0038) 2005; 90
Peng, Li, Yang, Mi, Huang (bib0021) 2017; 66
Ye, Chen, Tang, Xie (bib0010) 2014; 63
Qin, Zhang, Zhou (bib0041) 2013; 7
Hong, Zhai, Wang, Ye (bib0015) 2018
Peng, Tseng (bib0034) 2013; 62
Ye, Chen, Shen (bib0004) 2015; 139
Liu, Wang, Zhang, Tomovic (bib0018) 2018; 180
Le Son, Fouladirad, Barros (bib0006) 2016; 149
Zhang, Zhou, Qin (bib0042) 2013; 73
Wang (10.1016/j.ress.2019.04.031_bib0035) 2016; 45
Pulcini (10.1016/j.ress.2019.04.031_bib0040) 2016; 152
He (10.1016/j.ress.2019.04.031_bib0023) 2018; 61
Wang (10.1016/j.ress.2019.04.031_bib0008) 2010; 52
Li (10.1016/j.ress.2019.04.031_bib0022) 2017; 5
Lu (10.1016/j.ress.2019.04.031_bib0039) 2013; 227
Wang (10.1016/j.ress.2019.04.031_bib0025) 2010; 101
Zhang (10.1016/j.ress.2019.04.031_bib0033) 2018; 271
Li (10.1016/j.ress.2019.04.031_bib0045) 2017; 94
Chen (10.1016/j.ress.2019.04.031_bib0011) 2015; 243
Pan (10.1016/j.ress.2019.04.031_bib0012) 2016; 185
Peng (10.1016/j.ress.2019.04.031_bib0019) 2014; 130
Li (10.1016/j.ress.2019.04.031_bib0046) 2018; 173
Zhang (10.1016/j.ress.2019.04.031_bib0042) 2013; 73
Ye (10.1016/j.ress.2019.04.031_bib0003) 2015; 31
Tsai (10.1016/j.ress.2019.04.031_bib0048) 2011; 141
Ye (10.1016/j.ress.2019.04.031_bib0009) 2014; 56
Le Son (10.1016/j.ress.2019.04.031_bib0006) 2016; 149
Shen (10.1016/j.ress.2019.04.031_bib0016) 2018
Kallen (10.1016/j.ress.2019.04.031_bib0038) 2005; 90
Zhang (10.1016/j.ress.2019.04.031_bib0002) 2015; 229
Tsai (10.1016/j.ress.2019.04.031_bib0026) 2012; 61
Wang (10.1016/j.ress.2019.04.031_bib0047) 2017; 33
Peng (10.1016/j.ress.2019.04.031_bib0021) 2017; 66
Azzalini (10.1016/j.ress.2019.04.031_bib0030) 1985; 12
Huang (10.1016/j.ress.2019.04.031_bib0036) 2017; 87
Zhai (10.1016/j.ress.2019.04.031_bib0005) 2017; 13
Liu (10.1016/j.ress.2019.04.031_bib0018) 2018; 180
Meeker (10.1016/j.ress.2019.04.031_bib0001) 1998
Azzalini (10.1016/j.ress.2019.04.031_bib0032) 1999; 61
Peng (10.1016/j.ress.2019.04.031_bib0043) 2009; 58
Rodríguez-Picón (10.1016/j.ress.2019.04.031_bib0014) 2018
Owen (10.1016/j.ress.2019.04.031_bib0044) 1980; 9
Hong (10.1016/j.ress.2019.04.031_bib0015) 2018
Ye (10.1016/j.ress.2019.04.031_bib0010) 2014; 63
Guo (10.1016/j.ress.2019.04.031_bib0017) 2018; 178
Pan (10.1016/j.ress.2019.04.031_bib0037) 2018; 320
Zhai (10.1016/j.ress.2019.04.031_bib0028) 2018; 180
Pan (10.1016/j.ress.2019.04.031_bib0029) 2018; 138
Ye (10.1016/j.ress.2019.04.031_bib0004) 2015; 139
Paroissin (10.1016/j.ress.2019.04.031_bib0007) 2017; 66
Peng (10.1016/j.ress.2019.04.031_bib0027) 2015; 57
Peng (10.1016/j.ress.2019.04.031_bib0013) 2016; 65
Hao (10.1016/j.ress.2019.04.031_bib0024) 2017; 172
Peng (10.1016/j.ress.2019.04.031_bib0034) 2013; 62
Wu (10.1016/j.ress.2019.04.031_bib0049) 2003; 18
Peng (10.1016/j.ress.2019.04.031_bib0020) 2014; 28
Azzalini (10.1016/j.ress.2019.04.031_bib0031) 1996; 83
Qin (10.1016/j.ress.2019.04.031_bib0041) 2013; 7
References_xml – volume: 52
  start-page: 188
  year: 2010
  end-page: 197
  ident: bib0008
  article-title: An inverse Gaussian process model for degradation data
  publication-title: Technometrics
– volume: 61
  start-page: 341
  year: 2018
  end-page: 350
  ident: bib0023
  article-title: Objective Bayesian analysis for the accelerated degradation model based on the inverse Gaussian process
  publication-title: Appl Math Model
– volume: 320
  start-page: 131
  year: 2018
  end-page: 141
  ident: bib0037
  article-title: A reliability estimation approach via Wiener degradation model with measurement errors
  publication-title: Appl Math Comput
– volume: 66
  start-page: 84
  year: 2017
  end-page: 96
  ident: bib0021
  article-title: Bayesian degradation analysis with inverse Gaussian process models under time-varying degradation rates
  publication-title: IEEE Trans Reliab
– volume: 139
  start-page: 58
  year: 2015
  end-page: 67
  ident: bib0004
  article-title: A new class of Wiener process models for degradation analysis
  publication-title: Reliab Eng Syst Saf
– volume: 94
  start-page: 57
  year: 2017
  end-page: 72
  ident: bib0045
  article-title: Degradation data analysis based on a generalized Wiener process subject to measurement error
  publication-title: Mech Syst Sig Process
– year: 2018
  ident: bib0015
  article-title: System reliability evaluation under dynamic operating conditions
  publication-title: IEEE Trans Reliab
– volume: 178
  start-page: 269
  year: 2018
  end-page: 277
  ident: bib0017
  article-title: Improved inverse Gaussian process and bootstrap: degradation and reliability metrics
  publication-title: Reliab Eng Syst Saf
– volume: 243
  start-page: 190
  year: 2015
  end-page: 199
  ident: bib0011
  article-title: Condition-based maintenance using the inverse Gaussian degradation model
  publication-title: Eur J Oper Res
– volume: 83
  start-page: 715
  year: 1996
  end-page: 726
  ident: bib0031
  article-title: The multivariate skew-normal distribution
  publication-title: Biometrika
– volume: 57
  start-page: 100
  year: 2015
  end-page: 111
  ident: bib0027
  article-title: Inverse Gaussian processes with random effects and explanatory variables for degradation data
  publication-title: Technometrics
– volume: 101
  start-page: 340
  year: 2010
  end-page: 351
  ident: bib0025
  article-title: Wiener processes with random effects for degradation data
  publication-title: J Multivar Anal
– volume: 62
  start-page: 338
  year: 2013
  end-page: 350
  ident: bib0034
  article-title: Statistical lifetime inference with Skew-Wiener linear degradation models
  publication-title: IEEE Trans Reliab
– volume: 58
  start-page: 444
  year: 2009
  end-page: 455
  ident: bib0043
  article-title: Mis-specification analysis of linear degradation models
  publication-title: IEEE Trans Reliab
– volume: 18
  start-page: 107
  year: 2003
  end-page: 118
  ident: bib0049
  article-title: A study of stochastic fatigue crack growth modeling through experimental data
  publication-title: Probab Eng Mech
– volume: 152
  start-page: 296
  year: 2016
  end-page: 306
  ident: bib0040
  article-title: A perturbed gamma process with statistically dependent measurement errors
  publication-title: Reliab Eng Syst Saf
– volume: 130
  start-page: 175
  year: 2014
  end-page: 189
  ident: bib0019
  article-title: Inverse Gaussian process models for degradation analysis: a Bayesian perspective
  publication-title: Reliab Eng Syst Saf
– volume: 87
  start-page: 294
  year: 2017
  end-page: 306
  ident: bib0036
  article-title: Remaining useful life prediction for an adaptive skew-Wiener process model
  publication-title: Mech Syst Sig Process
– volume: 180
  start-page: 94
  year: 2018
  end-page: 103
  ident: bib0028
  article-title: A random-effects Wiener degradation model based on accelerated failure time
  publication-title: Reliab Eng Syst Saf
– year: 2018
  ident: bib0016
  article-title: Degradation modeling using stochastic processes with random initial degradation
  publication-title: IEEE Trans Reliab
– volume: 61
  start-page: 604
  year: 2012
  end-page: 613
  ident: bib0026
  article-title: Optimal design for degradation tests based on Gamma processes with random effects
  publication-title: IEEE Trans Reliab
– volume: 13
  start-page: 2911
  year: 2017
  end-page: 2921
  ident: bib0005
  article-title: RUL prediction of deteriorating products using an adaptive wiener process model
  publication-title: IEEE Trans Ind Inf
– volume: 172
  start-page: 207
  year: 2017
  end-page: 215
  ident: bib0024
  article-title: Nonlinear step-stress accelerated degradation modelling considering three sources of variability
  publication-title: Reliab Eng Syst Saf
– volume: 141
  start-page: 3725
  year: 2011
  end-page: 3735
  ident: bib0048
  article-title: Mis-specification analyses of gamma and Wiener degradation processes
  publication-title: J Stat Plan Inference
– volume: 61
  start-page: 579
  year: 1999
  end-page: 602
  ident: bib0032
  article-title: Statistical applications of the multivariate skew normal distribution
  publication-title: J R Stat Soc
– volume: 66
  start-page: 1361
  year: 2017
  end-page: 1367
  ident: bib0007
  article-title: Online estimation methods for the gamma degradation process
  publication-title: IEEE Trans Reliab
– year: 2018
  ident: bib0014
  article-title: Degradation modeling of 2 fatigue-crack growth characteristics based on inverse Gaussian processes: a case study
  publication-title: Appl Stoch Models Bus Ind
– volume: 229
  start-page: 343
  year: 2015
  end-page: 355
  ident: bib0002
  article-title: Degradation modeling-based remaining useful life estimation: a review on approaches for systems with heterogeneity
  publication-title: Proc Inst Mech Eng Part O
– volume: 90
  start-page: 177
  year: 2005
  end-page: 185
  ident: bib0038
  article-title: Optimal maintenance decisions under imperfect inspection
  publication-title: Reliab Eng Syst Saf
– volume: 227
  start-page: 425
  year: 2013
  end-page: 433
  ident: bib0039
  article-title: An efficient method for the estimation of parameters of stochastic gamma process from noisy degradation measurements
  publication-title: Proc Inst Mech Eng Part O
– volume: 63
  start-page: 750
  year: 2014
  end-page: 763
  ident: bib0010
  article-title: Accelerated degradation test planning using the inverse Gaussian process
  publication-title: IEEE Trans Reliab
– volume: 149
  start-page: 76
  year: 2016
  end-page: 87
  ident: bib0006
  article-title: Remaining useful lifetime estimation and noisy gamma deterioration process
  publication-title: Reliab Eng Syst Saf
– volume: 138
  start-page: 157
  year: 2018
  end-page: 164
  ident: bib0029
  article-title: A new result on lifetime estimation based on skew-Wiener degradation model
  publication-title: Stat Probab Lett
– volume: 271
  start-page: 775
  year: 2018
  end-page: 796
  ident: bib0033
  article-title: Degradation data analysis and remaining useful life estimation: a review on Wiener-process-based methods
  publication-title: Eur J Oper Res
– volume: 185
  start-page: 64
  year: 2016
  end-page: 72
  ident: bib0012
  article-title: Remaining useful life estimation using an inverse Gaussian degradation model
  publication-title: Neurocomputing
– volume: 73
  start-page: 309
  year: 2013
  end-page: 320
  ident: bib0042
  article-title: Inverse Gaussian process-based corrosion growth model for energy pipelines considering the sizing error in inspection data
  publication-title: Corros Sci
– volume: 5
  start-page: 5690
  year: 2017
  end-page: 5701
  ident: bib0022
  article-title: A Bayesian optimal design for accelerated degradation testing based on the inverse Gaussian process
  publication-title: IEEE Access
– volume: 12
  start-page: 171
  year: 1985
  end-page: 178
  ident: bib0030
  article-title: A class of distributions which includes the normal ones
  publication-title: Scand J Stat
– volume: 31
  start-page: 16
  year: 2015
  end-page: 32
  ident: bib0003
  article-title: Stochastic modelling and analysis of degradation for highly reliable products
  publication-title: Appl Stoch Models Bus Ind
– volume: 33
  start-page: 693
  year: 2017
  end-page: 708
  ident: bib0047
  article-title: A generalized wiener process degradation model with two transformed time scales
  publication-title: Qual Reliab Eng Int
– volume: 180
  start-page: 25
  year: 2018
  end-page: 38
  ident: bib0018
  article-title: Bayesian model averaging based reliability analysis method for monotonic degradation dataset based on inverse Gaussian process and Gamma process
  publication-title: Reliab Eng Syst Saf
– volume: 28
  start-page: 3937
  year: 2014
  end-page: 3946
  ident: bib0020
  article-title: A Bayesian optimal design for degradation tests based on the inverse Gaussian process
  publication-title: J Mech Sci Technol
– volume: 173
  start-page: 48
  year: 2018
  end-page: 57
  ident: bib0046
  article-title: A nonlinear Wiener process degradation model with autoregressive errors
  publication-title: Reliab Eng Syst Saf
– volume: 65
  start-page: 624
  year: 2016
  end-page: 639
  ident: bib0013
  article-title: Bivariate analysis of incomplete degradation observations based on inverse Gaussian processes and copulas
  publication-title: IEEE Trans Reliab
– year: 1998
  ident: bib0001
  article-title: Statistical methods for reliability data
– volume: 45
  start-page: 2158
  year: 2016
  end-page: 2181
  ident: bib0035
  article-title: Residual life estimation based on a generalized wiener process with Skew-normal random effects
  publication-title: Commun Stat Simul Comput
– volume: 9
  start-page: 389
  year: 1980
  end-page: 419
  ident: bib0044
  article-title: A table of normal integrals
  publication-title: Commun Stat Simul Comput
– volume: 56
  start-page: 302
  year: 2014
  end-page: 311
  ident: bib0009
  article-title: The inverse Gaussian process as a degradation model
  publication-title: Technometrics
– volume: 7
  start-page: 276
  year: 2013
  end-page: 287
  ident: bib0041
  article-title: Inverse Gaussian process-based corrosion growth modeling and its application in the reliability analysis for energy pipelines
  publication-title: Front Struct Civ Eng
– volume: 185
  start-page: 64
  year: 2016
  ident: 10.1016/j.ress.2019.04.031_bib0012
  article-title: Remaining useful life estimation using an inverse Gaussian degradation model
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.12.041
– volume: 12
  start-page: 171
  year: 1985
  ident: 10.1016/j.ress.2019.04.031_bib0030
  article-title: A class of distributions which includes the normal ones
  publication-title: Scand J Stat
– volume: 180
  start-page: 25
  year: 2018
  ident: 10.1016/j.ress.2019.04.031_bib0018
  article-title: Bayesian model averaging based reliability analysis method for monotonic degradation dataset based on inverse Gaussian process and Gamma process
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2018.06.019
– volume: 45
  start-page: 2158
  year: 2016
  ident: 10.1016/j.ress.2019.04.031_bib0035
  article-title: Residual life estimation based on a generalized wiener process with Skew-normal random effects
  publication-title: Commun Stat Simul Comput
  doi: 10.1080/03610918.2014.894057
– volume: 152
  start-page: 296
  year: 2016
  ident: 10.1016/j.ress.2019.04.031_bib0040
  article-title: A perturbed gamma process with statistically dependent measurement errors
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2016.03.024
– volume: 58
  start-page: 444
  year: 2009
  ident: 10.1016/j.ress.2019.04.031_bib0043
  article-title: Mis-specification analysis of linear degradation models
  publication-title: IEEE Trans Reliab
  doi: 10.1109/TR.2009.2026784
– volume: 320
  start-page: 131
  year: 2018
  ident: 10.1016/j.ress.2019.04.031_bib0037
  article-title: A reliability estimation approach via Wiener degradation model with measurement errors
  publication-title: Appl Math Comput
– volume: 33
  start-page: 693
  year: 2017
  ident: 10.1016/j.ress.2019.04.031_bib0047
  article-title: A generalized wiener process degradation model with two transformed time scales
  publication-title: Qual Reliab Eng Int
  doi: 10.1002/qre.2049
– year: 1998
  ident: 10.1016/j.ress.2019.04.031_bib0001
– volume: 139
  start-page: 58
  year: 2015
  ident: 10.1016/j.ress.2019.04.031_bib0004
  article-title: A new class of Wiener process models for degradation analysis
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2015.02.005
– volume: 229
  start-page: 343
  year: 2015
  ident: 10.1016/j.ress.2019.04.031_bib0002
  article-title: Degradation modeling-based remaining useful life estimation: a review on approaches for systems with heterogeneity
  publication-title: Proc Inst Mech Eng Part O
– volume: 61
  start-page: 341
  year: 2018
  ident: 10.1016/j.ress.2019.04.031_bib0023
  article-title: Objective Bayesian analysis for the accelerated degradation model based on the inverse Gaussian process
  publication-title: Appl Math Model
  doi: 10.1016/j.apm.2018.04.025
– volume: 178
  start-page: 269
  year: 2018
  ident: 10.1016/j.ress.2019.04.031_bib0017
  article-title: Improved inverse Gaussian process and bootstrap: degradation and reliability metrics
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2018.06.013
– volume: 271
  start-page: 775
  year: 2018
  ident: 10.1016/j.ress.2019.04.031_bib0033
  article-title: Degradation data analysis and remaining useful life estimation: a review on Wiener-process-based methods
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2018.02.033
– volume: 180
  start-page: 94
  year: 2018
  ident: 10.1016/j.ress.2019.04.031_bib0028
  article-title: A random-effects Wiener degradation model based on accelerated failure time
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2018.07.003
– volume: 173
  start-page: 48
  year: 2018
  ident: 10.1016/j.ress.2019.04.031_bib0046
  article-title: A nonlinear Wiener process degradation model with autoregressive errors
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2017.11.003
– volume: 18
  start-page: 107
  year: 2003
  ident: 10.1016/j.ress.2019.04.031_bib0049
  article-title: A study of stochastic fatigue crack growth modeling through experimental data
  publication-title: Probab Eng Mech
  doi: 10.1016/S0266-8920(02)00053-X
– volume: 130
  start-page: 175
  year: 2014
  ident: 10.1016/j.ress.2019.04.031_bib0019
  article-title: Inverse Gaussian process models for degradation analysis: a Bayesian perspective
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2014.06.005
– volume: 101
  start-page: 340
  year: 2010
  ident: 10.1016/j.ress.2019.04.031_bib0025
  article-title: Wiener processes with random effects for degradation data
  publication-title: J Multivar Anal
  doi: 10.1016/j.jmva.2008.12.007
– volume: 13
  start-page: 2911
  year: 2017
  ident: 10.1016/j.ress.2019.04.031_bib0005
  article-title: RUL prediction of deteriorating products using an adaptive wiener process model
  publication-title: IEEE Trans Ind Inf
  doi: 10.1109/TII.2017.2684821
– volume: 138
  start-page: 157
  year: 2018
  ident: 10.1016/j.ress.2019.04.031_bib0029
  article-title: A new result on lifetime estimation based on skew-Wiener degradation model
  publication-title: Stat Probab Lett
  doi: 10.1016/j.spl.2018.03.009
– volume: 31
  start-page: 16
  year: 2015
  ident: 10.1016/j.ress.2019.04.031_bib0003
  article-title: Stochastic modelling and analysis of degradation for highly reliable products
  publication-title: Appl Stoch Models Bus Ind
  doi: 10.1002/asmb.2063
– volume: 243
  start-page: 190
  year: 2015
  ident: 10.1016/j.ress.2019.04.031_bib0011
  article-title: Condition-based maintenance using the inverse Gaussian degradation model
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2014.11.029
– volume: 141
  start-page: 3725
  year: 2011
  ident: 10.1016/j.ress.2019.04.031_bib0048
  article-title: Mis-specification analyses of gamma and Wiener degradation processes
  publication-title: J Stat Plan Inference
  doi: 10.1016/j.jspi.2011.06.008
– year: 2018
  ident: 10.1016/j.ress.2019.04.031_bib0014
  article-title: Degradation modeling of 2 fatigue-crack growth characteristics based on inverse Gaussian processes: a case study
  publication-title: Appl Stoch Models Bus Ind
– volume: 52
  start-page: 188
  year: 2010
  ident: 10.1016/j.ress.2019.04.031_bib0008
  article-title: An inverse Gaussian process model for degradation data
  publication-title: Technometrics
  doi: 10.1198/TECH.2009.08197
– volume: 94
  start-page: 57
  year: 2017
  ident: 10.1016/j.ress.2019.04.031_bib0045
  article-title: Degradation data analysis based on a generalized Wiener process subject to measurement error
  publication-title: Mech Syst Sig Process
  doi: 10.1016/j.ymssp.2017.02.031
– volume: 66
  start-page: 84
  year: 2017
  ident: 10.1016/j.ress.2019.04.031_bib0021
  article-title: Bayesian degradation analysis with inverse Gaussian process models under time-varying degradation rates
  publication-title: IEEE Trans Reliab
  doi: 10.1109/TR.2016.2635149
– volume: 87
  start-page: 294
  year: 2017
  ident: 10.1016/j.ress.2019.04.031_bib0036
  article-title: Remaining useful life prediction for an adaptive skew-Wiener process model
  publication-title: Mech Syst Sig Process
  doi: 10.1016/j.ymssp.2016.10.027
– volume: 7
  start-page: 276
  year: 2013
  ident: 10.1016/j.ress.2019.04.031_bib0041
  article-title: Inverse Gaussian process-based corrosion growth modeling and its application in the reliability analysis for energy pipelines
  publication-title: Front Struct Civ Eng
  doi: 10.1007/s11709-013-0207-9
– volume: 62
  start-page: 338
  year: 2013
  ident: 10.1016/j.ress.2019.04.031_bib0034
  article-title: Statistical lifetime inference with Skew-Wiener linear degradation models
  publication-title: IEEE Trans Reliab
  doi: 10.1109/TR.2013.2257055
– volume: 90
  start-page: 177
  year: 2005
  ident: 10.1016/j.ress.2019.04.031_bib0038
  article-title: Optimal maintenance decisions under imperfect inspection
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2004.10.004
– volume: 66
  start-page: 1361
  year: 2017
  ident: 10.1016/j.ress.2019.04.031_bib0007
  article-title: Online estimation methods for the gamma degradation process
  publication-title: IEEE Trans Reliab
  doi: 10.1109/TR.2017.2757768
– volume: 56
  start-page: 302
  year: 2014
  ident: 10.1016/j.ress.2019.04.031_bib0009
  article-title: The inverse Gaussian process as a degradation model
  publication-title: Technometrics
  doi: 10.1080/00401706.2013.830074
– volume: 57
  start-page: 100
  year: 2015
  ident: 10.1016/j.ress.2019.04.031_bib0027
  article-title: Inverse Gaussian processes with random effects and explanatory variables for degradation data
  publication-title: Technometrics
  doi: 10.1080/00401706.2013.879077
– volume: 65
  start-page: 624
  year: 2016
  ident: 10.1016/j.ress.2019.04.031_bib0013
  article-title: Bivariate analysis of incomplete degradation observations based on inverse Gaussian processes and copulas
  publication-title: IEEE Trans Reliab
  doi: 10.1109/TR.2015.2513038
– volume: 9
  start-page: 389
  year: 1980
  ident: 10.1016/j.ress.2019.04.031_bib0044
  article-title: A table of normal integrals
  publication-title: Commun Stat Simul Comput
  doi: 10.1080/03610918008812164
– volume: 73
  start-page: 309
  year: 2013
  ident: 10.1016/j.ress.2019.04.031_bib0042
  article-title: Inverse Gaussian process-based corrosion growth model for energy pipelines considering the sizing error in inspection data
  publication-title: Corros Sci
  doi: 10.1016/j.corsci.2013.04.020
– year: 2018
  ident: 10.1016/j.ress.2019.04.031_bib0015
  article-title: System reliability evaluation under dynamic operating conditions
  publication-title: IEEE Trans Reliab
  doi: 10.1109/TR.2018.2869572
– volume: 61
  start-page: 604
  year: 2012
  ident: 10.1016/j.ress.2019.04.031_bib0026
  article-title: Optimal design for degradation tests based on Gamma processes with random effects
  publication-title: IEEE Trans Reliab
  doi: 10.1109/TR.2012.2194351
– volume: 61
  start-page: 579
  year: 1999
  ident: 10.1016/j.ress.2019.04.031_bib0032
  article-title: Statistical applications of the multivariate skew normal distribution
  publication-title: J R Stat Soc
  doi: 10.1111/1467-9868.00194
– volume: 172
  start-page: 207
  year: 2017
  ident: 10.1016/j.ress.2019.04.031_bib0024
  article-title: Nonlinear step-stress accelerated degradation modelling considering three sources of variability
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2017.12.012
– volume: 83
  start-page: 715
  year: 1996
  ident: 10.1016/j.ress.2019.04.031_bib0031
  article-title: The multivariate skew-normal distribution
  publication-title: Biometrika
  doi: 10.1093/biomet/83.4.715
– volume: 5
  start-page: 5690
  year: 2017
  ident: 10.1016/j.ress.2019.04.031_bib0022
  article-title: A Bayesian optimal design for accelerated degradation testing based on the inverse Gaussian process
  publication-title: IEEE Access
– volume: 63
  start-page: 750
  year: 2014
  ident: 10.1016/j.ress.2019.04.031_bib0010
  article-title: Accelerated degradation test planning using the inverse Gaussian process
  publication-title: IEEE Trans Reliab
  doi: 10.1109/TR.2014.2315773
– volume: 227
  start-page: 425
  year: 2013
  ident: 10.1016/j.ress.2019.04.031_bib0039
  article-title: An efficient method for the estimation of parameters of stochastic gamma process from noisy degradation measurements
  publication-title: Proc Inst Mech Eng Part O
– volume: 149
  start-page: 76
  year: 2016
  ident: 10.1016/j.ress.2019.04.031_bib0006
  article-title: Remaining useful lifetime estimation and noisy gamma deterioration process
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2015.12.016
– volume: 28
  start-page: 3937
  year: 2014
  ident: 10.1016/j.ress.2019.04.031_bib0020
  article-title: A Bayesian optimal design for degradation tests based on the inverse Gaussian process
  publication-title: J Mech Sci Technol
  doi: 10.1007/s12206-014-0904-x
– year: 2018
  ident: 10.1016/j.ress.2019.04.031_bib0016
  article-title: Degradation modeling using stochastic processes with random initial degradation
  publication-title: IEEE Trans Reliab
  doi: 10.1109/TR.2018.2885133
SSID ssj0004957
Score 2.5327446
Snippet •Extend traditional IG process by incorporating skew-normal random effects.•Derive analytically the lifetime distribution for the proposed EIG process...
As an important degradation model for monotonic degradation processes, the inverse Gaussian (IG) process model has attracted a lot of attention. To...
SourceID hal
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 261
SubjectTerms Algorithms
Applications
Automatic
Computer simulation
Crack propagation
Degradation
Economic models
Engineering Sciences
Extended inverse Gaussian process model
Extended MC integration algorithm
Fatigue failure
Fracture mechanics
Gallium arsenide lasers
Gaussian process
Immunoglobulins
Measurement errors
Parameter estimation
Reliability engineering
Service life assessment
Skew-normal random effects
Statistics
The MLE method
Title Degradation analysis based on an extended inverse Gaussian process model with skew-normal random effects and measurement errors
URI https://dx.doi.org/10.1016/j.ress.2019.04.031
https://www.proquest.com/docview/2253865115
https://hal.science/hal-02121916
Volume 189
WOSCitedRecordID wos000474493000021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1879-0836
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004957
  issn: 0951-8320
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ1Bb9MwFMetsnEYBwQDRGEgC3GLgpo4aeJjYZu6UVWTOqRyspzYXje6tOqWMk58XT4Gz7GdpENM48AlqtzETft-tZ9f3vsbofdxLsDLDlJfZCr3Ix2yoikJ_DTLY04jSWJZ7VoySsbjdDqlJ53OL1cLs54nRZHe3NDlfzU1tIGxdensP5i77hQa4DUYHY5gdjjey_D7Wv7B7JTkcSc5oicr4VUtnot7e-eFzskATHh5VdVSLk3VgNkex2avf5Pf_UI7tnMPpjWxuKxTQHTI_bIJMXpytVrYZ0NO8VvOz40O-A9PNsKHFW5GQtq74soqkZhxsIrcThbF2aysJ4yvNqZ9XNYkfzQP-FfQa2lLGWuVhHYgI2gytWx0zboCGyFKgIaE5rmNNAN0mtBKUXtzBKctVCdyCfef2Z7suGwU3-0UH5q9Sv6YPUwg4-KDDnTorD9aqeDaWWpDqns4mLCT_UM2Ohp_3ny3ld84HIzgOONzX-vow8K4v4Z1-naYxBTG3-3B0cH0uKnhpUaV1n1nW-BlchFv39DfnKgHM53Ne8upqDyl0yfosV3i4IFB8ynqyGIXPWoJX-6iHb3GMRLhz9DPFrHYEYsrYnHVgh2x2BKLHbHYEosrYrEmFreIxYZYbImFrgRuEYsNsc_Rl8OD009D3-4L4ufgfl77KiZxLyOC05wKJaJYSlgV91OSJ1EYgtfHU5Lq9L1MhH2S93tCxAnhXHGl67wFeYG2ikUhXyKcRipRcJrKBY9IRDmVYaKEIAlXAQmyLgrcD81yK5qv926ZM5cdecG0cZg2DutFDIzTRV59zdJIxtx5duzsx6zTa5xZBlTeed07MHb9AVolHnhjuq2hrYv2HAvMDlHQSRjrjX5hKfjqPn28RjvNv3UPbV2vSvkGPczXgMnqrcX4N0MF6Cg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Degradation+analysis+based+on+an+extended+inverse+Gaussian+process+model+with+skew-normal+random+effects+and+measurement+errors&rft.jtitle=Reliability+engineering+%26+system+safety&rft.au=Hao%2C+Songhua&rft.au=Yang%2C+Jun&rft.au=B%C3%A9renguer%2C+Christophe&rft.date=2019-09-01&rft.pub=Elsevier&rft.issn=0951-8320&rft.eissn=1879-0836&rft.volume=189&rft.issue=September&rft.spage=261&rft.epage=270&rft_id=info:doi/10.1016%2Fj.ress.2019.04.031&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-02121916v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-8320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-8320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-8320&client=summon