Inductive general game playing
General game playing (GGP) is a framework for evaluating an agent’s general intelligence across a wide range of tasks. In the GGP competition, an agent is given the rules of a game (described as a logic program) that it has never seen before. The task is for the agent to play the game, thus generati...
Uložené v:
| Vydané v: | Machine learning Ročník 109; číslo 7; s. 1393 - 1434 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.07.2020
Springer Nature B.V |
| Predmet: | |
| ISSN: | 0885-6125, 1573-0565 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | General game playing (GGP) is a framework for evaluating an agent’s general intelligence across a wide range of tasks. In the GGP competition, an agent is given the rules of a game (described as a logic program) that it has never seen before. The task is for the agent to play the game, thus generating game traces. The winner of the GGP competition is the agent that gets the best total score over all the games. In this paper, we invert this task: a learner is given game traces and the task is to learn the rules that could produce the traces. This problem is central to
inductive general game playing
(IGGP). We introduce a technique that automatically generates IGGP tasks from GGP games. We introduce an IGGP dataset which contains traces from 50 diverse games, such as
Sudoku
,
Sokoban
, and
Checkers
. We claim that IGGP is difficult for existing inductive logic programming (ILP) approaches. To support this claim, we evaluate existing ILP systems on our dataset. Our empirical results show that most of the games cannot be correctly learned by existing systems. The best performing system solves only 40% of the tasks perfectly. Our results suggest that IGGP poses many challenges to existing approaches. Furthermore, because we can automatically generate IGGP tasks from GGP games, our dataset will continue to grow with the GGP competition, as new games are added every year. We therefore think that the IGGP problem and dataset will be valuable for motivating and evaluating future research. |
|---|---|
| AbstractList | General game playing (GGP) is a framework for evaluating an agent’s general intelligence across a wide range of tasks. In the GGP competition, an agent is given the rules of a game (described as a logic program) that it has never seen before. The task is for the agent to play the game, thus generating game traces. The winner of the GGP competition is the agent that gets the best total score over all the games. In this paper, we invert this task: a learner is given game traces and the task is to learn the rules that could produce the traces. This problem is central to
inductive general game playing
(IGGP). We introduce a technique that automatically generates IGGP tasks from GGP games. We introduce an IGGP dataset which contains traces from 50 diverse games, such as
Sudoku
,
Sokoban
, and
Checkers
. We claim that IGGP is difficult for existing inductive logic programming (ILP) approaches. To support this claim, we evaluate existing ILP systems on our dataset. Our empirical results show that most of the games cannot be correctly learned by existing systems. The best performing system solves only 40% of the tasks perfectly. Our results suggest that IGGP poses many challenges to existing approaches. Furthermore, because we can automatically generate IGGP tasks from GGP games, our dataset will continue to grow with the GGP competition, as new games are added every year. We therefore think that the IGGP problem and dataset will be valuable for motivating and evaluating future research. General game playing (GGP) is a framework for evaluating an agent’s general intelligence across a wide range of tasks. In the GGP competition, an agent is given the rules of a game (described as a logic program) that it has never seen before. The task is for the agent to play the game, thus generating game traces. The winner of the GGP competition is the agent that gets the best total score over all the games. In this paper, we invert this task: a learner is given game traces and the task is to learn the rules that could produce the traces. This problem is central to inductive general game playing (IGGP). We introduce a technique that automatically generates IGGP tasks from GGP games. We introduce an IGGP dataset which contains traces from 50 diverse games, such as Sudoku, Sokoban, and Checkers. We claim that IGGP is difficult for existing inductive logic programming (ILP) approaches. To support this claim, we evaluate existing ILP systems on our dataset. Our empirical results show that most of the games cannot be correctly learned by existing systems. The best performing system solves only 40% of the tasks perfectly. Our results suggest that IGGP poses many challenges to existing approaches. Furthermore, because we can automatically generate IGGP tasks from GGP games, our dataset will continue to grow with the GGP competition, as new games are added every year. We therefore think that the IGGP problem and dataset will be valuable for motivating and evaluating future research. |
| Author | Evans, Richard Law, Mark Cropper, Andrew |
| Author_xml | – sequence: 1 givenname: Andrew orcidid: 0000-0002-4543-7199 surname: Cropper fullname: Cropper, Andrew email: andrew.cropper@cs.ox.ac.uk organization: University of Oxford – sequence: 2 givenname: Richard surname: Evans fullname: Evans, Richard organization: Imperial College London – sequence: 3 givenname: Mark surname: Law fullname: Law, Mark organization: Imperial College London |
| BookMark | eNp9kE1Lw0AQhhepYFv9Ax6k4Dk6s1_ZHKX4USh40fOy2WxCSrqpu6ml_97VCIKHnoYZ3mfemXdGJr73jpBrhDsEyO8jQlHwDLDIQCjOssMZmaLIWWqlmJApKCUyiVRckFmMGwCgUskpuVn5am-H9tMtGuddMN2iMVu32HXm2PrmkpzXpovu6rfOyfvT49vyJVu_Pq-WD-vMcpBDVmNZGFQ0R6isK6UtOThTYVGXtMjL3AiTphUDUWBelYLa2qClCivJnWOGzcntuHcX-o-9i4Pe9Pvgk6WmnHLGMb2RVHRU2dDHGFytd6HdmnDUCPo7Bz3moFMO-icHfUiQ-gfZdjBD2_shmLY7jbIRjcnHNy78XXWC-gLgjXQh |
| CitedBy_id | crossref_primary_10_1007_s10994_020_05934_z crossref_primary_10_1007_s10994_023_06358_1 crossref_primary_10_1007_s10994_022_06274_w crossref_primary_10_1007_s10994_023_06311_2 crossref_primary_10_1017_S1471068422000011 crossref_primary_10_3390_app11020740 crossref_primary_10_1007_s10994_021_06089_1 |
| Cites_doi | 10.1007/s10994-014-5471-y 10.1021/jm00106a046 10.1007/s10994-013-5341-z 10.1017/S1471068413000689 10.1007/BF03037227 10.1145/502807.502810 10.1017/S1471068416000351 10.3389/frobt.2014.00006 10.1016/B978-0-934613-40-8.50006-3 10.1007/s10994-011-5259-2 10.3233/AIC-2011-0491 10.2200/S00564ED1V01Y201311AIM024 10.1007/3540635149_56 10.1111/j.1467-8640.1996.tb00253.x 10.1007/s10994-018-5712-6 10.1023/A:1007694015589 10.1609/aimag.v34i2.2475 10.1609/aimag.v33i1.2395 10.1016/S0004-3702(01)00129-1 10.1016/j.artint.2018.03.005 10.1017/S1471068415000198 10.1007/s10994-013-5358-3 10.1613/jair.5714 10.1007/978-3-319-11558-0_22 10.1016/B978-1-55860-036-2.50037-0 10.1609/icaps.v19i1.13391 10.1007/3-540-44797-0_16 10.1109/ICPR.2010.764 10.1016/B978-1-55860-335-6.50027-1 10.1007/978-3-319-99960-9_1 10.1007/978-3-642-13840-9 10.1007/978-3-540-68856-3 10.1109/LICS.2017.8005080 10.1023/A:1010980106294 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2019 The Author(s) 2019. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2019 – notice: The Author(s) 2019. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION 3V. 7SC 7XB 88I 8AL 8AO 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M0N M2P P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
| DOI | 10.1007/s10994-019-05843-w |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Computer Science Database |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-0565 |
| EndPage | 1434 |
| ExternalDocumentID | 10_1007_s10994_019_05843_w |
| GrantInformation_xml | – fundername: University of Oxford |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 88I 8AO 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAEWM AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIVO ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BPHCQ BSONS C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IZIGR IZQ I~X I~Y I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV KOW LAK LLZTM M0N M2P M4Y MA- MVM N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF- PQQKQ PROAC PT4 Q2X QF4 QM1 QN7 QO4 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZC RZE S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TAE TEORI TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VXZ W23 W48 WH7 WIP WK8 XJT YLTOR Z45 Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z87 Z88 Z8M Z8N Z8O Z8P Z8Q Z8R Z8S Z8T Z8U Z8W Z8Z Z91 Z92 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 7XB 8AL 8FD 8FK JQ2 L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c406t-f1b9a182710dceb6cb40ead19fb297b7a5aeb6d305917db52cfa1c281d64ee3a3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 14 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000542926600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0885-6125 |
| IngestDate | Wed Nov 05 00:43:57 EST 2025 Sat Nov 29 01:43:27 EST 2025 Tue Nov 18 22:24:58 EST 2025 Fri Feb 21 02:28:51 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | General game playing Inductive logic programming Program synthesis Program induction |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c406t-f1b9a182710dceb6cb40ead19fb297b7a5aeb6d305917db52cfa1c281d64ee3a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-4543-7199 |
| OpenAccessLink | https://link.springer.com/10.1007/s10994-019-05843-w |
| PQID | 2424341565 |
| PQPubID | 54194 |
| PageCount | 42 |
| ParticipantIDs | proquest_journals_2424341565 crossref_primary_10_1007_s10994_019_05843_w crossref_citationtrail_10_1007_s10994_019_05843_w springer_journals_10_1007_s10994_019_05843_w |
| PublicationCentury | 2000 |
| PublicationDate | 2020-07-01 |
| PublicationDateYYYYMMDD | 2020-07-01 |
| PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationTitle | Machine learning |
| PublicationTitleAbbrev | Mach Learn |
| PublicationYear | 2020 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Inoue, Doncescu, Nabeshima (CR36) 2013; 91 Muggleton, Lin, Tamaddoni-Nezhad (CR61) 2015; 100 Dantsin, Eiter, Gottlob, Voronkov (CR18) 2001; 33 CR38 Campbell, Joseph Hoane, Hsu (CR6) 2002; 134 CR35 CR34 CR33 CR32 CR31 Muggleton (CR57) 1995; 13 Schaeffer, Lake, Paul, Bryant (CR68) 1996; 17 CR70 Larson, Michalski (CR43) 1977; 63 De Raedt, Kimmig, Toivonen (CR20) 2007; 7 CR2 CR4 Muggleton, De Raedt, Poole, Bratko, Flach, Inoue, Srinivasan (CR59) 2012; 86 Ross Quinlan (CR65) 1990; 5 CR5 CR8 Järvisalo, Le Berre, Roussel, Simon (CR37) 2012; 33 CR7 Apt, Blair, Walker, Minker (CR1) 1988 CR46 CR45 CR44 CR41 CR40 Gebser, Kaufmann, Kaminski, Ostrowski, Schaub, Schneider (CR28) 2011; 24 Cropper, Muggleton (CR15) 2019; 108 Džeroski, De Raedt, Driessens (CR24) 2001; 43 Riguzzi, Bellodi, Zese (CR66) 2014; 1 Costa, Rocha, Damas (CR9) 2012; 12 CR19 Kaminski, Eiter, Inoue (CR39) 2018; 18 Law, Russo, Broda (CR47) 2015; 15 CR17 CR16 Morales (CR56) 1996; 12 Genesereth, Thielscher (CR29) 2014; 8 CR14 CR58 CR13 Koriche, Lagrue, Piette, Tabary (CR42) 2017; 307 CR12 CR11 CR55 CR10 CR54 CR53 CR52 Muggleton, Lin, Pahlavi, Tamaddoni-Nezhad (CR60) 2014; 94 CR51 CR50 Srinivasan, King, Muggleton, Sternberg (CR71) 1997; 1297 Evans, Grefenstette (CR25) 2018; 61 Law, Russo, Broda (CR49) 2018; 259 Law, Russo, Broda (CR48) 2016; 16 CR27 CR26 CR69 CR23 CR67 CR21 CR64 Genesereth, Björnsson (CR30) 2013; 34 CR63 Debnath, Lopez de Compadre, Debnath, Shusterman, Hansch (CR22) 1991; 34 CR62 Bellodi, Riguzzi (CR3) 2015; 15 5843_CR17 5843_CR16 5843_CR19 F Koriche (5843_CR42) 2017; 307 M Law (5843_CR48) 2016; 16 E Bellodi (5843_CR3) 2015; 15 S Muggleton (5843_CR59) 2012; 86 R Evans (5843_CR25) 2018; 61 5843_CR50 5843_CR53 VS Costa (5843_CR9) 2012; 12 5843_CR10 5843_CR54 K Inoue (5843_CR36) 2013; 91 5843_CR51 E Dantsin (5843_CR18) 2001; 33 5843_CR52 5843_CR13 5843_CR14 5843_CR58 5843_CR11 5843_CR55 5843_CR12 A Srinivasan (5843_CR71) 1997; 1297 5843_CR26 5843_CR27 A Cropper (5843_CR15) 2019; 108 M Law (5843_CR49) 2018; 259 M Campbell (5843_CR6) 2002; 134 M Gebser (5843_CR28) 2011; 24 SH Muggleton (5843_CR61) 2015; 100 J Ross Quinlan (5843_CR65) 1990; 5 5843_CR64 5843_CR21 5843_CR62 5843_CR63 J Schaeffer (5843_CR68) 1996; 17 5843_CR69 T Kaminski (5843_CR39) 2018; 18 5843_CR23 SH Muggleton (5843_CR60) 2014; 94 5843_CR67 5843_CR38 LD De Raedt (5843_CR20) 2007; 7 KR Apt (5843_CR1) 1988 M Law (5843_CR47) 2015; 15 5843_CR70 5843_CR31 5843_CR32 5843_CR35 5843_CR33 5843_CR34 EM Morales (5843_CR56) 1996; 12 MR Genesereth (5843_CR30) 2013; 34 M Genesereth (5843_CR29) 2014; 8 J Larson (5843_CR43) 1977; 63 S Muggleton (5843_CR57) 1995; 13 S Džeroski (5843_CR24) 2001; 43 AK Debnath (5843_CR22) 1991; 34 5843_CR2 5843_CR7 F Riguzzi (5843_CR66) 2014; 1 5843_CR4 5843_CR40 5843_CR5 5843_CR41 5843_CR46 5843_CR8 M Järvisalo (5843_CR37) 2012; 33 5843_CR44 5843_CR45 |
| References_xml | – ident: CR45 – ident: CR70 – volume: 100 start-page: 49 issue: 1 year: 2015 end-page: 73 ident: CR61 article-title: Meta-interpretive learning of higher-order dyadic datalog: predicate invention revisited publication-title: Machine Learning doi: 10.1007/s10994-014-5471-y – ident: CR4 – ident: CR16 – ident: CR51 – ident: CR12 – volume: 7 start-page: 2462 year: 2007 end-page: 2467 ident: CR20 article-title: Problog: A probabilistic prolog and its application in link discovery publication-title: IJCAI – ident: CR35 – ident: CR54 – volume: 5 start-page: 239 year: 1990 end-page: 266 ident: CR65 article-title: Learning logical definitions from relations publication-title: Machine Learning – ident: CR8 – volume: 34 start-page: 786 issue: 2 year: 1991 end-page: 797 ident: CR22 article-title: Structure-activity relationship of mutagenic aromatic and heteroaromatic nitro compounds. Correlation with molecular orbital energies and hydrophobicity publication-title: Journal of Medicinal Chemistry doi: 10.1021/jm00106a046 – volume: 307 start-page: 336 year: 2017 ident: CR42 article-title: Woodstock: un programme-joueur générique dirigé par les contraintes stochastiques publication-title: Revue d’intelligence artificielle–no – ident: CR58 – volume: 91 start-page: 239 issue: 2 year: 2013 end-page: 277 ident: CR36 article-title: Completing causal networks by meta-level abduction publication-title: Machine Learning doi: 10.1007/s10994-013-5341-z – volume: 15 start-page: 169 issue: 02 year: 2015 end-page: 212 ident: CR3 article-title: Structure learning of probabilistic logic programs by searching the clause space publication-title: Theory and Practice of Logic Programming doi: 10.1017/S1471068413000689 – ident: CR21 – ident: CR46 – ident: CR19 – ident: CR67 – volume: 13 start-page: 245 issue: 3&4 year: 1995 end-page: 286 ident: CR57 article-title: Inverse entailment and Progol publication-title: New Generation Computing doi: 10.1007/BF03037227 – ident: CR50 – volume: 18 start-page: 571 issue: 3–4 year: 2018 end-page: 588 ident: CR39 article-title: Exploiting answer set programming with external sources for meta-interpretive learning publication-title: TPLP – volume: 33 start-page: 374 issue: 3 year: 2001 end-page: 425 ident: CR18 article-title: Complexity and expressive power of logic programming publication-title: ACM Computing Surveys (CSUR) doi: 10.1145/502807.502810 – ident: CR11 – volume: 16 start-page: 834 issue: 5–6 year: 2016 end-page: 848 ident: CR48 article-title: Iterative learning of answer set programs from context dependent examples publication-title: Theory and Practice of Logic Programming doi: 10.1017/S1471068416000351 – ident: CR32 – volume: 1 start-page: 6 year: 2014 ident: CR66 article-title: A history of probabilistic inductive logic programming publication-title: Frontiers in Robotics and AI doi: 10.3389/frobt.2014.00006 – start-page: 89 year: 1988 end-page: 148 ident: CR1 article-title: Towards a theory of declarative knowledge publication-title: Foundations of deductive databases and logic programming doi: 10.1016/B978-0-934613-40-8.50006-3 – ident: CR5 – ident: CR64 – ident: CR26 – volume: 86 start-page: 3 issue: 1 year: 2012 end-page: 23 ident: CR59 article-title: ILP turns 20 - biography and future challenges publication-title: Machine Learning doi: 10.1007/s10994-011-5259-2 – volume: 24 start-page: 107 issue: 2 year: 2011 end-page: 124 ident: CR28 article-title: Potassco: The potsdam answer set solving collection publication-title: Ai Communications doi: 10.3233/AIC-2011-0491 – volume: 8 start-page: 1 issue: 2 year: 2014 end-page: 229 ident: CR29 article-title: General game playing publication-title: Synthesis Lectures on Artificial Intelligence and Machine Learning doi: 10.2200/S00564ED1V01Y201311AIM024 – ident: CR14 – ident: CR2 – ident: CR53 – volume: 1297 start-page: 273 year: 1997 end-page: 287 ident: CR71 article-title: Carcinogenesis predictions using ILP publication-title: Inductive Logic Programming doi: 10.1007/3540635149_56 – volume: 12 start-page: 65 year: 1996 end-page: 87 ident: CR56 article-title: Learning playing strategies in chess publication-title: Computational Intelligence doi: 10.1111/j.1467-8640.1996.tb00253.x – ident: CR10 – volume: 12 start-page: 5 issue: 1–2 year: 2012 end-page: 34 ident: CR9 article-title: The YAP prolog system publication-title: TPLP – ident: CR33 – volume: 108 start-page: 1063 issue: 7 year: 2019 end-page: 1083 ident: CR15 article-title: Learning efficient logic programs publication-title: Machine Learning doi: 10.1007/s10994-018-5712-6 – volume: 43 start-page: 7 issue: 1–2 year: 2001 end-page: 52 ident: CR24 article-title: Relational reinforcement learning publication-title: Machine learning doi: 10.1023/A:1007694015589 – volume: 34 start-page: 107 issue: 2 year: 2013 end-page: 111 ident: CR30 article-title: The international general game playing competition publication-title: AI Magazine doi: 10.1609/aimag.v34i2.2475 – volume: 33 start-page: 89 issue: 1 year: 2012 end-page: 92 ident: CR37 article-title: The international SAT solver competitions publication-title: AI Magazine doi: 10.1609/aimag.v33i1.2395 – ident: CR40 – ident: CR63 – ident: CR27 – ident: CR23 – volume: 17 start-page: 21 issue: 1 year: 1996 end-page: 29 ident: CR68 article-title: CHINOOK: the world man-machine checkers champion publication-title: AI Magazine – ident: CR69 – volume: 134 start-page: 57 issue: 1–2 year: 2002 end-page: 83 ident: CR6 article-title: Deep blue publication-title: Artificial Intelligence doi: 10.1016/S0004-3702(01)00129-1 – ident: CR44 – volume: 63 start-page: 38 year: 1977 end-page: 44 ident: CR43 article-title: Inductive inference of VL decision rules publication-title: SIGART Newsletter – volume: 259 start-page: 110 year: 2018 end-page: 146 ident: CR49 article-title: The complexity and generality of learning answer set programs publication-title: Artificial Intelligence doi: 10.1016/j.artint.2018.03.005 – ident: CR38 – ident: CR52 – ident: CR17 – ident: CR31 – ident: CR13 – volume: 15 start-page: 511 issue: 4–5 year: 2015 end-page: 525 ident: CR47 article-title: Learning weak constraints in answer set programming publication-title: Theory and Practice of Logic Programming doi: 10.1017/S1471068415000198 – volume: 94 start-page: 25 issue: 1 year: 2014 end-page: 49 ident: CR60 article-title: Meta-interpretive learning: application to grammatical inference publication-title: Machine Learning doi: 10.1007/s10994-013-5358-3 – ident: CR34 – ident: CR55 – ident: CR7 – volume: 61 start-page: 1 year: 2018 end-page: 64 ident: CR25 article-title: Learning explanatory rules from noisy data publication-title: Journal of Artificial Intelligence doi: 10.1613/jair.5714 – ident: CR41 – ident: CR62 – ident: 5843_CR11 – volume: 91 start-page: 239 issue: 2 year: 2013 ident: 5843_CR36 publication-title: Machine Learning doi: 10.1007/s10994-013-5341-z – ident: 5843_CR38 – ident: 5843_CR45 doi: 10.1007/978-3-319-11558-0_22 – ident: 5843_CR63 – ident: 5843_CR53 – ident: 5843_CR58 doi: 10.1016/B978-1-55860-036-2.50037-0 – volume: 33 start-page: 374 issue: 3 year: 2001 ident: 5843_CR18 publication-title: ACM Computing Surveys (CSUR) doi: 10.1145/502807.502810 – volume: 15 start-page: 511 issue: 4–5 year: 2015 ident: 5843_CR47 publication-title: Theory and Practice of Logic Programming doi: 10.1017/S1471068415000198 – ident: 5843_CR34 – ident: 5843_CR10 doi: 10.1609/icaps.v19i1.13391 – ident: 5843_CR64 doi: 10.1007/3-540-44797-0_16 – ident: 5843_CR67 – ident: 5843_CR44 – ident: 5843_CR40 – ident: 5843_CR12 – volume: 108 start-page: 1063 issue: 7 year: 2019 ident: 5843_CR15 publication-title: Machine Learning doi: 10.1007/s10994-018-5712-6 – volume: 43 start-page: 7 issue: 1–2 year: 2001 ident: 5843_CR24 publication-title: Machine learning doi: 10.1023/A:1007694015589 – volume: 17 start-page: 21 issue: 1 year: 1996 ident: 5843_CR68 publication-title: AI Magazine – volume: 61 start-page: 1 year: 2018 ident: 5843_CR25 publication-title: Journal of Artificial Intelligence doi: 10.1613/jair.5714 – volume: 86 start-page: 3 issue: 1 year: 2012 ident: 5843_CR59 publication-title: Machine Learning doi: 10.1007/s10994-011-5259-2 – ident: 5843_CR5 doi: 10.1109/ICPR.2010.764 – ident: 5843_CR54 doi: 10.1016/B978-1-55860-335-6.50027-1 – volume: 1297 start-page: 273 year: 1997 ident: 5843_CR71 publication-title: Inductive Logic Programming doi: 10.1007/3540635149_56 – start-page: 89 volume-title: Foundations of deductive databases and logic programming year: 1988 ident: 5843_CR1 doi: 10.1016/B978-0-934613-40-8.50006-3 – ident: 5843_CR16 doi: 10.1007/978-3-319-99960-9_1 – ident: 5843_CR50 – volume: 259 start-page: 110 year: 2018 ident: 5843_CR49 publication-title: Artificial Intelligence doi: 10.1016/j.artint.2018.03.005 – ident: 5843_CR4 – volume: 1 start-page: 6 year: 2014 ident: 5843_CR66 publication-title: Frontiers in Robotics and AI doi: 10.3389/frobt.2014.00006 – ident: 5843_CR8 – volume: 134 start-page: 57 issue: 1–2 year: 2002 ident: 5843_CR6 publication-title: Artificial Intelligence doi: 10.1016/S0004-3702(01)00129-1 – ident: 5843_CR26 – volume: 12 start-page: 5 issue: 1–2 year: 2012 ident: 5843_CR9 publication-title: TPLP – ident: 5843_CR17 – volume: 12 start-page: 65 year: 1996 ident: 5843_CR56 publication-title: Computational Intelligence doi: 10.1111/j.1467-8640.1996.tb00253.x – ident: 5843_CR55 – ident: 5843_CR51 – volume: 13 start-page: 245 issue: 3&4 year: 1995 ident: 5843_CR57 publication-title: New Generation Computing doi: 10.1007/BF03037227 – ident: 5843_CR13 – ident: 5843_CR21 doi: 10.1007/978-3-642-13840-9 – ident: 5843_CR32 – volume: 100 start-page: 49 issue: 1 year: 2015 ident: 5843_CR61 publication-title: Machine Learning doi: 10.1007/s10994-014-5471-y – ident: 5843_CR46 – ident: 5843_CR69 – volume: 94 start-page: 25 issue: 1 year: 2014 ident: 5843_CR60 publication-title: Machine Learning doi: 10.1007/s10994-013-5358-3 – volume: 15 start-page: 169 issue: 02 year: 2015 ident: 5843_CR3 publication-title: Theory and Practice of Logic Programming doi: 10.1017/S1471068413000689 – ident: 5843_CR19 doi: 10.1007/978-3-540-68856-3 – ident: 5843_CR7 – volume: 5 start-page: 239 year: 1990 ident: 5843_CR65 publication-title: Machine Learning – ident: 5843_CR27 – volume: 33 start-page: 89 issue: 1 year: 2012 ident: 5843_CR37 publication-title: AI Magazine doi: 10.1609/aimag.v33i1.2395 – volume: 34 start-page: 107 issue: 2 year: 2013 ident: 5843_CR30 publication-title: AI Magazine doi: 10.1609/aimag.v34i2.2475 – ident: 5843_CR23 – ident: 5843_CR35 – volume: 18 start-page: 571 issue: 3–4 year: 2018 ident: 5843_CR39 publication-title: TPLP – ident: 5843_CR62 – volume: 16 start-page: 834 issue: 5–6 year: 2016 ident: 5843_CR48 publication-title: Theory and Practice of Logic Programming doi: 10.1017/S1471068416000351 – volume: 307 start-page: 336 year: 2017 ident: 5843_CR42 publication-title: Revue d’intelligence artificielle–no – ident: 5843_CR33 doi: 10.1109/LICS.2017.8005080 – volume: 24 start-page: 107 issue: 2 year: 2011 ident: 5843_CR28 publication-title: Ai Communications doi: 10.3233/AIC-2011-0491 – volume: 7 start-page: 2462 year: 2007 ident: 5843_CR20 publication-title: IJCAI – volume: 34 start-page: 786 issue: 2 year: 1991 ident: 5843_CR22 publication-title: Journal of Medicinal Chemistry doi: 10.1021/jm00106a046 – ident: 5843_CR70 doi: 10.1023/A:1010980106294 – ident: 5843_CR52 – volume: 8 start-page: 1 issue: 2 year: 2014 ident: 5843_CR29 publication-title: Synthesis Lectures on Artificial Intelligence and Machine Learning doi: 10.2200/S00564ED1V01Y201311AIM024 – ident: 5843_CR14 – ident: 5843_CR31 – ident: 5843_CR2 – volume: 63 start-page: 38 year: 1977 ident: 5843_CR43 publication-title: SIGART Newsletter – ident: 5843_CR41 |
| SSID | ssj0002686 |
| Score | 2.4629974 |
| Snippet | General game playing (GGP) is a framework for evaluating an agent’s general intelligence across a wide range of tasks. In the GGP competition, an agent is... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1393 |
| SubjectTerms | Artificial Intelligence Checkers Competition Computer Science Control Datasets Games Logic programming Logic programs Machine Learning Mechatronics Natural Language Processing (NLP) Robotics Simulation and Modeling Special Issue of the Inductive Logic Programming (ILP) 2019 Systems analysis |
| SummonAdditionalLinks | – databaseName: Computer Science Database dbid: K7- link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60evBifWK1lhy86aK7ySbNSUQsglA8KPQWdjabItQ2ttX-fXe2mwYFe_GaxxK-zHNnZz6AixglWlGImElRsagrBUMdK8bDQqMsYs6NcmQTSb_fHQzSZ7_hNvPHKiub6Ax1PtG0R35NbQwhZRvytvxgxBpF1VVPobEJW1wITnL-lLCVJRaxY3q0iiQZeXLfNONb59xQXGrhsT44ZIufjqmONn8VSJ3f6TX_-8V7sOsjzuBuKSL7sGHGB9Cs2BwCr9yH0CEWD2f9guFyFnUwVO8mKEeKWqGO4LX38HL_yDx7AtPWSc9ZwTFVNnuwIUSuDcYaoxsrNjwtUKQJJkoqezW3-m4zthyl0IXiWtj4NY6MCVV4DI3xZGxOIEDN0RhORU2MrPVUSSoUptTzKo3GogW8gi7TfrQ4MVyMsnooMsGdWbgzB3e2aMHl6p1yOVhj7dPtCuPMK9ksqwFuwVX1l-rbf692un61M9gRlFW7Q7ltaMynn-YctvXX_G027TgR-wZNr9Wq priority: 102 providerName: ProQuest |
| Title | Inductive general game playing |
| URI | https://link.springer.com/article/10.1007/s10994-019-05843-w https://www.proquest.com/docview/2424341565 |
| Volume | 109 |
| WOSCitedRecordID | wos000542926600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-0565 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002686 issn: 0885-6125 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH-46cGL8xOnc_TgTQMmbdr1qLIhiKPMD4aXkpelQ5hzbNP9-75k7aaigl5yaNNQXt4nye_9AI5DlEiqEDATo2JBQwqGOlSM-5lGmYWcG-XIJqJ2u9HtxkkOCpsUt92LI0nnqT-A3VwbWwu6oajps1kJVincNaw5dm4fFv5XhI7fkcxHMhu_c6jM92t8DkfLHPPLsaiLNq3K__5zEzby7NI7n6vDFqyY4TZUCuYGLzfkHahbxg7n6bz-vO-011fPxhsNlIU97cJ9q3l3ecVypgSmKSBPWcYxVlQpULrQ0wZDjcEZqQiPMxRxhJGSip72yLapOuuhFDpTXAvKVcPAGF_5e1AevgzNPnioORrD7QEmBuQpVRQLhbHFt0qjMasCLwSW6ryNuGWzGKTLBshWACkJIHUCSGdVOFl8M5o30fh1dq3YhzQ3qElqUSy-LTZlFU4LuS9f_7zawd-mH8K6sBW1u5Bbg_J0_GqOYE2_TZ8m4zqsXjTbSacOpeuI0XgjEhoT-Vh3KvgOa-vRTg |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3PT8IwFH5BNNGL-DOiqDvoSRttt27sYIxRCQQkHjDhVtuuIyYICCjxn_JvtO02iCZy4-B1W5ul3-t7rz--9wGc-IIKbQoeUqHgyCtTgoT0OcJuLAWNfYwVt2ITQbNZbrfDxxx8ZVwYc60y84nWUUd9afbILwyNwTWrDXo9eENGNcqcrmYSGolZ1NXnRC_ZRle1O43vKSGV-9ZtFaWqAkjq4DVGMRYh11m1Dq2RVMKXwrvUw4nDWJAwEAGnXD-N9DzQK5lIUCJjjiXReZ3vKeVyV_e7BMueWw5Mrf56gKaen_hWWVJPXIpM5pCSdFKqni3CayhDOua7aPIzEM6y218HsjbOVQr_bYQ2YD3NqJ2bZApsQk71tqCQqVU4qfPahiOjUmK9u9NJam07Hf6qnEGXG6rXDjwt5C93Id_r99QeOEJioRQ2h7bC09GBByHhIjScXqqkiIuAM6iYTEunGwWPLpsVfTbwMg0vs_CySRHOpm0GSeGQuV-XMkxZ6kRGbAZoEc4zq5i9_ru3_fm9HcNqtfXQYI1as34Aa8TsINgLyCXIj4fv6hBW5Mf4ZTQ8subtwPOireUbFNk1dQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LTsJAFL1BNMaN-IwoYhe60gnOtNPShTFGJBIMYaEJuzozTIkJAgJK_DW_zjtDC9FEdizc9jFpeh_nzuPcA3DqSy7RFTyiQymIV-aMSOULQt1YSR77lGphxSaCRqPcaoXNDHylXBhzrDLNiTZRt_vKrJGXDI3BNbMNXoqTYxHNSvV68EaMgpTZaU3lNKYuUtefE5y-ja5qFbT1GWPVu8fbe5IoDBCFQDYmMZWhwAobYbattPSV9C7x19IwliwMZCC4wKttjAmc1bQlZyoWVDGs8XxPa1e4OO4KrCIKcxNj9YDMUID5VmUSg5gTU0UkhJ2Etmcb8hr6EOK_SyY_QXFe6f7anLWYV83957-1BZtJpe3cTENjGzK6twO5VMXCSZLaLhSNeonN-k5n2oPb6YhX7Qy6wlDA9uBpKV-5D9lev6cPwJGKSq2p2cyVHqKGCEImZGi4vlwrGeeBpmaLVNJS3Sh7dKN5M2hj6ghNHVlTR5M8nM_eGUwbiix8upDaN0qSyyiaGzcPF6mHzG__Pdrh4tFOYB2dJHqoNepHsMHMwoI9l1yA7Hj4ro9hTX2MX0bDovV0B56X7SzfM4U-Lw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inductive+general+game+playing&rft.jtitle=Machine+learning&rft.au=Cropper%2C+Andrew&rft.au=Evans%2C+Richard&rft.au=Law%2C+Mark&rft.date=2020-07-01&rft.issn=0885-6125&rft.eissn=1573-0565&rft.volume=109&rft.issue=7&rft.spage=1393&rft.epage=1434&rft_id=info:doi/10.1007%2Fs10994-019-05843-w&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10994_019_05843_w |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6125&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6125&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6125&client=summon |