Facet-dependent catalytic activity of two-dimensional Ti3C2Tx MXene on hydrogen storage performance of MgH2

Two-dimensional Ti3C2Tx MXenes exposing different active facets are introduced into MgH2, and their catalytic effects are systematically investigated in depth through experimental and theoretical approaches. Excluding factors such as interlayer space, surface functional groups and experimental conti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of magnesium and alloys Jg. 11; H. 10; S. 3724 - 3735
Hauptverfasser: Gao, Haiguang, Shi, Rui, Liu, Yana, Zhu, Yunfeng, Zhang, Jiguang, Li, Liquan, Hu, Xiaohui
Format: Journal Article
Sprache:Englisch
Veröffentlicht: KeAi Communications Co., Ltd 01.10.2023
Schlagworte:
ISSN:2213-9567, 2213-9567
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Two-dimensional Ti3C2Tx MXenes exposing different active facets are introduced into MgH2, and their catalytic effects are systematically investigated in depth through experimental and theoretical approaches. Excluding factors such as interlayer space, surface functional groups and experimental contingency, the exposed facets is considered to be the dominant factor for catalytic activity of Ti3C2Tx towards MgH2. More exposed edge facets of Ti3C2Tx displays higher catalytic activity than that with more exposed basal facets, which also leads to different rate-controlling steps of MgH2 in the de/hydrogenation process. The low work function, strong hydrogen affinity and high content of in situ metallic Ti for the edge facet contribute the high catalytic activity. This work will give insights into the structural design of two-dimensional Ti3C2Tx MXene used for enhancing the catalytic activity in various fields.
AbstractList Two-dimensional Ti3C2Tx MXenes exposing different active facets are introduced into MgH2, and their catalytic effects are systematically investigated in depth through experimental and theoretical approaches. Excluding factors such as interlayer space, surface functional groups and experimental contingency, the exposed facets is considered to be the dominant factor for catalytic activity of Ti3C2Tx towards MgH2. More exposed edge facets of Ti3C2Tx displays higher catalytic activity than that with more exposed basal facets, which also leads to different rate-controlling steps of MgH2 in the de/hydrogenation process. The low work function, strong hydrogen affinity and high content of in situ metallic Ti for the edge facet contribute the high catalytic activity. This work will give insights into the structural design of two-dimensional Ti3C2Tx MXene used for enhancing the catalytic activity in various fields.
Author Liu, Yana
Zhang, Jiguang
Gao, Haiguang
Li, Liquan
Zhu, Yunfeng
Hu, Xiaohui
Shi, Rui
Author_xml – sequence: 1
  givenname: Haiguang
  surname: Gao
  fullname: Gao, Haiguang
– sequence: 2
  givenname: Rui
  surname: Shi
  fullname: Shi, Rui
– sequence: 3
  givenname: Yana
  surname: Liu
  fullname: Liu, Yana
– sequence: 4
  givenname: Yunfeng
  surname: Zhu
  fullname: Zhu, Yunfeng
– sequence: 5
  givenname: Jiguang
  surname: Zhang
  fullname: Zhang, Jiguang
– sequence: 6
  givenname: Liquan
  surname: Li
  fullname: Li, Liquan
– sequence: 7
  givenname: Xiaohui
  orcidid: 0000-0001-6346-1419
  surname: Hu
  fullname: Hu, Xiaohui
BookMark eNp9kM9qHDEMh01JoPn3AL35BWYj22vPzLEsTRNIyGUPuRmNLW88nbUXj2m7b9_ZppTSQ0AgIfh9Qt8lO0s5EWOfBKwECHM7rsY9riRIuYKlwHxgF1IK1fTatGf_zB_ZzTyPACA6rYxQF-zbHTqqjacDJU-pcocVp2ONjqOr8XusR54Drz9y4-Oe0hxzwolvo9rI7U_-9EKJeE789ehL3lHic80Fd8QPVEIue0yOToCn3b28ZucBp5lu_vQrtr37st3cN4_PXx82nx8btwZTm6A6GYwJ1IW1VK7vyASNGrzvtTM0yEHp3oh2HRQZo_rgfC8UOR0G50OrrtjDG9ZnHO2hxD2Wo80Y7e9FLjuLZXlwIjugXgdolelbWG4F1EMLXT8YEG5APyws8cZyJc9zofCXJ8Ce3NvRLu7tyb2FpcAsmfa_jIsV6yKuFozTO8lfORSNfQ
CitedBy_id crossref_primary_10_1016_j_jcis_2025_138335
crossref_primary_10_1016_j_jma_2024_06_016
crossref_primary_10_1016_j_jma_2025_08_024
crossref_primary_10_1016_j_rser_2025_115759
crossref_primary_10_1016_j_est_2025_117474
crossref_primary_10_1016_j_ijhydene_2024_09_110
crossref_primary_10_1016_j_jechem_2025_06_071
crossref_primary_10_1002_adfm_202418230
crossref_primary_10_1088_1361_6528_adbb72
crossref_primary_10_1016_j_est_2024_113843
crossref_primary_10_1016_j_est_2024_112376
crossref_primary_10_1016_j_jics_2025_101878
crossref_primary_10_1016_j_ijhydene_2024_08_292
crossref_primary_10_3390_ma16041587
crossref_primary_10_1016_j_ijhydene_2024_12_295
crossref_primary_10_1016_j_jallcom_2024_176975
crossref_primary_10_3390_nano14121036
crossref_primary_10_1016_j_jallcom_2024_177963
crossref_primary_10_1016_j_jallcom_2025_182848
crossref_primary_10_1016_j_fuel_2024_131025
crossref_primary_10_1016_j_ijhydene_2024_05_227
crossref_primary_10_1002_asia_202400308
crossref_primary_10_1016_j_ijhydene_2024_05_044
crossref_primary_10_1016_j_jallcom_2025_180987
crossref_primary_10_1016_j_est_2024_112807
crossref_primary_10_1016_j_seppur_2025_134126
crossref_primary_10_1016_j_jallcom_2025_181010
crossref_primary_10_1016_j_jma_2025_03_014
crossref_primary_10_3390_nano12142468
crossref_primary_10_1016_j_ijhydene_2024_12_486
crossref_primary_10_1016_j_ijhydene_2025_150238
crossref_primary_10_1007_s12598_024_03140_7
crossref_primary_10_1016_j_ijhydene_2025_150750
crossref_primary_10_1016_j_seppur_2024_129069
crossref_primary_10_1016_j_mtsust_2025_101173
crossref_primary_10_1016_j_jcis_2024_09_056
crossref_primary_10_1016_j_jallcom_2023_173274
Cites_doi 10.1016/j.jpowsour.2021.229742
10.1016/j.ijhydene.2018.10.216
10.1039/C8CS00324F
10.1021/acs.jpcc.0c00305
10.1007/s12274-020-3058-4
10.1016/j.chemphys.2019.03.001
10.1021/jp307982p
10.1021/acsaem.0c00289
10.1039/c3ta01332d
10.1016/j.apsusc.2021.150062
10.1038/nmat2978
10.1039/C8TA12431K
10.1016/j.ijhydene.2018.04.119
10.1016/j.coco.2021.100781
10.1111/j.1151-2916.1966.tb13289.x
10.1016/j.elecom.2014.09.002
10.1016/j.jpowsour.2016.07.095
10.1103/PhysRevLett.77.3865
10.1016/j.apcatb.2019.04.026
10.1016/j.ijhydene.2017.09.160
10.1021/acssuschemeng.9b06936
10.1016/j.jma.2019.06.006
10.1038/natrevmats.2016.91
10.1021/acs.jpclett.0c03710
10.1039/C8NR10275A
10.1021/acsami.0c12767
10.1039/C8TA02969E
10.1021/acs.chemmater.7b02847
10.1016/j.jallcom.2017.05.011
10.1007/s40820-020-0415-5
10.1016/j.mtla.2018.04.007
10.1016/j.carbon.2020.05.025
10.1021/acsami.0c15686
10.1016/j.joule.2018.09.011
10.1103/PhysRevB.50.17953
10.1016/j.jallcom.2018.12.217
10.1021/acsaem.9b00557
10.1016/j.apsusc.2019.07.037
10.1021/jp062746a
10.1016/j.jma.2018.05.007
10.1016/j.jpcs.2014.06.014
10.1039/C5CC08801A
10.1039/C9TA03665B
10.1038/4641262a
10.1039/C4TA03326D
10.1016/j.ijhydene.2019.01.189
10.1039/C4TA00221K
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.1016/j.jma.2022.02.006
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2213-9567
EndPage 3735
ExternalDocumentID oai_doaj_org_article_ba54f0736970423fa5b7089b601cbadb
10_1016_j_jma_2022_02_006
GroupedDBID -SB
-S~
0R~
4.4
457
5VS
AAEDT
AAEDW
AAIKJ
AALRI
AAXDM
AAXUO
AAYWO
AAYXX
ABMAC
ACVFH
ADBBV
ADCNI
ADEZE
ADVLN
AEUPX
AEXQZ
AFPUW
AFTJW
AGHFR
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
CAJEB
CITATION
EBS
EJD
FDB
GROUPED_DOAJ
HZ~
IPNFZ
IXB
KQ8
M41
M~E
O-L
O9-
OK1
Q--
RIG
ROL
SSZ
U1G
U5L
ID FETCH-LOGICAL-c406t-f382f66fe8f423c98e6f5a50dd95c6eb2b3596174f3e6639fcd913ec5fbcdf73
IEDL.DBID DOA
ISICitedReferencesCount 58
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001124712100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2213-9567
IngestDate Fri Oct 03 12:42:29 EDT 2025
Tue Nov 18 21:04:16 EST 2025
Wed Nov 05 20:42:44 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-f382f66fe8f423c98e6f5a50dd95c6eb2b3596174f3e6639fcd913ec5fbcdf73
ORCID 0000-0001-6346-1419
OpenAccessLink https://doaj.org/article/ba54f0736970423fa5b7089b601cbadb
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_ba54f0736970423fa5b7089b601cbadb
crossref_primary_10_1016_j_jma_2022_02_006
crossref_citationtrail_10_1016_j_jma_2022_02_006
PublicationCentury 2000
PublicationDate 2023-10-00
2023-10-01
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-00
PublicationDecade 2020
PublicationTitle Journal of magnesium and alloys
PublicationYear 2023
Publisher KeAi Communications Co., Ltd
Publisher_xml – name: KeAi Communications Co., Ltd
References Wang (10.1016/j.jma.2022.02.006_bib0017) 2021; 406
Chen (10.1016/j.jma.2022.02.006_bib0025) 2020; 16
Gao (10.1016/j.jma.2022.02.006_bib0045) 2020; 12
Tollefson (10.1016/j.jma.2022.02.006_bib0001) 2010; 464
Gao (10.1016/j.jma.2022.02.006_bib0047) 2020; 31
Li (10.1016/j.jma.2022.02.006_bib0013) 2017; 42
Wang (10.1016/j.jma.2022.02.006_bib0018) 2021
Zhang (10.1016/j.jma.2022.02.006_bib0012) 2021; 14
Wang (10.1016/j.jma.2022.02.006_bib0041) 2019; 7
Li (10.1016/j.jma.2022.02.006_bib0033) 2020
Zeng (10.1016/j.jma.2022.02.006_bib0021) 2012; 111
Zhang (10.1016/j.jma.2022.02.006_bib0020) 2014; 2
Kong (10.1016/j.jma.2022.02.006_bib0044) 2020; 8
Zhang (10.1016/j.jma.2022.02.006_bib0028) 2017; 715
Zheng (10.1016/j.jma.2022.02.006_bib0024) 2012; 116
Yao (10.1016/j.jma.2022.02.006_bib0011) 2020; 8
Chen (10.1016/j.jma.2022.02.006_bib0035) 2019; 522
Alhabeb (10.1016/j.jma.2022.02.006_bib0048) 2017; 29
Sharp (10.1016/j.jma.2022.02.006_bib0055) 1966; 49
Cui (10.1016/j.jma.2022.02.006_bib0022) 2014; 2
Khan (10.1016/j.jma.2022.02.006_bib0008) 2020; 124
Zhang (10.1016/j.jma.2022.02.006_bib0030) 2019; 11
Perdew (10.1016/j.jma.2022.02.006_bib0052) 1996; 77
Mohtadi (10.1016/j.jma.2022.02.006_bib0002) 2016; 2
Li (10.1016/j.jma.2022.02.006_bib0039) 2019; 44
Liu (10.1016/j.jma.2022.02.006_bib0060) 2019; 252
Shen (10.1016/j.jma.2022.02.006_bib0043) 2018; 1
Pang (10.1016/j.jma.2022.02.006_bib0014) 2021; 26
Ma (10.1016/j.jma.2022.02.006_bib0006) 2021; 406
Xian (10.1016/j.jma.2022.02.006_bib0037) 2019; 2
Pang (10.1016/j.jma.2022.02.006_bib0034) 2019; 48
Liu (10.1016/j.jma.2022.02.006_bib0040) 2019; 493
Zhang (10.1016/j.jma.2022.02.006_bib0003) 2019; 782
Luo (10.1016/j.jma.2022.02.006_bib0059) 2019; 3
Cui (10.1016/j.jma.2022.02.006_bib0023) 2013; 1
Zeng (10.1016/j.jma.2022.02.006_bib0019) 2021
Ibragimova (10.1016/j.jma.2022.02.006_bib0058) 2021; 12
Lotoskyy (10.1016/j.jma.2022.02.006_bib0005) 2018; 6
Zhu (10.1016/j.jma.2022.02.006_bib0046) 2020; 12
Khawam (10.1016/j.jma.2022.02.006_bib0056) 2006; 110
Lu (10.1016/j.jma.2022.02.006_bib0015) 2021; 494
Zang (10.1016/j.jma.2022.02.006_bib0054) 2020; 12
Chen (10.1016/j.jma.2022.02.006_bib0026) 2020; 166
Liu (10.1016/j.jma.2022.02.006_bib0038) 2016; 52
Ma (10.1016/j.jma.2022.02.006_bib0031) 2020; 822
Jeon (10.1016/j.jma.2022.02.006_bib0007) 2011; 10
Kresse (10.1016/j.jma.2022.02.006_bib0050) 1999; 59
Meena (10.1016/j.jma.2022.02.006_bib0004) 2018; 6
Huang (10.1016/j.jma.2022.02.006_bib0027) 2021; 19
Liu (10.1016/j.jma.2022.02.006_bib0053) 2019; 7
Zhang (10.1016/j.jma.2022.02.006_bib0009) 2017; 29
Wu (10.1016/j.jma.2022.02.006_bib0036) 2016; 327
Zhang (10.1016/j.jma.2022.02.006_bib0032) 2020; 825
Dall'Agnese (10.1016/j.jma.2022.02.006_bib0057) 2014; 48
Zhang (10.1016/j.jma.2022.02.006_bib0042) 2018; 43
Gan (10.1016/j.jma.2022.02.006_bib0049) 2018; 43
Webb (10.1016/j.jma.2022.02.006_bib0010) 2015; 84
Blöchl (10.1016/j.jma.2022.02.006_bib0051) 1994; 50
Pukazhselvan (10.1016/j.jma.2022.02.006_bib0016) 2021; 561
Hyun (10.1016/j.jma.2022.02.006_bib0029) 2020; 3
References_xml – volume: 494
  year: 2021
  ident: 10.1016/j.jma.2022.02.006_bib0015
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2021.229742
– volume: 822
  year: 2020
  ident: 10.1016/j.jma.2022.02.006_bib0031
  publication-title: J. Alloy. Compd.
– volume: 43
  start-page: 23327
  year: 2018
  ident: 10.1016/j.jma.2022.02.006_bib0042
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2018.10.216
– volume: 48
  start-page: 72
  year: 2019
  ident: 10.1016/j.jma.2022.02.006_bib0034
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00324F
– volume: 124
  start-page: 9685
  year: 2020
  ident: 10.1016/j.jma.2022.02.006_bib0008
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.0c00305
– volume: 14
  start-page: 148
  year: 2021
  ident: 10.1016/j.jma.2022.02.006_bib0012
  publication-title: Nano Res.
  doi: 10.1007/s12274-020-3058-4
– volume: 522
  start-page: 178
  year: 2019
  ident: 10.1016/j.jma.2022.02.006_bib0035
  publication-title: Chem. Phys.
  doi: 10.1016/j.chemphys.2019.03.001
– volume: 29
  year: 2017
  ident: 10.1016/j.jma.2022.02.006_bib0009
  publication-title: Adv. Mater.
– volume: 116
  start-page: 21277
  year: 2012
  ident: 10.1016/j.jma.2022.02.006_bib0024
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp307982p
– volume: 3
  start-page: 8143
  year: 2020
  ident: 10.1016/j.jma.2022.02.006_bib0029
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.0c00289
– volume: 1
  start-page: 5603
  year: 2013
  ident: 10.1016/j.jma.2022.02.006_bib0023
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c3ta01332d
– volume: 561
  year: 2021
  ident: 10.1016/j.jma.2022.02.006_bib0016
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2021.150062
– year: 2021
  ident: 10.1016/j.jma.2022.02.006_bib0018
  publication-title: J. Magnes. Alloy.
– volume: 59
  start-page: 3
  year: 1999
  ident: 10.1016/j.jma.2022.02.006_bib0050
  publication-title: Phys. Rev. B
– volume: 406
  year: 2021
  ident: 10.1016/j.jma.2022.02.006_bib0006
  publication-title: Chem. Eng. J.
– volume: 10
  start-page: 286
  year: 2011
  ident: 10.1016/j.jma.2022.02.006_bib0007
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2978
– volume: 19
  year: 2021
  ident: 10.1016/j.jma.2022.02.006_bib0027
  publication-title: Mater. Today Energy
– volume: 7
  start-page: 5277
  year: 2019
  ident: 10.1016/j.jma.2022.02.006_bib0053
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA12431K
– volume: 43
  start-page: 10232
  year: 2018
  ident: 10.1016/j.jma.2022.02.006_bib0049
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2018.04.119
– volume: 26
  year: 2021
  ident: 10.1016/j.jma.2022.02.006_bib0014
  publication-title: Compos. Commun.
  doi: 10.1016/j.coco.2021.100781
– volume: 49
  start-page: 379
  year: 1966
  ident: 10.1016/j.jma.2022.02.006_bib0055
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1151-2916.1966.tb13289.x
– volume: 48
  start-page: 118
  year: 2014
  ident: 10.1016/j.jma.2022.02.006_bib0057
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2014.09.002
– volume: 327
  start-page: 519
  year: 2016
  ident: 10.1016/j.jma.2022.02.006_bib0036
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.07.095
– volume: 77
  start-page: 3865
  year: 1996
  ident: 10.1016/j.jma.2022.02.006_bib0052
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 252
  start-page: 198
  year: 2019
  ident: 10.1016/j.jma.2022.02.006_bib0060
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2019.04.026
– volume: 42
  start-page: 28464
  year: 2017
  ident: 10.1016/j.jma.2022.02.006_bib0013
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2017.09.160
– volume: 8
  start-page: 4755
  year: 2020
  ident: 10.1016/j.jma.2022.02.006_bib0044
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.9b06936
– volume: 8
  start-page: 461
  year: 2020
  ident: 10.1016/j.jma.2022.02.006_bib0011
  publication-title: J. Magnes. Alloy.
  doi: 10.1016/j.jma.2019.06.006
– volume: 2
  start-page: 16091
  year: 2016
  ident: 10.1016/j.jma.2022.02.006_bib0002
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2016.91
– year: 2021
  ident: 10.1016/j.jma.2022.02.006_bib0019
  publication-title: J. Magnes. Alloy.
– volume: 12
  start-page: 2377
  year: 2021
  ident: 10.1016/j.jma.2022.02.006_bib0058
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.0c03710
– volume: 11
  start-page: 7465
  year: 2019
  ident: 10.1016/j.jma.2022.02.006_bib0030
  publication-title: Nanoscale
  doi: 10.1039/C8NR10275A
– volume: 31
  year: 2020
  ident: 10.1016/j.jma.2022.02.006_bib0047
  publication-title: Nanotechnology
– volume: 16
  year: 2020
  ident: 10.1016/j.jma.2022.02.006_bib0025
  publication-title: Mater. Today Energy
– volume: 12
  start-page: 50333
  year: 2020
  ident: 10.1016/j.jma.2022.02.006_bib0046
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c12767
– volume: 111
  year: 2012
  ident: 10.1016/j.jma.2022.02.006_bib0021
  publication-title: J. Appl. Phys.
– volume: 6
  start-page: 10740
  year: 2018
  ident: 10.1016/j.jma.2022.02.006_bib0005
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA02969E
– volume: 29
  start-page: 7633
  year: 2017
  ident: 10.1016/j.jma.2022.02.006_bib0048
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b02847
– volume: 715
  start-page: 329
  year: 2017
  ident: 10.1016/j.jma.2022.02.006_bib0028
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2017.05.011
– volume: 825
  year: 2020
  ident: 10.1016/j.jma.2022.02.006_bib0032
  publication-title: J. Alloy. Compd.
– volume: 12
  start-page: 77
  year: 2020
  ident: 10.1016/j.jma.2022.02.006_bib0054
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-020-0415-5
– volume: 1
  start-page: 114
  year: 2018
  ident: 10.1016/j.jma.2022.02.006_bib0043
  publication-title: Materialia
  doi: 10.1016/j.mtla.2018.04.007
– volume: 406
  year: 2021
  ident: 10.1016/j.jma.2022.02.006_bib0017
  publication-title: Chem. Eng. J.
– volume: 166
  start-page: 46
  year: 2020
  ident: 10.1016/j.jma.2022.02.006_bib0026
  publication-title: Carbon
  doi: 10.1016/j.carbon.2020.05.025
– volume: 12
  start-page: 47684
  year: 2020
  ident: 10.1016/j.jma.2022.02.006_bib0045
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c15686
– volume: 3
  start-page: 279
  year: 2019
  ident: 10.1016/j.jma.2022.02.006_bib0059
  publication-title: Joule
  doi: 10.1016/j.joule.2018.09.011
– volume: 50
  start-page: 17953
  year: 1994
  ident: 10.1016/j.jma.2022.02.006_bib0051
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.50.17953
– volume: 782
  start-page: 796
  year: 2019
  ident: 10.1016/j.jma.2022.02.006_bib0003
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2018.12.217
– volume: 2
  start-page: 4853
  year: 2019
  ident: 10.1016/j.jma.2022.02.006_bib0037
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.9b00557
– volume: 493
  start-page: 431
  year: 2019
  ident: 10.1016/j.jma.2022.02.006_bib0040
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.07.037
– volume: 110
  start-page: 17315
  year: 2006
  ident: 10.1016/j.jma.2022.02.006_bib0056
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp062746a
– volume: 6
  start-page: 318
  year: 2018
  ident: 10.1016/j.jma.2022.02.006_bib0004
  publication-title: J. Magnes. Alloy.
  doi: 10.1016/j.jma.2018.05.007
– volume: 84
  start-page: 96
  year: 2015
  ident: 10.1016/j.jma.2022.02.006_bib0010
  publication-title: J. Phys. Chem. Solids
  doi: 10.1016/j.jpcs.2014.06.014
– volume: 52
  start-page: 705
  year: 2016
  ident: 10.1016/j.jma.2022.02.006_bib0038
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC08801A
– volume: 7
  start-page: 14244
  year: 2019
  ident: 10.1016/j.jma.2022.02.006_bib0041
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA03665B
– volume: 464
  start-page: 1262
  year: 2010
  ident: 10.1016/j.jma.2022.02.006_bib0001
  publication-title: Nature
  doi: 10.1038/4641262a
– volume: 2
  start-page: 19084
  year: 2014
  ident: 10.1016/j.jma.2022.02.006_bib0020
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA03326D
– volume: 44
  start-page: 6787
  year: 2019
  ident: 10.1016/j.jma.2022.02.006_bib0039
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2019.01.189
– year: 2020
  ident: 10.1016/j.jma.2022.02.006_bib0033
  publication-title: Adv. Funct. Mater.
– volume: 2
  start-page: 9645
  year: 2014
  ident: 10.1016/j.jma.2022.02.006_bib0022
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA00221K
SSID ssj0001853613
Score 2.4914446
Snippet Two-dimensional Ti3C2Tx MXenes exposing different active facets are introduced into MgH2, and their catalytic effects are systematically investigated in depth...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 3724
SubjectTerms Catalyst
Facet design
Hydrogen storage materials
Magnesium hydride
MXene
Title Facet-dependent catalytic activity of two-dimensional Ti3C2Tx MXene on hydrogen storage performance of MgH2
URI https://doaj.org/article/ba54f0736970423fa5b7089b601cbadb
Volume 11
WOSCitedRecordID wos001124712100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2213-9567
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001853613
  issn: 2213-9567
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2213-9567
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001853613
  issn: 2213-9567
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxQAD4inKSx6YkCLSJHbsEapWHWjFkKFbFL-gBSVVCY8u_HbOTlLCAgtS5CGyHevLyXdn332H0GUvNFIyLcE3kRoaITwmfOIpZvM-wQQ22vHM3sWTCZtO-X2r1JeNCavogSvgrkVGIgNySHlsQzhMRkTsMy7AkZAiU8Luvn7MW86UO12BT4Giaq4xXUDX3PEMBUHF0Ul_KKIWX79TLMNdtFNbhPimWske2tD5Ptpu8QQeoKdhJnXpNQVrS-wOXVYwANu8BFv-ARcGl--Fpyxbf8W0gZNZ2A-SDzyewoaGixw_rtSyAInBNiQSNhK8-E4bsBOMH0bBIUqGg6Q_8uoqCZ4EZVx6JmSBodRoZgAfyZmmhmTEV4oTScFxFiHh1KIeajAvuJGK90ItiRFSmTg8Qp28yPUxwsReuYWZUDKikegxziKtMsPBAjFgNugu8hvEUlkziNtCFs9pEyo2TwHk1IKc-vD4tIuu1kMWFX3Gb51v7W9Yd7TM1-4FyENay0P6lzyc_Mckp2jLlpWvgvbOUKdcvupztCnfytnL8sKJGrTjz8EXYvjavQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Facet-dependent+catalytic+activity+of+two-dimensional+Ti3C2Tx+MXene+on+hydrogen+storage+performance+of+MgH2&rft.jtitle=Journal+of+magnesium+and+alloys&rft.au=Gao%2C+Haiguang&rft.au=Shi%2C+Rui&rft.au=Liu%2C+Yana&rft.au=Zhu%2C+Yunfeng&rft.date=2023-10-01&rft.issn=2213-9567&rft.eissn=2213-9567&rft.volume=11&rft.issue=10&rft.spage=3724&rft.epage=3735&rft_id=info:doi/10.1016%2Fj.jma.2022.02.006&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jma_2022_02_006
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2213-9567&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2213-9567&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2213-9567&client=summon