Inductive general game playing

General game playing (GGP) is a framework for evaluating an agent’s general intelligence across a wide range of tasks. In the GGP competition, an agent is given the rules of a game (described as a logic program) that it has never seen before. The task is for the agent to play the game, thus generati...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Machine learning Ročník 109; číslo 7; s. 1393 - 1434
Hlavní autoři: Cropper, Andrew, Evans, Richard, Law, Mark
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.07.2020
Springer Nature B.V
Témata:
ISSN:0885-6125, 1573-0565
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract General game playing (GGP) is a framework for evaluating an agent’s general intelligence across a wide range of tasks. In the GGP competition, an agent is given the rules of a game (described as a logic program) that it has never seen before. The task is for the agent to play the game, thus generating game traces. The winner of the GGP competition is the agent that gets the best total score over all the games. In this paper, we invert this task: a learner is given game traces and the task is to learn the rules that could produce the traces. This problem is central to inductive general game playing (IGGP). We introduce a technique that automatically generates IGGP tasks from GGP games. We introduce an IGGP dataset which contains traces from 50 diverse games, such as Sudoku , Sokoban , and Checkers . We claim that IGGP is difficult for existing inductive logic programming (ILP) approaches. To support this claim, we evaluate existing ILP systems on our dataset. Our empirical results show that most of the games cannot be correctly learned by existing systems. The best performing system solves only 40% of the tasks perfectly. Our results suggest that IGGP poses many challenges to existing approaches. Furthermore, because we can automatically generate IGGP tasks from GGP games, our dataset will continue to grow with the GGP competition, as new games are added every year. We therefore think that the IGGP problem and dataset will be valuable for motivating and evaluating future research.
AbstractList General game playing (GGP) is a framework for evaluating an agent’s general intelligence across a wide range of tasks. In the GGP competition, an agent is given the rules of a game (described as a logic program) that it has never seen before. The task is for the agent to play the game, thus generating game traces. The winner of the GGP competition is the agent that gets the best total score over all the games. In this paper, we invert this task: a learner is given game traces and the task is to learn the rules that could produce the traces. This problem is central to inductive general game playing (IGGP). We introduce a technique that automatically generates IGGP tasks from GGP games. We introduce an IGGP dataset which contains traces from 50 diverse games, such as Sudoku , Sokoban , and Checkers . We claim that IGGP is difficult for existing inductive logic programming (ILP) approaches. To support this claim, we evaluate existing ILP systems on our dataset. Our empirical results show that most of the games cannot be correctly learned by existing systems. The best performing system solves only 40% of the tasks perfectly. Our results suggest that IGGP poses many challenges to existing approaches. Furthermore, because we can automatically generate IGGP tasks from GGP games, our dataset will continue to grow with the GGP competition, as new games are added every year. We therefore think that the IGGP problem and dataset will be valuable for motivating and evaluating future research.
General game playing (GGP) is a framework for evaluating an agent’s general intelligence across a wide range of tasks. In the GGP competition, an agent is given the rules of a game (described as a logic program) that it has never seen before. The task is for the agent to play the game, thus generating game traces. The winner of the GGP competition is the agent that gets the best total score over all the games. In this paper, we invert this task: a learner is given game traces and the task is to learn the rules that could produce the traces. This problem is central to inductive general game playing (IGGP). We introduce a technique that automatically generates IGGP tasks from GGP games. We introduce an IGGP dataset which contains traces from 50 diverse games, such as Sudoku, Sokoban, and Checkers. We claim that IGGP is difficult for existing inductive logic programming (ILP) approaches. To support this claim, we evaluate existing ILP systems on our dataset. Our empirical results show that most of the games cannot be correctly learned by existing systems. The best performing system solves only 40% of the tasks perfectly. Our results suggest that IGGP poses many challenges to existing approaches. Furthermore, because we can automatically generate IGGP tasks from GGP games, our dataset will continue to grow with the GGP competition, as new games are added every year. We therefore think that the IGGP problem and dataset will be valuable for motivating and evaluating future research.
Author Evans, Richard
Law, Mark
Cropper, Andrew
Author_xml – sequence: 1
  givenname: Andrew
  orcidid: 0000-0002-4543-7199
  surname: Cropper
  fullname: Cropper, Andrew
  email: andrew.cropper@cs.ox.ac.uk
  organization: University of Oxford
– sequence: 2
  givenname: Richard
  surname: Evans
  fullname: Evans, Richard
  organization: Imperial College London
– sequence: 3
  givenname: Mark
  surname: Law
  fullname: Law, Mark
  organization: Imperial College London
BookMark eNp9kE1Lw0AQhhepYFv9Ax6k4Dk6s1_ZHKX4USh40fOy2WxCSrqpu6ml_97VCIKHnoYZ3mfemXdGJr73jpBrhDsEyO8jQlHwDLDIQCjOssMZmaLIWWqlmJApKCUyiVRckFmMGwCgUskpuVn5am-H9tMtGuddMN2iMVu32HXm2PrmkpzXpovu6rfOyfvT49vyJVu_Pq-WD-vMcpBDVmNZGFQ0R6isK6UtOThTYVGXtMjL3AiTphUDUWBelYLa2qClCivJnWOGzcntuHcX-o-9i4Pe9Pvgk6WmnHLGMb2RVHRU2dDHGFytd6HdmnDUCPo7Bz3moFMO-icHfUiQ-gfZdjBD2_shmLY7jbIRjcnHNy78XXWC-gLgjXQh
CitedBy_id crossref_primary_10_1007_s10994_020_05934_z
crossref_primary_10_1007_s10994_023_06358_1
crossref_primary_10_1007_s10994_022_06274_w
crossref_primary_10_1007_s10994_023_06311_2
crossref_primary_10_1017_S1471068422000011
crossref_primary_10_3390_app11020740
crossref_primary_10_1007_s10994_021_06089_1
Cites_doi 10.1007/s10994-014-5471-y
10.1021/jm00106a046
10.1007/s10994-013-5341-z
10.1017/S1471068413000689
10.1007/BF03037227
10.1145/502807.502810
10.1017/S1471068416000351
10.3389/frobt.2014.00006
10.1016/B978-0-934613-40-8.50006-3
10.1007/s10994-011-5259-2
10.3233/AIC-2011-0491
10.2200/S00564ED1V01Y201311AIM024
10.1007/3540635149_56
10.1111/j.1467-8640.1996.tb00253.x
10.1007/s10994-018-5712-6
10.1023/A:1007694015589
10.1609/aimag.v34i2.2475
10.1609/aimag.v33i1.2395
10.1016/S0004-3702(01)00129-1
10.1016/j.artint.2018.03.005
10.1017/S1471068415000198
10.1007/s10994-013-5358-3
10.1613/jair.5714
10.1007/978-3-319-11558-0_22
10.1016/B978-1-55860-036-2.50037-0
10.1609/icaps.v19i1.13391
10.1007/3-540-44797-0_16
10.1109/ICPR.2010.764
10.1016/B978-1-55860-335-6.50027-1
10.1007/978-3-319-99960-9_1
10.1007/978-3-642-13840-9
10.1007/978-3-540-68856-3
10.1109/LICS.2017.8005080
10.1023/A:1010980106294
ContentType Journal Article
Copyright The Author(s) 2019
The Author(s) 2019. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2019
– notice: The Author(s) 2019. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7SC
7XB
88I
8AL
8AO
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
M2P
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1007/s10994-019-05843-w
DatabaseName Springer Nature Link OA Free Journals
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database (ProQuest)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
ProQuest Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList CrossRef

Computer Science Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-0565
EndPage 1434
ExternalDocumentID 10_1007_s10994_019_05843_w
GrantInformation_xml – fundername: University of Oxford
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
88I
8AO
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAEWM
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
LAK
LLZTM
M0N
M2P
M4Y
MA-
MVM
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF-
PQQKQ
PROAC
PT4
Q2X
QF4
QM1
QN7
QO4
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TAE
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VXZ
W23
W48
WH7
WIP
WK8
XJT
YLTOR
Z45
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z87
Z88
Z8M
Z8N
Z8O
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z8Z
Z91
Z92
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c406t-f1b9a182710dceb6cb40ead19fb297b7a5aeb6d305917db52cfa1c281d64ee3a3
IEDL.DBID K7-
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000542926600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0885-6125
IngestDate Wed Nov 05 00:43:57 EST 2025
Sat Nov 29 01:43:27 EST 2025
Tue Nov 18 22:24:58 EST 2025
Fri Feb 21 02:28:51 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords General game playing
Inductive logic programming
Program synthesis
Program induction
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-f1b9a182710dceb6cb40ead19fb297b7a5aeb6d305917db52cfa1c281d64ee3a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4543-7199
OpenAccessLink https://link.springer.com/10.1007/s10994-019-05843-w
PQID 2424341565
PQPubID 54194
PageCount 42
ParticipantIDs proquest_journals_2424341565
crossref_primary_10_1007_s10994_019_05843_w
crossref_citationtrail_10_1007_s10994_019_05843_w
springer_journals_10_1007_s10994_019_05843_w
PublicationCentury 2000
PublicationDate 2020-07-01
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationTitle Machine learning
PublicationTitleAbbrev Mach Learn
PublicationYear 2020
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Inoue, Doncescu, Nabeshima (CR36) 2013; 91
Muggleton, Lin, Tamaddoni-Nezhad (CR61) 2015; 100
Dantsin, Eiter, Gottlob, Voronkov (CR18) 2001; 33
CR38
Campbell, Joseph Hoane, Hsu (CR6) 2002; 134
CR35
CR34
CR33
CR32
CR31
Muggleton (CR57) 1995; 13
Schaeffer, Lake, Paul, Bryant (CR68) 1996; 17
CR70
Larson, Michalski (CR43) 1977; 63
De Raedt, Kimmig, Toivonen (CR20) 2007; 7
CR2
CR4
Muggleton, De Raedt, Poole, Bratko, Flach, Inoue, Srinivasan (CR59) 2012; 86
Ross Quinlan (CR65) 1990; 5
CR5
CR8
Järvisalo, Le Berre, Roussel, Simon (CR37) 2012; 33
CR7
Apt, Blair, Walker, Minker (CR1) 1988
CR46
CR45
CR44
CR41
CR40
Gebser, Kaufmann, Kaminski, Ostrowski, Schaub, Schneider (CR28) 2011; 24
Cropper, Muggleton (CR15) 2019; 108
Džeroski, De Raedt, Driessens (CR24) 2001; 43
Riguzzi, Bellodi, Zese (CR66) 2014; 1
Costa, Rocha, Damas (CR9) 2012; 12
CR19
Kaminski, Eiter, Inoue (CR39) 2018; 18
Law, Russo, Broda (CR47) 2015; 15
CR17
CR16
Morales (CR56) 1996; 12
Genesereth, Thielscher (CR29) 2014; 8
CR14
CR58
CR13
Koriche, Lagrue, Piette, Tabary (CR42) 2017; 307
CR12
CR11
CR55
CR10
CR54
CR53
CR52
Muggleton, Lin, Pahlavi, Tamaddoni-Nezhad (CR60) 2014; 94
CR51
CR50
Srinivasan, King, Muggleton, Sternberg (CR71) 1997; 1297
Evans, Grefenstette (CR25) 2018; 61
Law, Russo, Broda (CR49) 2018; 259
Law, Russo, Broda (CR48) 2016; 16
CR27
CR26
CR69
CR23
CR67
CR21
CR64
Genesereth, Björnsson (CR30) 2013; 34
CR63
Debnath, Lopez de Compadre, Debnath, Shusterman, Hansch (CR22) 1991; 34
CR62
Bellodi, Riguzzi (CR3) 2015; 15
5843_CR17
5843_CR16
5843_CR19
F Koriche (5843_CR42) 2017; 307
M Law (5843_CR48) 2016; 16
E Bellodi (5843_CR3) 2015; 15
S Muggleton (5843_CR59) 2012; 86
R Evans (5843_CR25) 2018; 61
5843_CR50
5843_CR53
VS Costa (5843_CR9) 2012; 12
5843_CR10
5843_CR54
K Inoue (5843_CR36) 2013; 91
5843_CR51
E Dantsin (5843_CR18) 2001; 33
5843_CR52
5843_CR13
5843_CR14
5843_CR58
5843_CR11
5843_CR55
5843_CR12
A Srinivasan (5843_CR71) 1997; 1297
5843_CR26
5843_CR27
A Cropper (5843_CR15) 2019; 108
M Law (5843_CR49) 2018; 259
M Campbell (5843_CR6) 2002; 134
M Gebser (5843_CR28) 2011; 24
SH Muggleton (5843_CR61) 2015; 100
J Ross Quinlan (5843_CR65) 1990; 5
5843_CR64
5843_CR21
5843_CR62
5843_CR63
J Schaeffer (5843_CR68) 1996; 17
5843_CR69
T Kaminski (5843_CR39) 2018; 18
5843_CR23
SH Muggleton (5843_CR60) 2014; 94
5843_CR67
5843_CR38
LD De Raedt (5843_CR20) 2007; 7
KR Apt (5843_CR1) 1988
M Law (5843_CR47) 2015; 15
5843_CR70
5843_CR31
5843_CR32
5843_CR35
5843_CR33
5843_CR34
EM Morales (5843_CR56) 1996; 12
MR Genesereth (5843_CR30) 2013; 34
M Genesereth (5843_CR29) 2014; 8
J Larson (5843_CR43) 1977; 63
S Muggleton (5843_CR57) 1995; 13
S Džeroski (5843_CR24) 2001; 43
AK Debnath (5843_CR22) 1991; 34
5843_CR2
5843_CR7
F Riguzzi (5843_CR66) 2014; 1
5843_CR4
5843_CR40
5843_CR5
5843_CR41
5843_CR46
5843_CR8
M Järvisalo (5843_CR37) 2012; 33
5843_CR44
5843_CR45
References_xml – ident: CR45
– ident: CR70
– volume: 100
  start-page: 49
  issue: 1
  year: 2015
  end-page: 73
  ident: CR61
  article-title: Meta-interpretive learning of higher-order dyadic datalog: predicate invention revisited
  publication-title: Machine Learning
  doi: 10.1007/s10994-014-5471-y
– ident: CR4
– ident: CR16
– ident: CR51
– ident: CR12
– volume: 7
  start-page: 2462
  year: 2007
  end-page: 2467
  ident: CR20
  article-title: Problog: A probabilistic prolog and its application in link discovery
  publication-title: IJCAI
– ident: CR35
– ident: CR54
– volume: 5
  start-page: 239
  year: 1990
  end-page: 266
  ident: CR65
  article-title: Learning logical definitions from relations
  publication-title: Machine Learning
– ident: CR8
– volume: 34
  start-page: 786
  issue: 2
  year: 1991
  end-page: 797
  ident: CR22
  article-title: Structure-activity relationship of mutagenic aromatic and heteroaromatic nitro compounds. Correlation with molecular orbital energies and hydrophobicity
  publication-title: Journal of Medicinal Chemistry
  doi: 10.1021/jm00106a046
– volume: 307
  start-page: 336
  year: 2017
  ident: CR42
  article-title: Woodstock: un programme-joueur générique dirigé par les contraintes stochastiques
  publication-title: Revue d’intelligence artificielle–no
– ident: CR58
– volume: 91
  start-page: 239
  issue: 2
  year: 2013
  end-page: 277
  ident: CR36
  article-title: Completing causal networks by meta-level abduction
  publication-title: Machine Learning
  doi: 10.1007/s10994-013-5341-z
– volume: 15
  start-page: 169
  issue: 02
  year: 2015
  end-page: 212
  ident: CR3
  article-title: Structure learning of probabilistic logic programs by searching the clause space
  publication-title: Theory and Practice of Logic Programming
  doi: 10.1017/S1471068413000689
– ident: CR21
– ident: CR46
– ident: CR19
– ident: CR67
– volume: 13
  start-page: 245
  issue: 3&4
  year: 1995
  end-page: 286
  ident: CR57
  article-title: Inverse entailment and Progol
  publication-title: New Generation Computing
  doi: 10.1007/BF03037227
– ident: CR50
– volume: 18
  start-page: 571
  issue: 3–4
  year: 2018
  end-page: 588
  ident: CR39
  article-title: Exploiting answer set programming with external sources for meta-interpretive learning
  publication-title: TPLP
– volume: 33
  start-page: 374
  issue: 3
  year: 2001
  end-page: 425
  ident: CR18
  article-title: Complexity and expressive power of logic programming
  publication-title: ACM Computing Surveys (CSUR)
  doi: 10.1145/502807.502810
– ident: CR11
– volume: 16
  start-page: 834
  issue: 5–6
  year: 2016
  end-page: 848
  ident: CR48
  article-title: Iterative learning of answer set programs from context dependent examples
  publication-title: Theory and Practice of Logic Programming
  doi: 10.1017/S1471068416000351
– ident: CR32
– volume: 1
  start-page: 6
  year: 2014
  ident: CR66
  article-title: A history of probabilistic inductive logic programming
  publication-title: Frontiers in Robotics and AI
  doi: 10.3389/frobt.2014.00006
– start-page: 89
  year: 1988
  end-page: 148
  ident: CR1
  article-title: Towards a theory of declarative knowledge
  publication-title: Foundations of deductive databases and logic programming
  doi: 10.1016/B978-0-934613-40-8.50006-3
– ident: CR5
– ident: CR64
– ident: CR26
– volume: 86
  start-page: 3
  issue: 1
  year: 2012
  end-page: 23
  ident: CR59
  article-title: ILP turns 20 - biography and future challenges
  publication-title: Machine Learning
  doi: 10.1007/s10994-011-5259-2
– volume: 24
  start-page: 107
  issue: 2
  year: 2011
  end-page: 124
  ident: CR28
  article-title: Potassco: The potsdam answer set solving collection
  publication-title: Ai Communications
  doi: 10.3233/AIC-2011-0491
– volume: 8
  start-page: 1
  issue: 2
  year: 2014
  end-page: 229
  ident: CR29
  article-title: General game playing
  publication-title: Synthesis Lectures on Artificial Intelligence and Machine Learning
  doi: 10.2200/S00564ED1V01Y201311AIM024
– ident: CR14
– ident: CR2
– ident: CR53
– volume: 1297
  start-page: 273
  year: 1997
  end-page: 287
  ident: CR71
  article-title: Carcinogenesis predictions using ILP
  publication-title: Inductive Logic Programming
  doi: 10.1007/3540635149_56
– volume: 12
  start-page: 65
  year: 1996
  end-page: 87
  ident: CR56
  article-title: Learning playing strategies in chess
  publication-title: Computational Intelligence
  doi: 10.1111/j.1467-8640.1996.tb00253.x
– ident: CR10
– volume: 12
  start-page: 5
  issue: 1–2
  year: 2012
  end-page: 34
  ident: CR9
  article-title: The YAP prolog system
  publication-title: TPLP
– ident: CR33
– volume: 108
  start-page: 1063
  issue: 7
  year: 2019
  end-page: 1083
  ident: CR15
  article-title: Learning efficient logic programs
  publication-title: Machine Learning
  doi: 10.1007/s10994-018-5712-6
– volume: 43
  start-page: 7
  issue: 1–2
  year: 2001
  end-page: 52
  ident: CR24
  article-title: Relational reinforcement learning
  publication-title: Machine learning
  doi: 10.1023/A:1007694015589
– volume: 34
  start-page: 107
  issue: 2
  year: 2013
  end-page: 111
  ident: CR30
  article-title: The international general game playing competition
  publication-title: AI Magazine
  doi: 10.1609/aimag.v34i2.2475
– volume: 33
  start-page: 89
  issue: 1
  year: 2012
  end-page: 92
  ident: CR37
  article-title: The international SAT solver competitions
  publication-title: AI Magazine
  doi: 10.1609/aimag.v33i1.2395
– ident: CR40
– ident: CR63
– ident: CR27
– ident: CR23
– volume: 17
  start-page: 21
  issue: 1
  year: 1996
  end-page: 29
  ident: CR68
  article-title: CHINOOK: the world man-machine checkers champion
  publication-title: AI Magazine
– ident: CR69
– volume: 134
  start-page: 57
  issue: 1–2
  year: 2002
  end-page: 83
  ident: CR6
  article-title: Deep blue
  publication-title: Artificial Intelligence
  doi: 10.1016/S0004-3702(01)00129-1
– ident: CR44
– volume: 63
  start-page: 38
  year: 1977
  end-page: 44
  ident: CR43
  article-title: Inductive inference of VL decision rules
  publication-title: SIGART Newsletter
– volume: 259
  start-page: 110
  year: 2018
  end-page: 146
  ident: CR49
  article-title: The complexity and generality of learning answer set programs
  publication-title: Artificial Intelligence
  doi: 10.1016/j.artint.2018.03.005
– ident: CR38
– ident: CR52
– ident: CR17
– ident: CR31
– ident: CR13
– volume: 15
  start-page: 511
  issue: 4–5
  year: 2015
  end-page: 525
  ident: CR47
  article-title: Learning weak constraints in answer set programming
  publication-title: Theory and Practice of Logic Programming
  doi: 10.1017/S1471068415000198
– volume: 94
  start-page: 25
  issue: 1
  year: 2014
  end-page: 49
  ident: CR60
  article-title: Meta-interpretive learning: application to grammatical inference
  publication-title: Machine Learning
  doi: 10.1007/s10994-013-5358-3
– ident: CR34
– ident: CR55
– ident: CR7
– volume: 61
  start-page: 1
  year: 2018
  end-page: 64
  ident: CR25
  article-title: Learning explanatory rules from noisy data
  publication-title: Journal of Artificial Intelligence
  doi: 10.1613/jair.5714
– ident: CR41
– ident: CR62
– ident: 5843_CR11
– volume: 91
  start-page: 239
  issue: 2
  year: 2013
  ident: 5843_CR36
  publication-title: Machine Learning
  doi: 10.1007/s10994-013-5341-z
– ident: 5843_CR38
– ident: 5843_CR45
  doi: 10.1007/978-3-319-11558-0_22
– ident: 5843_CR63
– ident: 5843_CR53
– ident: 5843_CR58
  doi: 10.1016/B978-1-55860-036-2.50037-0
– volume: 33
  start-page: 374
  issue: 3
  year: 2001
  ident: 5843_CR18
  publication-title: ACM Computing Surveys (CSUR)
  doi: 10.1145/502807.502810
– volume: 15
  start-page: 511
  issue: 4–5
  year: 2015
  ident: 5843_CR47
  publication-title: Theory and Practice of Logic Programming
  doi: 10.1017/S1471068415000198
– ident: 5843_CR34
– ident: 5843_CR10
  doi: 10.1609/icaps.v19i1.13391
– ident: 5843_CR64
  doi: 10.1007/3-540-44797-0_16
– ident: 5843_CR67
– ident: 5843_CR44
– ident: 5843_CR40
– ident: 5843_CR12
– volume: 108
  start-page: 1063
  issue: 7
  year: 2019
  ident: 5843_CR15
  publication-title: Machine Learning
  doi: 10.1007/s10994-018-5712-6
– volume: 43
  start-page: 7
  issue: 1–2
  year: 2001
  ident: 5843_CR24
  publication-title: Machine learning
  doi: 10.1023/A:1007694015589
– volume: 17
  start-page: 21
  issue: 1
  year: 1996
  ident: 5843_CR68
  publication-title: AI Magazine
– volume: 61
  start-page: 1
  year: 2018
  ident: 5843_CR25
  publication-title: Journal of Artificial Intelligence
  doi: 10.1613/jair.5714
– volume: 86
  start-page: 3
  issue: 1
  year: 2012
  ident: 5843_CR59
  publication-title: Machine Learning
  doi: 10.1007/s10994-011-5259-2
– ident: 5843_CR5
  doi: 10.1109/ICPR.2010.764
– ident: 5843_CR54
  doi: 10.1016/B978-1-55860-335-6.50027-1
– volume: 1297
  start-page: 273
  year: 1997
  ident: 5843_CR71
  publication-title: Inductive Logic Programming
  doi: 10.1007/3540635149_56
– start-page: 89
  volume-title: Foundations of deductive databases and logic programming
  year: 1988
  ident: 5843_CR1
  doi: 10.1016/B978-0-934613-40-8.50006-3
– ident: 5843_CR16
  doi: 10.1007/978-3-319-99960-9_1
– ident: 5843_CR50
– volume: 259
  start-page: 110
  year: 2018
  ident: 5843_CR49
  publication-title: Artificial Intelligence
  doi: 10.1016/j.artint.2018.03.005
– ident: 5843_CR4
– volume: 1
  start-page: 6
  year: 2014
  ident: 5843_CR66
  publication-title: Frontiers in Robotics and AI
  doi: 10.3389/frobt.2014.00006
– ident: 5843_CR8
– volume: 134
  start-page: 57
  issue: 1–2
  year: 2002
  ident: 5843_CR6
  publication-title: Artificial Intelligence
  doi: 10.1016/S0004-3702(01)00129-1
– ident: 5843_CR26
– volume: 12
  start-page: 5
  issue: 1–2
  year: 2012
  ident: 5843_CR9
  publication-title: TPLP
– ident: 5843_CR17
– volume: 12
  start-page: 65
  year: 1996
  ident: 5843_CR56
  publication-title: Computational Intelligence
  doi: 10.1111/j.1467-8640.1996.tb00253.x
– ident: 5843_CR55
– ident: 5843_CR51
– volume: 13
  start-page: 245
  issue: 3&4
  year: 1995
  ident: 5843_CR57
  publication-title: New Generation Computing
  doi: 10.1007/BF03037227
– ident: 5843_CR13
– ident: 5843_CR21
  doi: 10.1007/978-3-642-13840-9
– ident: 5843_CR32
– volume: 100
  start-page: 49
  issue: 1
  year: 2015
  ident: 5843_CR61
  publication-title: Machine Learning
  doi: 10.1007/s10994-014-5471-y
– ident: 5843_CR46
– ident: 5843_CR69
– volume: 94
  start-page: 25
  issue: 1
  year: 2014
  ident: 5843_CR60
  publication-title: Machine Learning
  doi: 10.1007/s10994-013-5358-3
– volume: 15
  start-page: 169
  issue: 02
  year: 2015
  ident: 5843_CR3
  publication-title: Theory and Practice of Logic Programming
  doi: 10.1017/S1471068413000689
– ident: 5843_CR19
  doi: 10.1007/978-3-540-68856-3
– ident: 5843_CR7
– volume: 5
  start-page: 239
  year: 1990
  ident: 5843_CR65
  publication-title: Machine Learning
– ident: 5843_CR27
– volume: 33
  start-page: 89
  issue: 1
  year: 2012
  ident: 5843_CR37
  publication-title: AI Magazine
  doi: 10.1609/aimag.v33i1.2395
– volume: 34
  start-page: 107
  issue: 2
  year: 2013
  ident: 5843_CR30
  publication-title: AI Magazine
  doi: 10.1609/aimag.v34i2.2475
– ident: 5843_CR23
– ident: 5843_CR35
– volume: 18
  start-page: 571
  issue: 3–4
  year: 2018
  ident: 5843_CR39
  publication-title: TPLP
– ident: 5843_CR62
– volume: 16
  start-page: 834
  issue: 5–6
  year: 2016
  ident: 5843_CR48
  publication-title: Theory and Practice of Logic Programming
  doi: 10.1017/S1471068416000351
– volume: 307
  start-page: 336
  year: 2017
  ident: 5843_CR42
  publication-title: Revue d’intelligence artificielle–no
– ident: 5843_CR33
  doi: 10.1109/LICS.2017.8005080
– volume: 24
  start-page: 107
  issue: 2
  year: 2011
  ident: 5843_CR28
  publication-title: Ai Communications
  doi: 10.3233/AIC-2011-0491
– volume: 7
  start-page: 2462
  year: 2007
  ident: 5843_CR20
  publication-title: IJCAI
– volume: 34
  start-page: 786
  issue: 2
  year: 1991
  ident: 5843_CR22
  publication-title: Journal of Medicinal Chemistry
  doi: 10.1021/jm00106a046
– ident: 5843_CR70
  doi: 10.1023/A:1010980106294
– ident: 5843_CR52
– volume: 8
  start-page: 1
  issue: 2
  year: 2014
  ident: 5843_CR29
  publication-title: Synthesis Lectures on Artificial Intelligence and Machine Learning
  doi: 10.2200/S00564ED1V01Y201311AIM024
– ident: 5843_CR14
– ident: 5843_CR31
– ident: 5843_CR2
– volume: 63
  start-page: 38
  year: 1977
  ident: 5843_CR43
  publication-title: SIGART Newsletter
– ident: 5843_CR41
SSID ssj0002686
Score 2.4629974
Snippet General game playing (GGP) is a framework for evaluating an agent’s general intelligence across a wide range of tasks. In the GGP competition, an agent is...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1393
SubjectTerms Artificial Intelligence
Checkers
Competition
Computer Science
Control
Datasets
Games
Logic programming
Logic programs
Machine Learning
Mechatronics
Natural Language Processing (NLP)
Robotics
Simulation and Modeling
Special Issue of the Inductive Logic Programming (ILP) 2019
Systems analysis
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB60evBifWK1lj1400B3k30dRSweRMRH6S1MZrNFqLW01f59kzTbqqig191sWCYz801I5vsATnJuSUCImIF2xURRthmWAllJMW8rMhWsU2voXqc3N1mvl9_6prBJddu9OpJ0mfpDs5ujsbVNNwY1OZutwpqBu8yG4919d5F_o8TpO5rwiZnFb98q8_0cn-FoWWN-ORZ1aNOp_-8_t2DTV5fB-dwdtmFFD3egXik3BD6Qd6FlFTtcpgv6c97poI_POhgN0LY97cFj5_Lh4op5pQRGBpCnrAxVjmanYMqFgrRKSIm2cZEwL1WUpyrFGM3Twq5LmBYqjqjEkCJTqyZCa458H2rDl6E-gCDVkUgzjqRQiJyHimORZCFmSElCGW9AWBlMkqcRt2oWA7kkQLYGkMYA0hlAzhpwuvhmNCfR-HV0s1oH6QNqIm0XC7ebzbgBZ5Xdl69_nu3wb8OPYCOyO2p3IbcJten4VR_DOr1NnybjlnO0d0EIzG8
  priority: 102
  providerName: Springer Nature
Title Inductive general game playing
URI https://link.springer.com/article/10.1007/s10994-019-05843-w
https://www.proquest.com/docview/2424341565
Volume 109
WOSCitedRecordID wos000542926600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-0565
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002686
  issn: 0885-6125
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT8IwFH9R8OBF_Iwokh28aSNt93kyaiAmKllQCfGytF1HSBAQUP5929KxaCIXL--wdc3y-j7bvvcDOI-obgIiBFKunSM3zRqIZS5DmfBogwsVwRq0hu5j0G6HvV4U2w23mb1WmdtEY6jTsdB75Fe6jIHqbMO7nnwgjRqlT1cthMYmlDEhWMv5Q4BWlpj4BulRKZKHtCe3RTO2dM40xdUlPMoHU7T46ZiKaPPXAanxO63Kf_94F3ZsxOncLEVkDzbkaB8qOZqDY5X7AOoaxcNYP6e_7EXt9Nm7dCZDpkuhDuG11Xy5u0cWPQEJ5aTnKMM8Yip7UCFEKiT3BXcbSmxwlHESBTxgHlNPU71WOEi5R0TGsCAqfvVdKSmjR1AajUfyGJxAEjcIKROcuW5EMacs9UPMQiZ8X4S0CjhnXSJsa3GNcDFMiqbImt2JYndi2J0sqnCx-maybKyxdnQt53FilWyWFAyuwmW-SsXrv2c7WT_bKWwTnVWbS7k1KM2nn_IMtsTXfDCb1qF822zHnboRNUWfSKxo7L0p2nnufgMRI9nL
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NT8IwFH9BNNGL-BlRxB30pI1s7dbtYIxRiQQkHtBwm23XERMEBJT4T_k32nYbRBO5cfC6j2br7_W914_3-wEcB1iTgAiBVGjniERxBbGYMBQLF1e4UBmsUWt4atBm02-3g4ccfGW1MPpYZeYTjaOO-kKvkZ_rMgasZxvu5eANadUovbuaSWgkZlGXnxM1ZRtd1G4UvieOU71tXd-hVFUACRW8xii2ecBUVq1CayQk9wQnFdWddhBzJ6CcMpepq5H-B5tG3HVEzGzhqLzOI1JihlW7S7BMsE81V3-doqnndzyjLKkGrot05pAW6aSleoaEV5cMqZiP0eRnIJxlt782ZE2cqxb-Ww9twHqaUVtXyRDYhJzsbUEhU6uwUue1DWWtUmK8u9VJuLatDnuV1qDLdKnXDjwu5Ct3Id_r9-QeWFQ6hPqYCc4ICbDNMYs832Y-E54nfFwEO4MqFCl1ulbw6IYz0mcNb6jgDQ284aQIp9N3BglxyNynSxmmYepERuEM0CKcZVYxu_13a_vzWzuC1bvWfSNs1Jr1A1hz9AqCOYBcgvx4-C4PYUV8jF9Gw7IxbwueF20t321uNPA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LTwIxEJ4gGuNFfEYUdQ960ga23efBGCMSCYRwUMOttt0uMUFAQIl_zV9n292FaCI3Dl730ez2m843fcx8AGch0UVAhECK2jlyoriCWOwwFAuXVLhQEaxRa3hq-q1W0OmE7Rx8Zbkw-lhl5hONo44GQq-Rl3UaA9GzDbccp8ci2tXa9fANaQUpvdOayWkkJtKQn1M1fRtf1asK63OMa3cPt_coVRhAQhHZBMU2D5mKsBXNRkJyT3CnorrWDmOOQ5_7zGXqaqT_x_Yj7mIRM1tgFeN5jpSEEdXuCqwqFnb1GGv4aMYC2DMqk2oQu0hHEWnCTpq2Zwry6vQhxf8ETX-S4jzS_bU5azivVvjPvbUFm2mkbd0kQ2MbcrK_A4VMxcJKndounGj1EuP1rW5Sg9vqsldpDXtMp4DtweNSvnIf8v1BXx6A5Uvs-AFhgjPHCYnNCYu8wGYBE54nAlIEO4ONirSkulb26NF5MWgNNVVQUwM1nRbhYvbOMCkosvDpUoYvTZ3LmM7BLcJlZiHz23-3dri4tVNYV0ZCm_VW4wg2sF5YMOeSS5CfjN7lMayJj8nLeHRiLN2C52UbyzeEdz2q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inductive+general+game+playing&rft.jtitle=Machine+learning&rft.au=Cropper%2C+Andrew&rft.au=Evans%2C+Richard&rft.au=Law%2C+Mark&rft.date=2020-07-01&rft.issn=0885-6125&rft.eissn=1573-0565&rft.volume=109&rft.issue=7&rft.spage=1393&rft.epage=1434&rft_id=info:doi/10.1007%2Fs10994-019-05843-w&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10994_019_05843_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6125&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6125&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6125&client=summon