Facet-dependent catalytic activity of two-dimensional Ti3C2Tx MXene on hydrogen storage performance of MgH2
Two-dimensional Ti3C2Tx MXenes exposing different active facets are introduced into MgH2, and their catalytic effects are systematically investigated in depth through experimental and theoretical approaches. Excluding factors such as interlayer space, surface functional groups and experimental conti...
Gespeichert in:
| Veröffentlicht in: | Journal of magnesium and alloys Jg. 11; H. 10; S. 3724 - 3735 |
|---|---|
| Hauptverfasser: | , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
KeAi Communications Co., Ltd
01.10.2023
|
| Schlagworte: | |
| ISSN: | 2213-9567, 2213-9567 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Two-dimensional Ti3C2Tx MXenes exposing different active facets are introduced into MgH2, and their catalytic effects are systematically investigated in depth through experimental and theoretical approaches. Excluding factors such as interlayer space, surface functional groups and experimental contingency, the exposed facets is considered to be the dominant factor for catalytic activity of Ti3C2Tx towards MgH2. More exposed edge facets of Ti3C2Tx displays higher catalytic activity than that with more exposed basal facets, which also leads to different rate-controlling steps of MgH2 in the de/hydrogenation process. The low work function, strong hydrogen affinity and high content of in situ metallic Ti for the edge facet contribute the high catalytic activity. This work will give insights into the structural design of two-dimensional Ti3C2Tx MXene used for enhancing the catalytic activity in various fields. |
|---|---|
| AbstractList | Two-dimensional Ti3C2Tx MXenes exposing different active facets are introduced into MgH2, and their catalytic effects are systematically investigated in depth through experimental and theoretical approaches. Excluding factors such as interlayer space, surface functional groups and experimental contingency, the exposed facets is considered to be the dominant factor for catalytic activity of Ti3C2Tx towards MgH2. More exposed edge facets of Ti3C2Tx displays higher catalytic activity than that with more exposed basal facets, which also leads to different rate-controlling steps of MgH2 in the de/hydrogenation process. The low work function, strong hydrogen affinity and high content of in situ metallic Ti for the edge facet contribute the high catalytic activity. This work will give insights into the structural design of two-dimensional Ti3C2Tx MXene used for enhancing the catalytic activity in various fields. |
| Author | Liu, Yana Zhang, Jiguang Gao, Haiguang Li, Liquan Zhu, Yunfeng Hu, Xiaohui Shi, Rui |
| Author_xml | – sequence: 1 givenname: Haiguang surname: Gao fullname: Gao, Haiguang – sequence: 2 givenname: Rui surname: Shi fullname: Shi, Rui – sequence: 3 givenname: Yana surname: Liu fullname: Liu, Yana – sequence: 4 givenname: Yunfeng surname: Zhu fullname: Zhu, Yunfeng – sequence: 5 givenname: Jiguang surname: Zhang fullname: Zhang, Jiguang – sequence: 6 givenname: Liquan surname: Li fullname: Li, Liquan – sequence: 7 givenname: Xiaohui orcidid: 0000-0001-6346-1419 surname: Hu fullname: Hu, Xiaohui |
| BookMark | eNp9kM9qHDEMh01JoPn3AL35BWYj22vPzLEsTRNIyGUPuRmNLW88nbUXj2m7b9_ZppTSQ0AgIfh9Qt8lO0s5EWOfBKwECHM7rsY9riRIuYKlwHxgF1IK1fTatGf_zB_ZzTyPACA6rYxQF-zbHTqqjacDJU-pcocVp2ONjqOr8XusR54Drz9y4-Oe0hxzwolvo9rI7U_-9EKJeE789ehL3lHic80Fd8QPVEIue0yOToCn3b28ZucBp5lu_vQrtr37st3cN4_PXx82nx8btwZTm6A6GYwJ1IW1VK7vyASNGrzvtTM0yEHp3oh2HRQZo_rgfC8UOR0G50OrrtjDG9ZnHO2hxD2Wo80Y7e9FLjuLZXlwIjugXgdolelbWG4F1EMLXT8YEG5APyws8cZyJc9zofCXJ8Ce3NvRLu7tyb2FpcAsmfa_jIsV6yKuFozTO8lfORSNfQ |
| CitedBy_id | crossref_primary_10_1016_j_jcis_2025_138335 crossref_primary_10_1016_j_jma_2024_06_016 crossref_primary_10_1016_j_jma_2025_08_024 crossref_primary_10_1016_j_rser_2025_115759 crossref_primary_10_1016_j_est_2025_117474 crossref_primary_10_1016_j_ijhydene_2024_09_110 crossref_primary_10_1016_j_jechem_2025_06_071 crossref_primary_10_1002_adfm_202418230 crossref_primary_10_1088_1361_6528_adbb72 crossref_primary_10_1016_j_est_2024_113843 crossref_primary_10_1016_j_est_2024_112376 crossref_primary_10_1016_j_jics_2025_101878 crossref_primary_10_1016_j_ijhydene_2024_08_292 crossref_primary_10_3390_ma16041587 crossref_primary_10_1016_j_ijhydene_2024_12_295 crossref_primary_10_1016_j_jallcom_2024_176975 crossref_primary_10_3390_nano14121036 crossref_primary_10_1016_j_jallcom_2024_177963 crossref_primary_10_1016_j_jallcom_2025_182848 crossref_primary_10_1016_j_fuel_2024_131025 crossref_primary_10_1016_j_ijhydene_2024_05_227 crossref_primary_10_1002_asia_202400308 crossref_primary_10_1016_j_ijhydene_2024_05_044 crossref_primary_10_1016_j_jallcom_2025_180987 crossref_primary_10_1016_j_est_2024_112807 crossref_primary_10_1016_j_seppur_2025_134126 crossref_primary_10_1016_j_jallcom_2025_181010 crossref_primary_10_1016_j_jma_2025_03_014 crossref_primary_10_3390_nano12142468 crossref_primary_10_1016_j_ijhydene_2024_12_486 crossref_primary_10_1016_j_ijhydene_2025_150238 crossref_primary_10_1007_s12598_024_03140_7 crossref_primary_10_1016_j_ijhydene_2025_150750 crossref_primary_10_1016_j_seppur_2024_129069 crossref_primary_10_1016_j_mtsust_2025_101173 crossref_primary_10_1016_j_jcis_2024_09_056 crossref_primary_10_1016_j_jallcom_2023_173274 |
| Cites_doi | 10.1016/j.jpowsour.2021.229742 10.1016/j.ijhydene.2018.10.216 10.1039/C8CS00324F 10.1021/acs.jpcc.0c00305 10.1007/s12274-020-3058-4 10.1016/j.chemphys.2019.03.001 10.1021/jp307982p 10.1021/acsaem.0c00289 10.1039/c3ta01332d 10.1016/j.apsusc.2021.150062 10.1038/nmat2978 10.1039/C8TA12431K 10.1016/j.ijhydene.2018.04.119 10.1016/j.coco.2021.100781 10.1111/j.1151-2916.1966.tb13289.x 10.1016/j.elecom.2014.09.002 10.1016/j.jpowsour.2016.07.095 10.1103/PhysRevLett.77.3865 10.1016/j.apcatb.2019.04.026 10.1016/j.ijhydene.2017.09.160 10.1021/acssuschemeng.9b06936 10.1016/j.jma.2019.06.006 10.1038/natrevmats.2016.91 10.1021/acs.jpclett.0c03710 10.1039/C8NR10275A 10.1021/acsami.0c12767 10.1039/C8TA02969E 10.1021/acs.chemmater.7b02847 10.1016/j.jallcom.2017.05.011 10.1007/s40820-020-0415-5 10.1016/j.mtla.2018.04.007 10.1016/j.carbon.2020.05.025 10.1021/acsami.0c15686 10.1016/j.joule.2018.09.011 10.1103/PhysRevB.50.17953 10.1016/j.jallcom.2018.12.217 10.1021/acsaem.9b00557 10.1016/j.apsusc.2019.07.037 10.1021/jp062746a 10.1016/j.jma.2018.05.007 10.1016/j.jpcs.2014.06.014 10.1039/C5CC08801A 10.1039/C9TA03665B 10.1038/4641262a 10.1039/C4TA03326D 10.1016/j.ijhydene.2019.01.189 10.1039/C4TA00221K |
| ContentType | Journal Article |
| DBID | AAYXX CITATION DOA |
| DOI | 10.1016/j.jma.2022.02.006 |
| DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2213-9567 |
| EndPage | 3735 |
| ExternalDocumentID | oai_doaj_org_article_ba54f0736970423fa5b7089b601cbadb 10_1016_j_jma_2022_02_006 |
| GroupedDBID | -SB -S~ 0R~ 4.4 457 5VS AAEDT AAEDW AAIKJ AALRI AAXDM AAXUO AAYWO AAYXX ABMAC ACVFH ADBBV ADCNI ADEZE ADVLN AEUPX AEXQZ AFPUW AFTJW AGHFR AIGII AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV CAJEB CITATION EBS EJD FDB GROUPED_DOAJ HZ~ IPNFZ IXB KQ8 M41 M~E O-L O9- OK1 Q-- RIG ROL SSZ U1G U5L |
| ID | FETCH-LOGICAL-c406t-f382f66fe8f423c98e6f5a50dd95c6eb2b3596174f3e6639fcd913ec5fbcdf73 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 58 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001124712100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2213-9567 |
| IngestDate | Fri Oct 03 12:42:29 EDT 2025 Tue Nov 18 21:04:16 EST 2025 Wed Nov 05 20:42:44 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c406t-f382f66fe8f423c98e6f5a50dd95c6eb2b3596174f3e6639fcd913ec5fbcdf73 |
| ORCID | 0000-0001-6346-1419 |
| OpenAccessLink | https://doaj.org/article/ba54f0736970423fa5b7089b601cbadb |
| PageCount | 12 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_ba54f0736970423fa5b7089b601cbadb crossref_primary_10_1016_j_jma_2022_02_006 crossref_citationtrail_10_1016_j_jma_2022_02_006 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-10-00 2023-10-01 |
| PublicationDateYYYYMMDD | 2023-10-01 |
| PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-00 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of magnesium and alloys |
| PublicationYear | 2023 |
| Publisher | KeAi Communications Co., Ltd |
| Publisher_xml | – name: KeAi Communications Co., Ltd |
| References | Wang (10.1016/j.jma.2022.02.006_bib0017) 2021; 406 Chen (10.1016/j.jma.2022.02.006_bib0025) 2020; 16 Gao (10.1016/j.jma.2022.02.006_bib0045) 2020; 12 Tollefson (10.1016/j.jma.2022.02.006_bib0001) 2010; 464 Gao (10.1016/j.jma.2022.02.006_bib0047) 2020; 31 Li (10.1016/j.jma.2022.02.006_bib0013) 2017; 42 Wang (10.1016/j.jma.2022.02.006_bib0018) 2021 Zhang (10.1016/j.jma.2022.02.006_bib0012) 2021; 14 Wang (10.1016/j.jma.2022.02.006_bib0041) 2019; 7 Li (10.1016/j.jma.2022.02.006_bib0033) 2020 Zeng (10.1016/j.jma.2022.02.006_bib0021) 2012; 111 Zhang (10.1016/j.jma.2022.02.006_bib0020) 2014; 2 Kong (10.1016/j.jma.2022.02.006_bib0044) 2020; 8 Zhang (10.1016/j.jma.2022.02.006_bib0028) 2017; 715 Zheng (10.1016/j.jma.2022.02.006_bib0024) 2012; 116 Yao (10.1016/j.jma.2022.02.006_bib0011) 2020; 8 Chen (10.1016/j.jma.2022.02.006_bib0035) 2019; 522 Alhabeb (10.1016/j.jma.2022.02.006_bib0048) 2017; 29 Sharp (10.1016/j.jma.2022.02.006_bib0055) 1966; 49 Cui (10.1016/j.jma.2022.02.006_bib0022) 2014; 2 Khan (10.1016/j.jma.2022.02.006_bib0008) 2020; 124 Zhang (10.1016/j.jma.2022.02.006_bib0030) 2019; 11 Perdew (10.1016/j.jma.2022.02.006_bib0052) 1996; 77 Mohtadi (10.1016/j.jma.2022.02.006_bib0002) 2016; 2 Li (10.1016/j.jma.2022.02.006_bib0039) 2019; 44 Liu (10.1016/j.jma.2022.02.006_bib0060) 2019; 252 Shen (10.1016/j.jma.2022.02.006_bib0043) 2018; 1 Pang (10.1016/j.jma.2022.02.006_bib0014) 2021; 26 Ma (10.1016/j.jma.2022.02.006_bib0006) 2021; 406 Xian (10.1016/j.jma.2022.02.006_bib0037) 2019; 2 Pang (10.1016/j.jma.2022.02.006_bib0034) 2019; 48 Liu (10.1016/j.jma.2022.02.006_bib0040) 2019; 493 Zhang (10.1016/j.jma.2022.02.006_bib0003) 2019; 782 Luo (10.1016/j.jma.2022.02.006_bib0059) 2019; 3 Cui (10.1016/j.jma.2022.02.006_bib0023) 2013; 1 Zeng (10.1016/j.jma.2022.02.006_bib0019) 2021 Ibragimova (10.1016/j.jma.2022.02.006_bib0058) 2021; 12 Lotoskyy (10.1016/j.jma.2022.02.006_bib0005) 2018; 6 Zhu (10.1016/j.jma.2022.02.006_bib0046) 2020; 12 Khawam (10.1016/j.jma.2022.02.006_bib0056) 2006; 110 Lu (10.1016/j.jma.2022.02.006_bib0015) 2021; 494 Zang (10.1016/j.jma.2022.02.006_bib0054) 2020; 12 Chen (10.1016/j.jma.2022.02.006_bib0026) 2020; 166 Liu (10.1016/j.jma.2022.02.006_bib0038) 2016; 52 Ma (10.1016/j.jma.2022.02.006_bib0031) 2020; 822 Jeon (10.1016/j.jma.2022.02.006_bib0007) 2011; 10 Kresse (10.1016/j.jma.2022.02.006_bib0050) 1999; 59 Meena (10.1016/j.jma.2022.02.006_bib0004) 2018; 6 Huang (10.1016/j.jma.2022.02.006_bib0027) 2021; 19 Liu (10.1016/j.jma.2022.02.006_bib0053) 2019; 7 Zhang (10.1016/j.jma.2022.02.006_bib0009) 2017; 29 Wu (10.1016/j.jma.2022.02.006_bib0036) 2016; 327 Zhang (10.1016/j.jma.2022.02.006_bib0032) 2020; 825 Dall'Agnese (10.1016/j.jma.2022.02.006_bib0057) 2014; 48 Zhang (10.1016/j.jma.2022.02.006_bib0042) 2018; 43 Gan (10.1016/j.jma.2022.02.006_bib0049) 2018; 43 Webb (10.1016/j.jma.2022.02.006_bib0010) 2015; 84 Blöchl (10.1016/j.jma.2022.02.006_bib0051) 1994; 50 Pukazhselvan (10.1016/j.jma.2022.02.006_bib0016) 2021; 561 Hyun (10.1016/j.jma.2022.02.006_bib0029) 2020; 3 |
| References_xml | – volume: 494 year: 2021 ident: 10.1016/j.jma.2022.02.006_bib0015 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2021.229742 – volume: 822 year: 2020 ident: 10.1016/j.jma.2022.02.006_bib0031 publication-title: J. Alloy. Compd. – volume: 43 start-page: 23327 year: 2018 ident: 10.1016/j.jma.2022.02.006_bib0042 publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2018.10.216 – volume: 48 start-page: 72 year: 2019 ident: 10.1016/j.jma.2022.02.006_bib0034 publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00324F – volume: 124 start-page: 9685 year: 2020 ident: 10.1016/j.jma.2022.02.006_bib0008 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.0c00305 – volume: 14 start-page: 148 year: 2021 ident: 10.1016/j.jma.2022.02.006_bib0012 publication-title: Nano Res. doi: 10.1007/s12274-020-3058-4 – volume: 522 start-page: 178 year: 2019 ident: 10.1016/j.jma.2022.02.006_bib0035 publication-title: Chem. Phys. doi: 10.1016/j.chemphys.2019.03.001 – volume: 29 year: 2017 ident: 10.1016/j.jma.2022.02.006_bib0009 publication-title: Adv. Mater. – volume: 116 start-page: 21277 year: 2012 ident: 10.1016/j.jma.2022.02.006_bib0024 publication-title: J. Phys. Chem. C doi: 10.1021/jp307982p – volume: 3 start-page: 8143 year: 2020 ident: 10.1016/j.jma.2022.02.006_bib0029 publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.0c00289 – volume: 1 start-page: 5603 year: 2013 ident: 10.1016/j.jma.2022.02.006_bib0023 publication-title: J. Mater. Chem. A doi: 10.1039/c3ta01332d – volume: 561 year: 2021 ident: 10.1016/j.jma.2022.02.006_bib0016 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2021.150062 – year: 2021 ident: 10.1016/j.jma.2022.02.006_bib0018 publication-title: J. Magnes. Alloy. – volume: 59 start-page: 3 year: 1999 ident: 10.1016/j.jma.2022.02.006_bib0050 publication-title: Phys. Rev. B – volume: 406 year: 2021 ident: 10.1016/j.jma.2022.02.006_bib0006 publication-title: Chem. Eng. J. – volume: 10 start-page: 286 year: 2011 ident: 10.1016/j.jma.2022.02.006_bib0007 publication-title: Nat. Mater. doi: 10.1038/nmat2978 – volume: 19 year: 2021 ident: 10.1016/j.jma.2022.02.006_bib0027 publication-title: Mater. Today Energy – volume: 7 start-page: 5277 year: 2019 ident: 10.1016/j.jma.2022.02.006_bib0053 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA12431K – volume: 43 start-page: 10232 year: 2018 ident: 10.1016/j.jma.2022.02.006_bib0049 publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2018.04.119 – volume: 26 year: 2021 ident: 10.1016/j.jma.2022.02.006_bib0014 publication-title: Compos. Commun. doi: 10.1016/j.coco.2021.100781 – volume: 49 start-page: 379 year: 1966 ident: 10.1016/j.jma.2022.02.006_bib0055 publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.1966.tb13289.x – volume: 48 start-page: 118 year: 2014 ident: 10.1016/j.jma.2022.02.006_bib0057 publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2014.09.002 – volume: 327 start-page: 519 year: 2016 ident: 10.1016/j.jma.2022.02.006_bib0036 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.07.095 – volume: 77 start-page: 3865 year: 1996 ident: 10.1016/j.jma.2022.02.006_bib0052 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 252 start-page: 198 year: 2019 ident: 10.1016/j.jma.2022.02.006_bib0060 publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2019.04.026 – volume: 42 start-page: 28464 year: 2017 ident: 10.1016/j.jma.2022.02.006_bib0013 publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2017.09.160 – volume: 8 start-page: 4755 year: 2020 ident: 10.1016/j.jma.2022.02.006_bib0044 publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.9b06936 – volume: 8 start-page: 461 year: 2020 ident: 10.1016/j.jma.2022.02.006_bib0011 publication-title: J. Magnes. Alloy. doi: 10.1016/j.jma.2019.06.006 – volume: 2 start-page: 16091 year: 2016 ident: 10.1016/j.jma.2022.02.006_bib0002 publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.91 – year: 2021 ident: 10.1016/j.jma.2022.02.006_bib0019 publication-title: J. Magnes. Alloy. – volume: 12 start-page: 2377 year: 2021 ident: 10.1016/j.jma.2022.02.006_bib0058 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.0c03710 – volume: 11 start-page: 7465 year: 2019 ident: 10.1016/j.jma.2022.02.006_bib0030 publication-title: Nanoscale doi: 10.1039/C8NR10275A – volume: 31 year: 2020 ident: 10.1016/j.jma.2022.02.006_bib0047 publication-title: Nanotechnology – volume: 16 year: 2020 ident: 10.1016/j.jma.2022.02.006_bib0025 publication-title: Mater. Today Energy – volume: 12 start-page: 50333 year: 2020 ident: 10.1016/j.jma.2022.02.006_bib0046 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c12767 – volume: 111 year: 2012 ident: 10.1016/j.jma.2022.02.006_bib0021 publication-title: J. Appl. Phys. – volume: 6 start-page: 10740 year: 2018 ident: 10.1016/j.jma.2022.02.006_bib0005 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA02969E – volume: 29 start-page: 7633 year: 2017 ident: 10.1016/j.jma.2022.02.006_bib0048 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b02847 – volume: 715 start-page: 329 year: 2017 ident: 10.1016/j.jma.2022.02.006_bib0028 publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2017.05.011 – volume: 825 year: 2020 ident: 10.1016/j.jma.2022.02.006_bib0032 publication-title: J. Alloy. Compd. – volume: 12 start-page: 77 year: 2020 ident: 10.1016/j.jma.2022.02.006_bib0054 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-020-0415-5 – volume: 1 start-page: 114 year: 2018 ident: 10.1016/j.jma.2022.02.006_bib0043 publication-title: Materialia doi: 10.1016/j.mtla.2018.04.007 – volume: 406 year: 2021 ident: 10.1016/j.jma.2022.02.006_bib0017 publication-title: Chem. Eng. J. – volume: 166 start-page: 46 year: 2020 ident: 10.1016/j.jma.2022.02.006_bib0026 publication-title: Carbon doi: 10.1016/j.carbon.2020.05.025 – volume: 12 start-page: 47684 year: 2020 ident: 10.1016/j.jma.2022.02.006_bib0045 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c15686 – volume: 3 start-page: 279 year: 2019 ident: 10.1016/j.jma.2022.02.006_bib0059 publication-title: Joule doi: 10.1016/j.joule.2018.09.011 – volume: 50 start-page: 17953 year: 1994 ident: 10.1016/j.jma.2022.02.006_bib0051 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.17953 – volume: 782 start-page: 796 year: 2019 ident: 10.1016/j.jma.2022.02.006_bib0003 publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2018.12.217 – volume: 2 start-page: 4853 year: 2019 ident: 10.1016/j.jma.2022.02.006_bib0037 publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.9b00557 – volume: 493 start-page: 431 year: 2019 ident: 10.1016/j.jma.2022.02.006_bib0040 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.07.037 – volume: 110 start-page: 17315 year: 2006 ident: 10.1016/j.jma.2022.02.006_bib0056 publication-title: J. Phys. Chem. B doi: 10.1021/jp062746a – volume: 6 start-page: 318 year: 2018 ident: 10.1016/j.jma.2022.02.006_bib0004 publication-title: J. Magnes. Alloy. doi: 10.1016/j.jma.2018.05.007 – volume: 84 start-page: 96 year: 2015 ident: 10.1016/j.jma.2022.02.006_bib0010 publication-title: J. Phys. Chem. Solids doi: 10.1016/j.jpcs.2014.06.014 – volume: 52 start-page: 705 year: 2016 ident: 10.1016/j.jma.2022.02.006_bib0038 publication-title: Chem. Commun. doi: 10.1039/C5CC08801A – volume: 7 start-page: 14244 year: 2019 ident: 10.1016/j.jma.2022.02.006_bib0041 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA03665B – volume: 464 start-page: 1262 year: 2010 ident: 10.1016/j.jma.2022.02.006_bib0001 publication-title: Nature doi: 10.1038/4641262a – volume: 2 start-page: 19084 year: 2014 ident: 10.1016/j.jma.2022.02.006_bib0020 publication-title: J. Mater. Chem. A doi: 10.1039/C4TA03326D – volume: 44 start-page: 6787 year: 2019 ident: 10.1016/j.jma.2022.02.006_bib0039 publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2019.01.189 – year: 2020 ident: 10.1016/j.jma.2022.02.006_bib0033 publication-title: Adv. Funct. Mater. – volume: 2 start-page: 9645 year: 2014 ident: 10.1016/j.jma.2022.02.006_bib0022 publication-title: J. Mater. Chem. A doi: 10.1039/C4TA00221K |
| SSID | ssj0001853613 |
| Score | 2.4914446 |
| Snippet | Two-dimensional Ti3C2Tx MXenes exposing different active facets are introduced into MgH2, and their catalytic effects are systematically investigated in depth... |
| SourceID | doaj crossref |
| SourceType | Open Website Enrichment Source Index Database |
| StartPage | 3724 |
| SubjectTerms | Catalyst Facet design Hydrogen storage materials Magnesium hydride MXene |
| Title | Facet-dependent catalytic activity of two-dimensional Ti3C2Tx MXene on hydrogen storage performance of MgH2 |
| URI | https://doaj.org/article/ba54f0736970423fa5b7089b601cbadb |
| Volume | 11 |
| WOSCitedRecordID | wos001124712100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2213-9567 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001853613 issn: 2213-9567 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2213-9567 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001853613 issn: 2213-9567 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxQAD4inKSx6YkCLSJHbsEapWHWjFkKFbFL-gBSVVCY8u_HbOTlLCAgtS5CGyHevLyXdn332H0GUvNFIyLcE3kRoaITwmfOIpZvM-wQQ22vHM3sWTCZtO-X2r1JeNCavogSvgrkVGIgNySHlsQzhMRkTsMy7AkZAiU8Luvn7MW86UO12BT4Giaq4xXUDX3PEMBUHF0Ul_KKIWX79TLMNdtFNbhPimWske2tD5Ptpu8QQeoKdhJnXpNQVrS-wOXVYwANu8BFv-ARcGl--Fpyxbf8W0gZNZ2A-SDzyewoaGixw_rtSyAInBNiQSNhK8-E4bsBOMH0bBIUqGg6Q_8uoqCZ4EZVx6JmSBodRoZgAfyZmmhmTEV4oTScFxFiHh1KIeajAvuJGK90ItiRFSmTg8Qp28yPUxwsReuYWZUDKikegxziKtMsPBAjFgNugu8hvEUlkziNtCFs9pEyo2TwHk1IKc-vD4tIuu1kMWFX3Gb51v7W9Yd7TM1-4FyENay0P6lzyc_Mckp2jLlpWvgvbOUKdcvupztCnfytnL8sKJGrTjz8EXYvjavQ |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Facet-dependent+catalytic+activity+of+two-dimensional+Ti3C2Tx+MXene+on+hydrogen+storage+performance+of+MgH2&rft.jtitle=Journal+of+magnesium+and+alloys&rft.au=Gao%2C+Haiguang&rft.au=Shi%2C+Rui&rft.au=Liu%2C+Yana&rft.au=Zhu%2C+Yunfeng&rft.date=2023-10-01&rft.issn=2213-9567&rft.eissn=2213-9567&rft.volume=11&rft.issue=10&rft.spage=3724&rft.epage=3735&rft_id=info:doi/10.1016%2Fj.jma.2022.02.006&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jma_2022_02_006 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2213-9567&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2213-9567&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2213-9567&client=summon |