A Bidirectional Long Short-Term Memory Autoencoder Transformer for Remaining Useful Life Estimation

Estimating the remaining useful life (RUL) of aircraft engines holds a pivotal role in enhancing safety, optimizing operations, and promoting sustainability, thus being a crucial component of modern aviation management. Precise RUL predictions offer valuable insights into an engine’s condition, enab...

Full description

Saved in:
Bibliographic Details
Published in:Mathematics (Basel) Vol. 11; no. 24; p. 4972
Main Authors: Fan, Zhengyang, Li, Wanru, Chang, Kuo-Chu
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.12.2023
Subjects:
ISSN:2227-7390, 2227-7390
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Estimating the remaining useful life (RUL) of aircraft engines holds a pivotal role in enhancing safety, optimizing operations, and promoting sustainability, thus being a crucial component of modern aviation management. Precise RUL predictions offer valuable insights into an engine’s condition, enabling informed decisions regarding maintenance and crew scheduling. In this context, we propose a novel RUL prediction approach in this paper, harnessing the power of bi-directional LSTM and Transformer architectures, known for their success in sequence modeling, such as natural languages. We adopt the encoder part of the full Transformer as the backbone of our framework, integrating it with a self-supervised denoising autoencoder that utilizes bidirectional LSTM for improved feature extraction. Within our framework, a sequence of multivariate time-series sensor measurements serves as the input, initially processed by the bidirectional LSTM autoencoder to extract essential features. Subsequently, these feature values are fed into our Transformer encoder backbone for RUL prediction. Notably, our approach simultaneously trains the autoencoder and Transformer encoder, different from the naive sequential training method. Through a series of numerical experiments carried out on the C-MAPSS datasets, we demonstrate that the efficacy of our proposed models either surpasses or stands on par with that of other existing methods.
AbstractList Estimating the remaining useful life (RUL) of aircraft engines holds a pivotal role in enhancing safety, optimizing operations, and promoting sustainability, thus being a crucial component of modern aviation management. Precise RUL predictions offer valuable insights into an engine’s condition, enabling informed decisions regarding maintenance and crew scheduling. In this context, we propose a novel RUL prediction approach in this paper, harnessing the power of bi-directional LSTM and Transformer architectures, known for their success in sequence modeling, such as natural languages. We adopt the encoder part of the full Transformer as the backbone of our framework, integrating it with a self-supervised denoising autoencoder that utilizes bidirectional LSTM for improved feature extraction. Within our framework, a sequence of multivariate time-series sensor measurements serves as the input, initially processed by the bidirectional LSTM autoencoder to extract essential features. Subsequently, these feature values are fed into our Transformer encoder backbone for RUL prediction. Notably, our approach simultaneously trains the autoencoder and Transformer encoder, different from the naive sequential training method. Through a series of numerical experiments carried out on the C-MAPSS datasets, we demonstrate that the efficacy of our proposed models either surpasses or stands on par with that of other existing methods.
Audience Academic
Author Fan, Zhengyang
Chang, Kuo-Chu
Li, Wanru
Author_xml – sequence: 1
  givenname: Zhengyang
  surname: Fan
  fullname: Fan, Zhengyang
– sequence: 2
  givenname: Wanru
  surname: Li
  fullname: Li, Wanru
– sequence: 3
  givenname: Kuo-Chu
  surname: Chang
  fullname: Chang, Kuo-Chu
BookMark eNptUU1PGzEQtSoqlVJu_QEr9doFf67jY4poQQpCasPZsr3j4Ci7prZz4N93ShBCCPswo_F7b8bzPpOjOc9AyFdGz4Qw9Hxy7Z4xLqXR_AM55pzrXuPD0av8EzmtdUvxGCYW0hyTsOx-pDEVCC3l2e26VZ433Z_7XFq_hjJ1NzDl8tgt9y3DHPIIpVsXN9eYy4Q5hu43TC7NCXl3FeIeNVKE7rK2hDOh6hfyMbpdhdPneELufl6uL6761e2v64vlqg-SDq0HiAy4Hw2nQkjvBxBUOzoCUOeFV4OCQTjh_MAlkxKGyII0XgUF2uBnxAm5PuiO2W3tQ8H25dFml-xTIZeNdaWlsAPLOVNqpCZGH-UCBuODABEXNEqhB6dR69tB66Hkv3uozW7zvuCCquWGSq0EZRJRZwfUxqFommNuxQW8I0wpoD8xYX2pteFMKKaQ8P1ACCXXWiC-jMmo_W-jfW0jwvkbeEjtaafYJ-3eJ_0Drl6iZg
CitedBy_id crossref_primary_10_1016_j_engappai_2025_111852
crossref_primary_10_1109_TMC_2024_3404249
crossref_primary_10_1016_j_engappai_2025_110285
crossref_primary_10_1016_j_jlp_2025_105788
crossref_primary_10_1016_j_ress_2025_110902
Cites_doi 10.20944/preprints202309.1165.v1
10.1016/j.ejor.2010.11.018
10.1016/j.cie.2021.107533
10.1007/s10845-021-01750-x
10.3390/app9194156
10.3390/su142315667
10.1016/j.ress.2023.109662
10.1145/1390156.1390294
10.1016/j.ymssp.2019.05.005
10.1007/s10845-018-1428-5
10.3390/math10122066
10.1016/j.ress.2017.11.021
10.1162/neco.1997.9.8.1735
10.1016/j.neucom.2017.05.063
10.1177/1687814016650169
10.1007/s10845-013-0774-6
10.1145/3412353
10.1016/j.ress.2015.02.001
10.1109/ACCESS.2022.3151975
10.1115/DETC2011-48174
10.1109/ICPHM.2017.7998311
10.1109/PHM.2008.4711414
10.1109/TNNLS.2016.2582798
10.1109/PHM-Chongqing.2018.00184
10.1109/ICPHM.2019.8819420
10.3390/math10101733
10.1109/TIM.2022.3181933
10.23919/FRUCT49677.2020.9211058
10.24251/HICSS.2020.274
10.1145/3461672
10.1109/BigData55660.2022.10020482
10.3390/s20247109
10.1109/TIE.2023.3301546
10.3390/app13127186
10.3390/e24121818
10.1007/978-3-319-32025-0
10.3390/math11081837
10.2139/ssrn.4485786
10.1109/AUS.2016.7748035
10.3390/math9233035
10.1016/j.cam.2018.07.008
10.1016/j.ress.2023.109181
10.1109/ACCESS.2022.3187702
10.3390/aerospace10030297
10.1109/TII.2022.3217758
10.3390/math11183884
10.3390/app132111893
10.1016/j.ress.2021.107631
10.1109/AERO55745.2023.10115698
10.1162/089976600300015015
10.3390/math10244647
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOA
DOI 10.3390/math11244972
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2227-7390
ExternalDocumentID oai_doaj_org_article_22155d09ffbf48e69bc3e3f80f4376a7
A779213515
10_3390_math11244972
GroupedDBID -~X
5VS
85S
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABPPZ
ABUWG
ACIPV
ACIWK
ADBBV
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ITC
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
RNS
3V.
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c406t-eef1e2bd920334bb6e307a0dee0ab3b565e63a3ab624144e6f1c49b5c5e798493
IEDL.DBID DOA
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001136086200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2227-7390
IngestDate Tue Oct 14 19:05:49 EDT 2025
Fri Jul 25 11:59:20 EDT 2025
Tue Nov 04 18:29:16 EST 2025
Tue Nov 18 22:38:53 EST 2025
Sat Nov 29 07:09:42 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 24
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-eef1e2bd920334bb6e307a0dee0ab3b565e63a3ab624144e6f1c49b5c5e798493
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doaj.org/article/22155d09ffbf48e69bc3e3f80f4376a7
PQID 2904753014
PQPubID 2032364
ParticipantIDs doaj_primary_oai_doaj_org_article_22155d09ffbf48e69bc3e3f80f4376a7
proquest_journals_2904753014
gale_infotracacademiconefile_A779213515
crossref_primary_10_3390_math11244972
crossref_citationtrail_10_3390_math11244972
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Mathematics (Basel)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References (ref_17) 2019; 346
ref_14
ref_58
ref_13
ref_57
ref_12
Yu (ref_29) 2019; 129
ref_11
ref_55
Mo (ref_40) 2021; 32
Hochreiter (ref_49) 1997; 9
ref_54
ref_52
ref_51
Gers (ref_50) 2000; 12
ref_15
Chadha (ref_46) 2022; 10
Hu (ref_43) 2023; 11
Wu (ref_26) 2018; 275
ref_25
ref_24
ref_23
ref_22
ref_21
ref_20
Ding (ref_45) 2022; 71
ref_27
Ravi (ref_16) 2022; 22
ref_34
ref_33
Feng (ref_5) 2016; 8
ref_32
ref_31
ref_30
Wu (ref_53) 2020; 31
Benkedjouh (ref_19) 2015; 26
ref_39
ref_38
ref_37
Zhang (ref_47) 2024; 241
Yu (ref_4) 2021; 212
(ref_18) 2015; 138
Li (ref_28) 2018; 172
Chen (ref_48) 2022; 10
Zhou (ref_35) 2023; 19
Li (ref_44) 2022; 71
ref_41
Si (ref_8) 2011; 213
ref_1
Zhang (ref_56) 2017; 28
Lin (ref_3) 2021; 160
Zhang (ref_42) 2022; 71
ref_2
ref_9
Greitzer (ref_10) 2021; 4
Zhuang (ref_36) 2023; 234
ref_7
ref_6
References_xml – ident: ref_11
  doi: 10.20944/preprints202309.1165.v1
– volume: 213
  start-page: 1
  year: 2011
  ident: ref_8
  article-title: Remaining Useful Life Estimation—A Review on the Statistical Data Driven Approaches
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2010.11.018
– volume: 160
  start-page: 107533
  year: 2021
  ident: ref_3
  article-title: Two-Phase Degradation Modeling and Remaining Useful Life Prediction Using Nonlinear Wiener Process
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2021.107533
– volume: 32
  start-page: 1997
  year: 2021
  ident: ref_40
  article-title: Remaining Useful Life Estimation via Transformer Encoder Enhanced by a Gated Convolutional Unit
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-021-01750-x
– ident: ref_57
  doi: 10.3390/app9194156
– ident: ref_39
– ident: ref_32
  doi: 10.3390/su142315667
– volume: 241
  start-page: 109662
  year: 2024
  ident: ref_47
  article-title: Trend-Augmented and Temporal-Featured Transformer Network with Multi-Sensor Signals for Remaining Useful Life Prediction
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2023.109662
– ident: ref_1
– ident: ref_51
  doi: 10.1145/1390156.1390294
– volume: 129
  start-page: 764
  year: 2019
  ident: ref_29
  article-title: Remaining Useful Life Estimation Using a Bidirectional Recurrent Neural Network Based Autoencoder Scheme
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2019.05.005
– volume: 31
  start-page: 1621
  year: 2020
  ident: ref_53
  article-title: Approach for Fault Prognosis Using Recurrent Neural Network
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-018-1428-5
– volume: 71
  start-page: 3521213
  year: 2022
  ident: ref_44
  article-title: Domain Adaptive Remaining Useful Life Prediction With Transformer
  publication-title: IEEE Trans. Instrum. Meas.
– ident: ref_23
  doi: 10.3390/math10122066
– volume: 172
  start-page: 1
  year: 2018
  ident: ref_28
  article-title: Remaining Useful Life Estimation in Prognostics Using Deep Convolution Neural Networks
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2017.11.021
– volume: 9
  start-page: 1735
  year: 1997
  ident: ref_49
  article-title: Long Short-Term Memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: 275
  start-page: 167
  year: 2018
  ident: ref_26
  article-title: Remaining Useful Life Estimation of Engineered Systems Using Vanilla LSTM Neural Networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.05.063
– volume: 8
  start-page: 1687814016650169
  year: 2016
  ident: ref_5
  article-title: A Kernel Principal Component Analysis–Based Degradation Model and Remaining Useful Life Estimation for the Turbofan Engine
  publication-title: Adv. Mech. Eng.
  doi: 10.1177/1687814016650169
– volume: 26
  start-page: 213
  year: 2015
  ident: ref_19
  article-title: Health Assessment and Life Prediction of Cutting Tools Based on Support Vector Regression
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-013-0774-6
– volume: 22
  start-page: 84:1
  year: 2022
  ident: ref_16
  article-title: Driver Identification Using Optimized Deep Learning Model in Smart Transportation
  publication-title: ACM Trans. Internet Technol.
  doi: 10.1145/3412353
– volume: 138
  start-page: 219
  year: 2015
  ident: ref_18
  article-title: Hybrid PSO–SVM-Based Method for Forecasting of the Remaining Useful Life for Aircraft Engines and Evaluation of Its Reliability
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2015.02.001
– volume: 10
  start-page: 19621
  year: 2022
  ident: ref_48
  article-title: Transformer Network for Remaining Useful Life Prediction of Lithium-Ion Batteries
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3151975
– ident: ref_2
  doi: 10.1115/DETC2011-48174
– ident: ref_27
  doi: 10.1109/ICPHM.2017.7998311
– ident: ref_52
  doi: 10.1109/PHM.2008.4711414
– volume: 28
  start-page: 2306
  year: 2017
  ident: ref_56
  article-title: Multiobjective Deep Belief Networks Ensemble for Remaining Useful Life Estimation in Prognostics
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2016.2582798
– ident: ref_38
– ident: ref_55
  doi: 10.1109/PHM-Chongqing.2018.00184
– ident: ref_21
  doi: 10.1109/ICPHM.2019.8819420
– ident: ref_41
  doi: 10.3390/math10101733
– volume: 71
  start-page: 2505711
  year: 2022
  ident: ref_42
  article-title: Dual-Aspect Self-Attention Based on Transformer for Remaining Useful Life Prediction
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 71
  start-page: 3515010
  year: 2022
  ident: ref_45
  article-title: Convolutional Transformer: An Enhanced Attention Mechanism Architecture for Remaining Useful Life Estimation of Bearings
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2022.3181933
– ident: ref_58
  doi: 10.23919/FRUCT49677.2020.9211058
– ident: ref_9
  doi: 10.24251/HICSS.2020.274
– volume: 11
  start-page: 52668
  year: 2023
  ident: ref_43
  article-title: Novel Transformer-Based Fusion Models for Aero-Engine Remaining Useful Life Estimation
  publication-title: IEEE Access
– volume: 4
  start-page: 8:1
  year: 2021
  ident: ref_10
  article-title: Experimental Investigation of Technical and Human Factors Related to Phishing Susceptibility
  publication-title: ACM Trans. Soc. Comput.
  doi: 10.1145/3461672
– ident: ref_22
  doi: 10.1109/BigData55660.2022.10020482
– ident: ref_30
  doi: 10.3390/s20247109
– ident: ref_37
  doi: 10.1109/TIE.2023.3301546
– ident: ref_20
  doi: 10.3390/app13127186
– ident: ref_31
  doi: 10.3390/e24121818
– ident: ref_54
  doi: 10.1007/978-3-319-32025-0
– ident: ref_7
  doi: 10.3390/math11081837
– ident: ref_12
  doi: 10.2139/ssrn.4485786
– ident: ref_25
  doi: 10.1109/AUS.2016.7748035
– ident: ref_34
  doi: 10.3390/math9233035
– volume: 346
  start-page: 184
  year: 2019
  ident: ref_17
  article-title: A Hybrid ARIMA–SVM Model for the Study of the Remaining Useful Life of Aircraft Engines
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2018.07.008
– volume: 234
  start-page: 109181
  year: 2023
  ident: ref_36
  article-title: A Prognostic Driven Predictive Maintenance Framework Based on Bayesian Deep Learning
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2023.109181
– volume: 10
  start-page: 74244
  year: 2022
  ident: ref_46
  article-title: Shared Temporal Attention Transformer for Remaining Useful Lifetime Estimation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3187702
– ident: ref_14
  doi: 10.3390/aerospace10030297
– volume: 19
  start-page: 8307
  year: 2023
  ident: ref_35
  article-title: Dual-Thread Gated Recurrent Unit for Gear Remaining Useful Life Prediction
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2022.3217758
– ident: ref_15
– ident: ref_6
  doi: 10.3390/math11183884
– ident: ref_24
  doi: 10.3390/app132111893
– volume: 212
  start-page: 107631
  year: 2021
  ident: ref_4
  article-title: A Nonlinear-Drift-Driven Wiener Process Model for Remaining Useful Life Estimation Considering Three Sources of Variability
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2021.107631
– ident: ref_13
  doi: 10.1109/AERO55745.2023.10115698
– volume: 12
  start-page: 2451
  year: 2000
  ident: ref_50
  article-title: Learning to Forget: Continual Prediction with LSTM
  publication-title: Neural Comput.
  doi: 10.1162/089976600300015015
– ident: ref_33
  doi: 10.3390/math10244647
SSID ssj0000913849
Score 2.3314471
Snippet Estimating the remaining useful life (RUL) of aircraft engines holds a pivotal role in enhancing safety, optimizing operations, and promoting sustainability,...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 4972
SubjectTerms Adaptation
Aircraft
Aircraft engines
Analysis
Artificial intelligence
autoencoder
bidirectional LSTM
Coders
Computational linguistics
Deep learning
Electric transformers
Engines
Estimation
Feature extraction
Language processing
Measuring instruments
Methods
Natural language interfaces
Neural networks
Preventive maintenance
remaining useful life prediction
self-supervised learning
Sensors
Support vector machines
Time series
Training
Transformer
turbofan engine
Useful life
SummonAdditionalLinks – databaseName: Computer Science Database
  dbid: K7-
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELZ49AAHKAXU5VH5QNVDZZHESRyf0IJAlXioaheJmxU742WlagObXST-PTOJd2kPcOkpUWJZjmf8zXgy_oaxo1iDIxAUZI8EeuAgdKm0KFwmVQLOx9AVm1A3N8Xdnf4ZAm5NSKucY2IL1FXtKEZ-nOgoRdcaPfqTh0dBVaPo72ooobHMVuMkiUnPL5VYxFiI87JIdZfvLnF3f4xe4H1MJk2r5B9L1BL2vwXLra252PzfUX5kG8HL5P1OLbbYEow_sfXrBUVrs81cn5-OOoPWRgP5VT0e8t_36I6LAcI1v6Yc3Gfen01rIrusYMIHcy8X7_HCf2FvbYEJftuAn2EfIw_8HFGjOxC5w24vzgdnP0SouCAcGvapAEDZJLbSSSRlam0OCAFlVAFEpZUWnT_IZSlLm6PhT1PIfexSbTOXgdI403KXrYzrMXxm3MWxdF5RZg1RhuG-KHeaECJ3KtNW9dj3-ewbF-jIqSrGH4PbEpKV-VtWPfZ10fqho-F4o90pCXLRhsiz2wf1ZGjCWjSoKVlWRdp769MCcm2dBOmLyKcItyUO7RupgaEljkNyZTipgB9GZFmmr5ROqLJh1mMHczUwYe035lUH9t5_vc_WqHh9lxxzwFamkxkcsg_uaTpqJl9aVX4Bj-P8YA
  priority: 102
  providerName: ProQuest
Title A Bidirectional Long Short-Term Memory Autoencoder Transformer for Remaining Useful Life Estimation
URI https://www.proquest.com/docview/2904753014
https://doaj.org/article/22155d09ffbf48e69bc3e3f80f4376a7
Volume 11
WOSCitedRecordID wos001136086200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: K7-
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: M7S
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: BENPR
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: PIMPY
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swED9Ku4ftYXRfLFsb9NCyhyFqW7ZlPSYlZWNNCG0K3ZOwlNMaGMnIx2Av-9t3Zzkheyh72YttbCGk051-d-b0O4Cz1KDnTVAyHknywFGaWhtZ-ULpDH1IMRab0KNRdX9vxnulvjgnLNIDR8FdZIRJxTQxIbiQV1ga5xWqUCUhJ9uom3Pk5PXsBVPNHmxSVeUmZroriusvyP97SBnMjM7-wqCGqv-xDblBmatjeN66h6IXh_UCDnD-Ep4Nd9yqq1fge6I_i0jU_MYT14v5N3H7QH60nNA-K4acPPtL9DbrBbNUTnEpJlv3lJ7pJm6ot6YyhLhbYdhQH7OAYkDmHk8yvoa7q8Hk8pNsSyVIT4i8logk1MxNTZYolTtXItlunUwRk9opR14blqpWtSsJsfMcy5D63LjCF6gNCUq9gcP5Yo5vQfg0VT5oTolhri8KaEpv2LRLrwvjdAc-boVnfcsjzuUsvluKJ1jUdl_UHTjftf4R-TMeadfnddi1Ydbr5gXpgm11wf5LFzrwgVfRsm3SkHzdHjGgiTHLle1pbTIuSVh04GS70LY12pXNaJoUvVHQ-O5_jOY9POXa9DH35QQO18sNnsIT_3M9Wy27cNQfjMY33UZv6fpFyy4nnt7y9feAvo8_D8df_wCF6vUi
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbhMxFLWqggQsyrMipYAXVCyQ1Rl7ZjxeIJRCq1Z5CEEqdWfGnus2EkpKJgH1p_hG7p1HgEXZdcEqUWJNZjIn5xw71-cy9io24IkEBemRQAcOwhTaiNynSkvwIYam2YQej_OzM_Nxg_3s9sJQWWXHiTVRl3NPa-T70kQJWmt09O8uvwnqGkX_rnYtNBpYDODqB07ZqrcnH_D-7kl5dDh5fyzargLCo3gtBQB-vnSlkZFSiXMZIMyLqASICqccGhzIVKEKl6G4JQlkIfaJcalPQZs8ofAlpPxbico1ZfUPtFiv6VDGJo5o6uuVMtE-us6LmCTUaPmX8tUNAq6TgVrbju7_b9_KA7bVumjeb2D_kG3A7BG7N1pH0FaPme_zg2kj2PVqJx_OZ-f88wVON8QE5YiPqMb4ivdXyzmFeZaw4JPOxeNzfOCf8Gh1Aw1-WkFY4TGmAfghsmKz4fMJO72Rq9xmm7P5DJ4y7uNY-aCpcogi0XDel3lDDJh5nRqne-xNd7etb-PWqevHV4vTLsKG_RMbPba3Hn3ZxIxcM-6AgLMeQ-Hg9QvzxbltucZKtHFpGZkQXEhyyIzzClTIo5CgnBR4aq8JdpYoDE_JF-1ODLwwCgOzfa2NpM6NaY_tdrCzLbdV9jfmdv799kt253gyGtrhyXjwjN2VaA-bQqBdtrlcrOA5u-2_L6fV4kX9M-Lsy00j9Bc2TVoM
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Pb9MwFLamgRAc-I3oGOADEwdkNbGTOD4g1LFVTO2qCTppNxM7z1sl1G5NB9q_xl_He_lR4DBuO3Bq1FiRk3z-vs_O83uMvYkNeCJBQXok0IGDMIU2Ivep0hJ8iKEpNqEnk_zkxBxtsJ_dXhgKq-w4sSbqcuFpjbwvTZSgtUZH3w9tWMTR3vDD-YWgClL0pbUrp9FAZARXP3D6Vr0_2MN3vSPlcH_68ZNoKwwIj0K2EgDYF-lKIyOlEucyQMgXUQkQFU45NDuQqUIVLkOhSxLIQuwT41KfgjZ5QomYkP5voQqnNMZGWqzXdyjfJrZoYu2VMlEfHehZTHJqtPxLBetiAddJQq1zwwf_8xN6yO637poPmuHwiG3A_DG7d7hOTVs9YX7Ad2eNkNeroHy8mJ_yL2c4DRFTlCl-SLHHV3xwuVpQks8SlnzauXs8xh_-Ga9WF9bgxxXgU-DjWQC-j2zZbAR9yo5v5C6fsc35Yg7PGfdxrHzQFFFEqdJwPph5Q8yYeZ0ap3vsXffmrW_TsFM1kG8Wp2OEE_snTnpsZ936vEk_ck27XQLRug0lDa__WCxPbctBVqK9S8vIhOBCkkNmnFegQh6FBGWmwK69JQhaojbski_aHRp4Y5QkzA60NpIqOqY9tt1B0LacV9nf-Nv69-nX7A4C044PJqMX7K5E19jEB22zzdXyEl6y2_77alYtX9UjirOvNw3QX-CxYsY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Bidirectional+Long+Short-Term+Memory+Autoencoder+Transformer+for+Remaining+Useful+Life+Estimation&rft.jtitle=Mathematics+%28Basel%29&rft.au=Fan%2C+Zhengyang&rft.au=Li%2C+Wanru&rft.au=Chang%2C+Kuo-Chu&rft.date=2023-12-01&rft.issn=2227-7390&rft.eissn=2227-7390&rft.volume=11&rft.issue=24&rft.spage=4972&rft_id=info:doi/10.3390%2Fmath11244972&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_math11244972
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon