A Bidirectional Long Short-Term Memory Autoencoder Transformer for Remaining Useful Life Estimation
Estimating the remaining useful life (RUL) of aircraft engines holds a pivotal role in enhancing safety, optimizing operations, and promoting sustainability, thus being a crucial component of modern aviation management. Precise RUL predictions offer valuable insights into an engine’s condition, enab...
Saved in:
| Published in: | Mathematics (Basel) Vol. 11; no. 24; p. 4972 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Basel
MDPI AG
01.12.2023
|
| Subjects: | |
| ISSN: | 2227-7390, 2227-7390 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Estimating the remaining useful life (RUL) of aircraft engines holds a pivotal role in enhancing safety, optimizing operations, and promoting sustainability, thus being a crucial component of modern aviation management. Precise RUL predictions offer valuable insights into an engine’s condition, enabling informed decisions regarding maintenance and crew scheduling. In this context, we propose a novel RUL prediction approach in this paper, harnessing the power of bi-directional LSTM and Transformer architectures, known for their success in sequence modeling, such as natural languages. We adopt the encoder part of the full Transformer as the backbone of our framework, integrating it with a self-supervised denoising autoencoder that utilizes bidirectional LSTM for improved feature extraction. Within our framework, a sequence of multivariate time-series sensor measurements serves as the input, initially processed by the bidirectional LSTM autoencoder to extract essential features. Subsequently, these feature values are fed into our Transformer encoder backbone for RUL prediction. Notably, our approach simultaneously trains the autoencoder and Transformer encoder, different from the naive sequential training method. Through a series of numerical experiments carried out on the C-MAPSS datasets, we demonstrate that the efficacy of our proposed models either surpasses or stands on par with that of other existing methods. |
|---|---|
| AbstractList | Estimating the remaining useful life (RUL) of aircraft engines holds a pivotal role in enhancing safety, optimizing operations, and promoting sustainability, thus being a crucial component of modern aviation management. Precise RUL predictions offer valuable insights into an engine’s condition, enabling informed decisions regarding maintenance and crew scheduling. In this context, we propose a novel RUL prediction approach in this paper, harnessing the power of bi-directional LSTM and Transformer architectures, known for their success in sequence modeling, such as natural languages. We adopt the encoder part of the full Transformer as the backbone of our framework, integrating it with a self-supervised denoising autoencoder that utilizes bidirectional LSTM for improved feature extraction. Within our framework, a sequence of multivariate time-series sensor measurements serves as the input, initially processed by the bidirectional LSTM autoencoder to extract essential features. Subsequently, these feature values are fed into our Transformer encoder backbone for RUL prediction. Notably, our approach simultaneously trains the autoencoder and Transformer encoder, different from the naive sequential training method. Through a series of numerical experiments carried out on the C-MAPSS datasets, we demonstrate that the efficacy of our proposed models either surpasses or stands on par with that of other existing methods. |
| Audience | Academic |
| Author | Fan, Zhengyang Chang, Kuo-Chu Li, Wanru |
| Author_xml | – sequence: 1 givenname: Zhengyang surname: Fan fullname: Fan, Zhengyang – sequence: 2 givenname: Wanru surname: Li fullname: Li, Wanru – sequence: 3 givenname: Kuo-Chu surname: Chang fullname: Chang, Kuo-Chu |
| BookMark | eNptUU1PGzEQtSoqlVJu_QEr9doFf67jY4poQQpCasPZsr3j4Ci7prZz4N93ShBCCPswo_F7b8bzPpOjOc9AyFdGz4Qw9Hxy7Z4xLqXR_AM55pzrXuPD0av8EzmtdUvxGCYW0hyTsOx-pDEVCC3l2e26VZ433Z_7XFq_hjJ1NzDl8tgt9y3DHPIIpVsXN9eYy4Q5hu43TC7NCXl3FeIeNVKE7rK2hDOh6hfyMbpdhdPneELufl6uL6761e2v64vlqg-SDq0HiAy4Hw2nQkjvBxBUOzoCUOeFV4OCQTjh_MAlkxKGyII0XgUF2uBnxAm5PuiO2W3tQ8H25dFml-xTIZeNdaWlsAPLOVNqpCZGH-UCBuODABEXNEqhB6dR69tB66Hkv3uozW7zvuCCquWGSq0EZRJRZwfUxqFommNuxQW8I0wpoD8xYX2pteFMKKaQ8P1ACCXXWiC-jMmo_W-jfW0jwvkbeEjtaafYJ-3eJ_0Drl6iZg |
| CitedBy_id | crossref_primary_10_1016_j_engappai_2025_111852 crossref_primary_10_1109_TMC_2024_3404249 crossref_primary_10_1016_j_engappai_2025_110285 crossref_primary_10_1016_j_jlp_2025_105788 crossref_primary_10_1016_j_ress_2025_110902 |
| Cites_doi | 10.20944/preprints202309.1165.v1 10.1016/j.ejor.2010.11.018 10.1016/j.cie.2021.107533 10.1007/s10845-021-01750-x 10.3390/app9194156 10.3390/su142315667 10.1016/j.ress.2023.109662 10.1145/1390156.1390294 10.1016/j.ymssp.2019.05.005 10.1007/s10845-018-1428-5 10.3390/math10122066 10.1016/j.ress.2017.11.021 10.1162/neco.1997.9.8.1735 10.1016/j.neucom.2017.05.063 10.1177/1687814016650169 10.1007/s10845-013-0774-6 10.1145/3412353 10.1016/j.ress.2015.02.001 10.1109/ACCESS.2022.3151975 10.1115/DETC2011-48174 10.1109/ICPHM.2017.7998311 10.1109/PHM.2008.4711414 10.1109/TNNLS.2016.2582798 10.1109/PHM-Chongqing.2018.00184 10.1109/ICPHM.2019.8819420 10.3390/math10101733 10.1109/TIM.2022.3181933 10.23919/FRUCT49677.2020.9211058 10.24251/HICSS.2020.274 10.1145/3461672 10.1109/BigData55660.2022.10020482 10.3390/s20247109 10.1109/TIE.2023.3301546 10.3390/app13127186 10.3390/e24121818 10.1007/978-3-319-32025-0 10.3390/math11081837 10.2139/ssrn.4485786 10.1109/AUS.2016.7748035 10.3390/math9233035 10.1016/j.cam.2018.07.008 10.1016/j.ress.2023.109181 10.1109/ACCESS.2022.3187702 10.3390/aerospace10030297 10.1109/TII.2022.3217758 10.3390/math11183884 10.3390/app132111893 10.1016/j.ress.2021.107631 10.1109/AERO55745.2023.10115698 10.1162/089976600300015015 10.3390/math10244647 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U DOA |
| DOI | 10.3390/math11244972 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 2227-7390 |
| ExternalDocumentID | oai_doaj_org_article_22155d09ffbf48e69bc3e3f80f4376a7 A779213515 10_3390_math11244972 |
| GroupedDBID | -~X 5VS 85S 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ABPPZ ABUWG ACIPV ACIWK ADBBV AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO GNUQQ GROUPED_DOAJ HCIFZ IAO ITC K6V K7- KQ8 L6V M7S MODMG M~E OK1 PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PTHSS RNS 3V. 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D M0N P62 PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c406t-eef1e2bd920334bb6e307a0dee0ab3b565e63a3ab624144e6f1c49b5c5e798493 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 13 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001136086200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2227-7390 |
| IngestDate | Tue Oct 14 19:05:49 EDT 2025 Fri Jul 25 11:59:20 EDT 2025 Tue Nov 04 18:29:16 EST 2025 Tue Nov 18 22:38:53 EST 2025 Sat Nov 29 07:09:42 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 24 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c406t-eef1e2bd920334bb6e307a0dee0ab3b565e63a3ab624144e6f1c49b5c5e798493 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://doaj.org/article/22155d09ffbf48e69bc3e3f80f4376a7 |
| PQID | 2904753014 |
| PQPubID | 2032364 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_22155d09ffbf48e69bc3e3f80f4376a7 proquest_journals_2904753014 gale_infotracacademiconefile_A779213515 crossref_primary_10_3390_math11244972 crossref_citationtrail_10_3390_math11244972 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-12-01 |
| PublicationDateYYYYMMDD | 2023-12-01 |
| PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Mathematics (Basel) |
| PublicationYear | 2023 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | (ref_17) 2019; 346 ref_14 ref_58 ref_13 ref_57 ref_12 Yu (ref_29) 2019; 129 ref_11 ref_55 Mo (ref_40) 2021; 32 Hochreiter (ref_49) 1997; 9 ref_54 ref_52 ref_51 Gers (ref_50) 2000; 12 ref_15 Chadha (ref_46) 2022; 10 Hu (ref_43) 2023; 11 Wu (ref_26) 2018; 275 ref_25 ref_24 ref_23 ref_22 ref_21 ref_20 Ding (ref_45) 2022; 71 ref_27 Ravi (ref_16) 2022; 22 ref_34 ref_33 Feng (ref_5) 2016; 8 ref_32 ref_31 ref_30 Wu (ref_53) 2020; 31 Benkedjouh (ref_19) 2015; 26 ref_39 ref_38 ref_37 Zhang (ref_47) 2024; 241 Yu (ref_4) 2021; 212 (ref_18) 2015; 138 Li (ref_28) 2018; 172 Chen (ref_48) 2022; 10 Zhou (ref_35) 2023; 19 Li (ref_44) 2022; 71 ref_41 Si (ref_8) 2011; 213 ref_1 Zhang (ref_56) 2017; 28 Lin (ref_3) 2021; 160 Zhang (ref_42) 2022; 71 ref_2 ref_9 Greitzer (ref_10) 2021; 4 Zhuang (ref_36) 2023; 234 ref_7 ref_6 |
| References_xml | – ident: ref_11 doi: 10.20944/preprints202309.1165.v1 – volume: 213 start-page: 1 year: 2011 ident: ref_8 article-title: Remaining Useful Life Estimation—A Review on the Statistical Data Driven Approaches publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2010.11.018 – volume: 160 start-page: 107533 year: 2021 ident: ref_3 article-title: Two-Phase Degradation Modeling and Remaining Useful Life Prediction Using Nonlinear Wiener Process publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2021.107533 – volume: 32 start-page: 1997 year: 2021 ident: ref_40 article-title: Remaining Useful Life Estimation via Transformer Encoder Enhanced by a Gated Convolutional Unit publication-title: J. Intell. Manuf. doi: 10.1007/s10845-021-01750-x – ident: ref_57 doi: 10.3390/app9194156 – ident: ref_39 – ident: ref_32 doi: 10.3390/su142315667 – volume: 241 start-page: 109662 year: 2024 ident: ref_47 article-title: Trend-Augmented and Temporal-Featured Transformer Network with Multi-Sensor Signals for Remaining Useful Life Prediction publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2023.109662 – ident: ref_1 – ident: ref_51 doi: 10.1145/1390156.1390294 – volume: 129 start-page: 764 year: 2019 ident: ref_29 article-title: Remaining Useful Life Estimation Using a Bidirectional Recurrent Neural Network Based Autoencoder Scheme publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2019.05.005 – volume: 31 start-page: 1621 year: 2020 ident: ref_53 article-title: Approach for Fault Prognosis Using Recurrent Neural Network publication-title: J. Intell. Manuf. doi: 10.1007/s10845-018-1428-5 – volume: 71 start-page: 3521213 year: 2022 ident: ref_44 article-title: Domain Adaptive Remaining Useful Life Prediction With Transformer publication-title: IEEE Trans. Instrum. Meas. – ident: ref_23 doi: 10.3390/math10122066 – volume: 172 start-page: 1 year: 2018 ident: ref_28 article-title: Remaining Useful Life Estimation in Prognostics Using Deep Convolution Neural Networks publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2017.11.021 – volume: 9 start-page: 1735 year: 1997 ident: ref_49 article-title: Long Short-Term Memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – volume: 275 start-page: 167 year: 2018 ident: ref_26 article-title: Remaining Useful Life Estimation of Engineered Systems Using Vanilla LSTM Neural Networks publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.05.063 – volume: 8 start-page: 1687814016650169 year: 2016 ident: ref_5 article-title: A Kernel Principal Component Analysis–Based Degradation Model and Remaining Useful Life Estimation for the Turbofan Engine publication-title: Adv. Mech. Eng. doi: 10.1177/1687814016650169 – volume: 26 start-page: 213 year: 2015 ident: ref_19 article-title: Health Assessment and Life Prediction of Cutting Tools Based on Support Vector Regression publication-title: J. Intell. Manuf. doi: 10.1007/s10845-013-0774-6 – volume: 22 start-page: 84:1 year: 2022 ident: ref_16 article-title: Driver Identification Using Optimized Deep Learning Model in Smart Transportation publication-title: ACM Trans. Internet Technol. doi: 10.1145/3412353 – volume: 138 start-page: 219 year: 2015 ident: ref_18 article-title: Hybrid PSO–SVM-Based Method for Forecasting of the Remaining Useful Life for Aircraft Engines and Evaluation of Its Reliability publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2015.02.001 – volume: 10 start-page: 19621 year: 2022 ident: ref_48 article-title: Transformer Network for Remaining Useful Life Prediction of Lithium-Ion Batteries publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3151975 – ident: ref_2 doi: 10.1115/DETC2011-48174 – ident: ref_27 doi: 10.1109/ICPHM.2017.7998311 – ident: ref_52 doi: 10.1109/PHM.2008.4711414 – volume: 28 start-page: 2306 year: 2017 ident: ref_56 article-title: Multiobjective Deep Belief Networks Ensemble for Remaining Useful Life Estimation in Prognostics publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2016.2582798 – ident: ref_38 – ident: ref_55 doi: 10.1109/PHM-Chongqing.2018.00184 – ident: ref_21 doi: 10.1109/ICPHM.2019.8819420 – ident: ref_41 doi: 10.3390/math10101733 – volume: 71 start-page: 2505711 year: 2022 ident: ref_42 article-title: Dual-Aspect Self-Attention Based on Transformer for Remaining Useful Life Prediction publication-title: IEEE Trans. Instrum. Meas. – volume: 71 start-page: 3515010 year: 2022 ident: ref_45 article-title: Convolutional Transformer: An Enhanced Attention Mechanism Architecture for Remaining Useful Life Estimation of Bearings publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2022.3181933 – ident: ref_58 doi: 10.23919/FRUCT49677.2020.9211058 – ident: ref_9 doi: 10.24251/HICSS.2020.274 – volume: 11 start-page: 52668 year: 2023 ident: ref_43 article-title: Novel Transformer-Based Fusion Models for Aero-Engine Remaining Useful Life Estimation publication-title: IEEE Access – volume: 4 start-page: 8:1 year: 2021 ident: ref_10 article-title: Experimental Investigation of Technical and Human Factors Related to Phishing Susceptibility publication-title: ACM Trans. Soc. Comput. doi: 10.1145/3461672 – ident: ref_22 doi: 10.1109/BigData55660.2022.10020482 – ident: ref_30 doi: 10.3390/s20247109 – ident: ref_37 doi: 10.1109/TIE.2023.3301546 – ident: ref_20 doi: 10.3390/app13127186 – ident: ref_31 doi: 10.3390/e24121818 – ident: ref_54 doi: 10.1007/978-3-319-32025-0 – ident: ref_7 doi: 10.3390/math11081837 – ident: ref_12 doi: 10.2139/ssrn.4485786 – ident: ref_25 doi: 10.1109/AUS.2016.7748035 – ident: ref_34 doi: 10.3390/math9233035 – volume: 346 start-page: 184 year: 2019 ident: ref_17 article-title: A Hybrid ARIMA–SVM Model for the Study of the Remaining Useful Life of Aircraft Engines publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2018.07.008 – volume: 234 start-page: 109181 year: 2023 ident: ref_36 article-title: A Prognostic Driven Predictive Maintenance Framework Based on Bayesian Deep Learning publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2023.109181 – volume: 10 start-page: 74244 year: 2022 ident: ref_46 article-title: Shared Temporal Attention Transformer for Remaining Useful Lifetime Estimation publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3187702 – ident: ref_14 doi: 10.3390/aerospace10030297 – volume: 19 start-page: 8307 year: 2023 ident: ref_35 article-title: Dual-Thread Gated Recurrent Unit for Gear Remaining Useful Life Prediction publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2022.3217758 – ident: ref_15 – ident: ref_6 doi: 10.3390/math11183884 – ident: ref_24 doi: 10.3390/app132111893 – volume: 212 start-page: 107631 year: 2021 ident: ref_4 article-title: A Nonlinear-Drift-Driven Wiener Process Model for Remaining Useful Life Estimation Considering Three Sources of Variability publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2021.107631 – ident: ref_13 doi: 10.1109/AERO55745.2023.10115698 – volume: 12 start-page: 2451 year: 2000 ident: ref_50 article-title: Learning to Forget: Continual Prediction with LSTM publication-title: Neural Comput. doi: 10.1162/089976600300015015 – ident: ref_33 doi: 10.3390/math10244647 |
| SSID | ssj0000913849 |
| Score | 2.3314471 |
| Snippet | Estimating the remaining useful life (RUL) of aircraft engines holds a pivotal role in enhancing safety, optimizing operations, and promoting sustainability,... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 4972 |
| SubjectTerms | Adaptation Aircraft Aircraft engines Analysis Artificial intelligence autoencoder bidirectional LSTM Coders Computational linguistics Deep learning Electric transformers Engines Estimation Feature extraction Language processing Measuring instruments Methods Natural language interfaces Neural networks Preventive maintenance remaining useful life prediction self-supervised learning Sensors Support vector machines Time series Training Transformer turbofan engine Useful life |
| SummonAdditionalLinks | – databaseName: Computer Science Database dbid: K7- link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELZ49AAHKAXU5VH5QNVDZZHESRyf0IJAlXioaheJmxU742WlagObXST-PTOJd2kPcOkpUWJZjmf8zXgy_oaxo1iDIxAUZI8EeuAgdKm0KFwmVQLOx9AVm1A3N8Xdnf4ZAm5NSKucY2IL1FXtKEZ-nOgoRdcaPfqTh0dBVaPo72ooobHMVuMkiUnPL5VYxFiI87JIdZfvLnF3f4xe4H1MJk2r5B9L1BL2vwXLra252PzfUX5kG8HL5P1OLbbYEow_sfXrBUVrs81cn5-OOoPWRgP5VT0e8t_36I6LAcI1v6Yc3Gfen01rIrusYMIHcy8X7_HCf2FvbYEJftuAn2EfIw_8HFGjOxC5w24vzgdnP0SouCAcGvapAEDZJLbSSSRlam0OCAFlVAFEpZUWnT_IZSlLm6PhT1PIfexSbTOXgdI403KXrYzrMXxm3MWxdF5RZg1RhuG-KHeaECJ3KtNW9dj3-ewbF-jIqSrGH4PbEpKV-VtWPfZ10fqho-F4o90pCXLRhsiz2wf1ZGjCWjSoKVlWRdp769MCcm2dBOmLyKcItyUO7RupgaEljkNyZTipgB9GZFmmr5ROqLJh1mMHczUwYe035lUH9t5_vc_WqHh9lxxzwFamkxkcsg_uaTpqJl9aVX4Bj-P8YA priority: 102 providerName: ProQuest |
| Title | A Bidirectional Long Short-Term Memory Autoencoder Transformer for Remaining Useful Life Estimation |
| URI | https://www.proquest.com/docview/2904753014 https://doaj.org/article/22155d09ffbf48e69bc3e3f80f4376a7 |
| Volume | 11 |
| WOSCitedRecordID | wos001136086200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: K7- dateStart: 20130301 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: M7S dateStart: 20130301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: BENPR dateStart: 20130301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: PIMPY dateStart: 20130301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swED9Ku4ftYXRfLFsb9NCyhyFqW7ZlPSYlZWNNCG0K3ZOwlNMaGMnIx2Av-9t3Zzkheyh72YttbCGk051-d-b0O4Cz1KDnTVAyHknywFGaWhtZ-ULpDH1IMRab0KNRdX9vxnulvjgnLNIDR8FdZIRJxTQxIbiQV1ga5xWqUCUhJ9uom3Pk5PXsBVPNHmxSVeUmZroriusvyP97SBnMjM7-wqCGqv-xDblBmatjeN66h6IXh_UCDnD-Ep4Nd9yqq1fge6I_i0jU_MYT14v5N3H7QH60nNA-K4acPPtL9DbrBbNUTnEpJlv3lJ7pJm6ot6YyhLhbYdhQH7OAYkDmHk8yvoa7q8Hk8pNsSyVIT4i8logk1MxNTZYolTtXItlunUwRk9opR14blqpWtSsJsfMcy5D63LjCF6gNCUq9gcP5Yo5vQfg0VT5oTolhri8KaEpv2LRLrwvjdAc-boVnfcsjzuUsvluKJ1jUdl_UHTjftf4R-TMeadfnddi1Ydbr5gXpgm11wf5LFzrwgVfRsm3SkHzdHjGgiTHLle1pbTIuSVh04GS70LY12pXNaJoUvVHQ-O5_jOY9POXa9DH35QQO18sNnsIT_3M9Wy27cNQfjMY33UZv6fpFyy4nnt7y9feAvo8_D8df_wCF6vUi |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbhMxFLWqggQsyrMipYAXVCyQ1Rl7ZjxeIJRCq1Z5CEEqdWfGnus2EkpKJgH1p_hG7p1HgEXZdcEqUWJNZjIn5xw71-cy9io24IkEBemRQAcOwhTaiNynSkvwIYam2YQej_OzM_Nxg_3s9sJQWWXHiTVRl3NPa-T70kQJWmt09O8uvwnqGkX_rnYtNBpYDODqB07ZqrcnH_D-7kl5dDh5fyzargLCo3gtBQB-vnSlkZFSiXMZIMyLqASICqccGhzIVKEKl6G4JQlkIfaJcalPQZs8ofAlpPxbico1ZfUPtFiv6VDGJo5o6uuVMtE-us6LmCTUaPmX8tUNAq6TgVrbju7_b9_KA7bVumjeb2D_kG3A7BG7N1pH0FaPme_zg2kj2PVqJx_OZ-f88wVON8QE5YiPqMb4ivdXyzmFeZaw4JPOxeNzfOCf8Gh1Aw1-WkFY4TGmAfghsmKz4fMJO72Rq9xmm7P5DJ4y7uNY-aCpcogi0XDel3lDDJh5nRqne-xNd7etb-PWqevHV4vTLsKG_RMbPba3Hn3ZxIxcM-6AgLMeQ-Hg9QvzxbltucZKtHFpGZkQXEhyyIzzClTIo5CgnBR4aq8JdpYoDE_JF-1ODLwwCgOzfa2NpM6NaY_tdrCzLbdV9jfmdv799kt253gyGtrhyXjwjN2VaA-bQqBdtrlcrOA5u-2_L6fV4kX9M-Lsy00j9Bc2TVoM |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Pb9MwFLamgRAc-I3oGOADEwdkNbGTOD4g1LFVTO2qCTppNxM7z1sl1G5NB9q_xl_He_lR4DBuO3Bq1FiRk3z-vs_O83uMvYkNeCJBQXok0IGDMIU2Ivep0hJ8iKEpNqEnk_zkxBxtsJ_dXhgKq-w4sSbqcuFpjbwvTZSgtUZH3w9tWMTR3vDD-YWgClL0pbUrp9FAZARXP3D6Vr0_2MN3vSPlcH_68ZNoKwwIj0K2EgDYF-lKIyOlEucyQMgXUQkQFU45NDuQqUIVLkOhSxLIQuwT41KfgjZ5QomYkP5voQqnNMZGWqzXdyjfJrZoYu2VMlEfHehZTHJqtPxLBetiAddJQq1zwwf_8xN6yO637poPmuHwiG3A_DG7d7hOTVs9YX7Ad2eNkNeroHy8mJ_yL2c4DRFTlCl-SLHHV3xwuVpQks8SlnzauXs8xh_-Ga9WF9bgxxXgU-DjWQC-j2zZbAR9yo5v5C6fsc35Yg7PGfdxrHzQFFFEqdJwPph5Q8yYeZ0ap3vsXffmrW_TsFM1kG8Wp2OEE_snTnpsZ936vEk_ck27XQLRug0lDa__WCxPbctBVqK9S8vIhOBCkkNmnFegQh6FBGWmwK69JQhaojbski_aHRp4Y5QkzA60NpIqOqY9tt1B0LacV9nf-Nv69-nX7A4C044PJqMX7K5E19jEB22zzdXyEl6y2_77alYtX9UjirOvNw3QX-CxYsY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Bidirectional+Long+Short-Term+Memory+Autoencoder+Transformer+for+Remaining+Useful+Life+Estimation&rft.jtitle=Mathematics+%28Basel%29&rft.au=Fan%2C+Zhengyang&rft.au=Li%2C+Wanru&rft.au=Chang%2C+Kuo-Chu&rft.date=2023-12-01&rft.issn=2227-7390&rft.eissn=2227-7390&rft.volume=11&rft.issue=24&rft.spage=4972&rft_id=info:doi/10.3390%2Fmath11244972&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_math11244972 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon |