Artificial Intelligence-Based Semisupervised Self-Training Algorithm in Pathological Tissue Image Segmentation

In the field of medical image processing, due to the differences in tissues, organs, and imaging methods, obtained medical images have significant differences. With the development of intelligence in medicine, an increasing number of computing optimization algorithms based on AI technology have also...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computational intelligence and neuroscience Ročník 2022; s. 1 - 12
Hlavní autori: Li, Qun, Liu, Linlin
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States Hindawi 13.06.2022
John Wiley & Sons, Inc
Predmet:
ISSN:1687-5265, 1687-5273, 1687-5273
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In the field of medical image processing, due to the differences in tissues, organs, and imaging methods, obtained medical images have significant differences. With the development of intelligence in medicine, an increasing number of computing optimization algorithms based on AI technology have also been applied to the field of medicine. Because the image segmentation algorithm based on the semisupervised self-training algorithm solves initialization class center large randomness problem in the traditional cluster-based image segmentation algorithm, this article aims to integrate the artificial intelligence semisupervised self-training algorithm into the pathological tissue image segmentation problem. An experimental group is designed to collect sample images and the algorithm proposed in this article is used to perform image segmentation to achieve a better visual experience and images. Although there is no general image segmentation theory, many scholars have been committed to applying new concepts and new methods to image segmentation in recent years and combining specific theoretical image segmentation methods has achieved good application results in image segmentation. For example, wavelet analysis, wavelet transform, neural networks, and genetic algorithms can effectively improve the segmentation effect. The results of the Seg cutting method designed in this article show that, in retinal blood vessel segmentation results on a database of healthy people, the sensitivity value is 0.941633, the false-positive rate is 0.952933, the specificity is 0.956787, and the accuracy rate is 0.96182, which are all higher than those in other methods. Image cutting methods such as FNN, CNN, and AWN have addressed the case tissue image cutting problem. Using the Seg cutting method designed in this article to segment the retinal blood vessels on a diabetes patient database, the sensitivity value is 0.8106, the false-positive rate is 0.0511, the specificity is 0.9712, the accuracy is 0.9421, and the false-positive rate is omitted. The false-positive rate is lower than AWN, and other indicators are higher than FNN, CNN, AWN, and other image cutting methods. The application of artificial intelligence-based semisupervised self-training algorithms in pathological tissue image segmentation is realized.
AbstractList In the field of medical image processing, due to the differences in tissues, organs, and imaging methods, obtained medical images have significant differences. With the development of intelligence in medicine, an increasing number of computing optimization algorithms based on AI technology have also been applied to the field of medicine. Because the image segmentation algorithm based on the semisupervised self-training algorithm solves initialization class center large randomness problem in the traditional cluster-based image segmentation algorithm, this article aims to integrate the artificial intelligence semisupervised self-training algorithm into the pathological tissue image segmentation problem. An experimental group is designed to collect sample images and the algorithm proposed in this article is used to perform image segmentation to achieve a better visual experience and images. Although there is no general image segmentation theory, many scholars have been committed to applying new concepts and new methods to image segmentation in recent years and combining specific theoretical image segmentation methods has achieved good application results in image segmentation. For example, wavelet analysis, wavelet transform, neural networks, and genetic algorithms can effectively improve the segmentation effect. The results of the Seg cutting method designed in this article show that, in retinal blood vessel segmentation results on a database of healthy people, the sensitivity value is 0.941633, the false-positive rate is 0.952933, the specificity is 0.956787, and the accuracy rate is 0.96182, which are all higher than those in other methods. Image cutting methods such as FNN, CNN, and AWN have addressed the case tissue image cutting problem. Using the Seg cutting method designed in this article to segment the retinal blood vessels on a diabetes patient database, the sensitivity value is 0.8106, the false-positive rate is 0.0511, the specificity is 0.9712, the accuracy is 0.9421, and the false-positive rate is omitted. The false-positive rate is lower than AWN, and other indicators are higher than FNN, CNN, AWN, and other image cutting methods. The application of artificial intelligence-based semisupervised self-training algorithms in pathological tissue image segmentation is realized.
In the field of medical image processing, due to the differences in tissues, organs, and imaging methods, obtained medical images have significant differences. With the development of intelligence in medicine, an increasing number of computing optimization algorithms based on AI technology have also been applied to the field of medicine. Because the image segmentation algorithm based on the semisupervised self-training algorithm solves initialization class center large randomness problem in the traditional cluster-based image segmentation algorithm, this article aims to integrate the artificial intelligence semisupervised self-training algorithm into the pathological tissue image segmentation problem. An experimental group is designed to collect sample images and the algorithm proposed in this article is used to perform image segmentation to achieve a better visual experience and images. Although there is no general image segmentation theory, many scholars have been committed to applying new concepts and new methods to image segmentation in recent years and combining specific theoretical image segmentation methods has achieved good application results in image segmentation. For example, wavelet analysis, wavelet transform, neural networks, and genetic algorithms can effectively improve the segmentation effect. The results of the Seg cutting method designed in this article show that, in retinal blood vessel segmentation results on a database of healthy people, the sensitivity value is 0.941633, the false-positive rate is 0.952933, the specificity is 0.956787, and the accuracy rate is 0.96182, which are all higher than those in other methods. Image cutting methods such as FNN, CNN, and AWN have addressed the case tissue image cutting problem. Using the Seg cutting method designed in this article to segment the retinal blood vessels on a diabetes patient database, the sensitivity value is 0.8106, the false-positive rate is 0.0511, the specificity is 0.9712, the accuracy is 0.9421, and the false-positive rate is omitted. The false-positive rate is lower than AWN, and other indicators are higher than FNN, CNN, AWN, and other image cutting methods. The application of artificial intelligence-based semisupervised self-training algorithms in pathological tissue image segmentation is realized.In the field of medical image processing, due to the differences in tissues, organs, and imaging methods, obtained medical images have significant differences. With the development of intelligence in medicine, an increasing number of computing optimization algorithms based on AI technology have also been applied to the field of medicine. Because the image segmentation algorithm based on the semisupervised self-training algorithm solves initialization class center large randomness problem in the traditional cluster-based image segmentation algorithm, this article aims to integrate the artificial intelligence semisupervised self-training algorithm into the pathological tissue image segmentation problem. An experimental group is designed to collect sample images and the algorithm proposed in this article is used to perform image segmentation to achieve a better visual experience and images. Although there is no general image segmentation theory, many scholars have been committed to applying new concepts and new methods to image segmentation in recent years and combining specific theoretical image segmentation methods has achieved good application results in image segmentation. For example, wavelet analysis, wavelet transform, neural networks, and genetic algorithms can effectively improve the segmentation effect. The results of the Seg cutting method designed in this article show that, in retinal blood vessel segmentation results on a database of healthy people, the sensitivity value is 0.941633, the false-positive rate is 0.952933, the specificity is 0.956787, and the accuracy rate is 0.96182, which are all higher than those in other methods. Image cutting methods such as FNN, CNN, and AWN have addressed the case tissue image cutting problem. Using the Seg cutting method designed in this article to segment the retinal blood vessels on a diabetes patient database, the sensitivity value is 0.8106, the false-positive rate is 0.0511, the specificity is 0.9712, the accuracy is 0.9421, and the false-positive rate is omitted. The false-positive rate is lower than AWN, and other indicators are higher than FNN, CNN, AWN, and other image cutting methods. The application of artificial intelligence-based semisupervised self-training algorithms in pathological tissue image segmentation is realized.
Audience Academic
Author Liu, Linlin
Li, Qun
AuthorAffiliation 1 School of Electronic Information Engineering, Ningbo Polytechnic, Ningbo 315800, China
2 School of Information and Engineering, China Jiliang University, Hangzhou 310000, Zhejiang, China
AuthorAffiliation_xml – name: 2 School of Information and Engineering, China Jiliang University, Hangzhou 310000, Zhejiang, China
– name: 1 School of Electronic Information Engineering, Ningbo Polytechnic, Ningbo 315800, China
Author_xml – sequence: 1
  givenname: Qun
  surname: Li
  fullname: Li, Qun
  organization: School of Electronic Information EngineeringNingbo PolytechnicNingbo 315800China
– sequence: 2
  givenname: Linlin
  orcidid: 0000-0003-3970-6396
  surname: Liu
  fullname: Liu, Linlin
  organization: School of Information and EngineeringChina Jiliang UniversityHangzhou 310000ZhejiangChinacjlu.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35733571$$D View this record in MEDLINE/PubMed
BookMark eNp9ktuL1DAUxousuBd981kKvghaN5emaV4WxsXLwIKC43NIk7RzljQZk3bF_96MHUdd0IeQhPzO952cc86LEx-8LYqnGL3GmLFLggi5pAwhJsiD4gw3La8Y4fTkeG7YaXGe0m1GOEPkUXFKGad54bPCr-IEPWhQrlz7yToHg_XaVm9Usqb8bEdI887GO1iurq82UYEHP5QrN4QI03YswZef1LQNLgygs9IGUpptuR7VYHPQMFo_qQmCf1w87JVL9slhvyi-vHu7uf5Q3Xx8v75e3VS6Rs1UWWOEMLrpmEad6HDHue5IzYVBlIi-4boWrEe2Q31Pue0M5jUTpre6rjGlhl4UV4vubu5Ga3T2j8rJXYRRxe8yKJB_v3jYyiHcSUFQKxqSBV4cBGL4Ots0yVwIncujvA1zkqRpEaGsRTijz--ht2GOPn_vJyUwQ5T9pgblrATfh-yr96JyxVFLa07bNlPP_sz7mPCvhmXg1QLoGFKKtj8iGMn9PMj9PMjDPGSc3MM1LJ3I7uD-FfRyCdqCN-ob_N_iB-0nxSU
CitedBy_id crossref_primary_10_1155_2022_5986283
crossref_primary_10_1155_2023_9753618
Cites_doi 10.1126/science.aam6960
10.1109/access.2019.2950122
10.1186/s13040-017-0147-3
10.1007/s13042-015-0328-7
10.1155/2021/4060686
10.1016/j.cmpb.2016.01.016
10.1016/j.jacr.2017.12.026
10.1007/s00521-021-05793-2
10.1007/s11036-017-0932-8
10.1016/j.ijleo.2013.10.043
10.1016/j.media.2013.03.001
10.1007/s13369-013-0559-4
10.2991/jrnal.2016.3.1.6
10.1001/jama.2017.14580
10.1001/jama.2016.17438
10.1007/s00521-021-05878-y
10.2200/s00692ed1v01y201601aim032
10.1002/rwm3.20554
10.1186/s12711-016-0262-5
10.1038/538291a
10.1002/pmic.200800936
10.1007/s12652-020-02665-w
10.1007/s12652-020-02451-8
10.1016/j.neuron.2017.06.011
10.1016/j.neuroimage.2012.07.048
ContentType Journal Article
Copyright Copyright © 2022 Qun Li and Linlin Liu.
COPYRIGHT 2022 John Wiley & Sons, Inc.
Copyright © 2022 Qun Li and Linlin Liu. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
Copyright © 2022 Qun Li and Linlin Liu. 2022
Copyright_xml – notice: Copyright © 2022 Qun Li and Linlin Liu.
– notice: COPYRIGHT 2022 John Wiley & Sons, Inc.
– notice: Copyright © 2022 Qun Li and Linlin Liu. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
– notice: Copyright © 2022 Qun Li and Linlin Liu. 2022
DBID RHU
RHW
RHX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QF
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
7X7
7XB
8AL
8BQ
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
CWDGH
DWQXO
F28
FR3
FYUFA
GHDGH
GNUQQ
H8D
H8G
HCIFZ
JG9
JQ2
K7-
K9.
KR7
L6V
L7M
LK8
L~C
L~D
M0N
M0S
M1P
M7P
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
Q9U
7X8
5PM
DOI 10.1155/2022/3500592
DatabaseName Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Aluminium Industry Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
ProQuest One
Middle East & Africa Database
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Proquest-Biological Science
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering Collection
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Materials Research Database
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Ceramic Abstracts
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Middle East & Africa Database
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Materials Science & Engineering Collection
Corrosion Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database

CrossRef
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1687-5273
Editor Sharma, Kapil
Editor_xml – sequence: 1
  givenname: Kapil
  surname: Sharma
  fullname: Sharma, Kapil
EndPage 12
ExternalDocumentID PMC9208962
A708347388
35733571
10_1155_2022_3500592
Genre Retracted Publication
Journal Article
GroupedDBID ---
188
29F
2WC
3V.
4.4
53G
5GY
5VS
6J9
7X7
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
AAFWJ
AAJEY
AAKPC
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIWK
ACM
ACPRK
ADBBV
ADRAZ
AENEX
AFKRA
AHMBA
AINHJ
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARAPS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
CCPQU
CS3
CWDGH
DIK
DWQXO
E3Z
EBD
EBS
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
I-F
IAO
ICD
INH
INR
IPY
ITC
K6V
K7-
KQ8
L6V
LK8
M0N
M1P
M48
M7P
M7S
MK~
O5R
O5S
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
Q2X
RHU
RHW
RHX
RNS
RPM
SV3
TR2
TUS
UKHRP
XH6
~8M
0R~
24P
AAMMB
AAYXX
ACCMX
ACUHS
AEFGJ
AFFHD
AGXDD
AIDQK
AIDYY
ALUQN
CITATION
H13
IHR
OVT
PGMZT
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
2UF
C1A
CGR
CNMHZ
CUY
CVCKV
CVF
ECM
EIF
EJD
IL9
NPM
UZ4
7QF
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
7XB
8AL
8BQ
8FD
8FK
F28
FR3
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c406t-edd99dc6b5c0b9b1b77cb2479d0329f67c495f0eb0ff37ebd17459dfec44133d3
IEDL.DBID P5Z
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000823736700019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1687-5265
1687-5273
IngestDate Tue Nov 04 02:00:30 EST 2025
Sun Sep 28 09:31:30 EDT 2025
Sat Nov 29 14:58:51 EST 2025
Tue Nov 11 10:56:23 EST 2025
Wed Feb 19 02:22:32 EST 2025
Sat Nov 29 02:55:55 EST 2025
Tue Nov 18 21:29:49 EST 2025
Sun Jun 02 18:51:49 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
Copyright © 2022 Qun Li and Linlin Liu.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-edd99dc6b5c0b9b1b77cb2479d0329f67c495f0eb0ff37ebd17459dfec44133d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Correction/Retraction-3
Academic Editor: Kapil Sharma
ORCID 0000-0003-3970-6396
OpenAccessLink https://www.proquest.com/docview/2680915035?pq-origsite=%requestingapplication%
PMID 35733571
PQID 2680915035
PQPubID 237303
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9208962
proquest_miscellaneous_2680235801
proquest_journals_2680915035
gale_infotracmisc_A708347388
pubmed_primary_35733571
crossref_primary_10_1155_2022_3500592
crossref_citationtrail_10_1155_2022_3500592
hindawi_primary_10_1155_2022_3500592
PublicationCentury 2000
PublicationDate 2022-06-13
PublicationDateYYYYMMDD 2022-06-13
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-13
  day: 13
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle Computational intelligence and neuroscience
PublicationTitleAlternate Comput Intell Neurosci
PublicationYear 2022
Publisher Hindawi
John Wiley & Sons, Inc
Publisher_xml – name: Hindawi
– name: John Wiley & Sons, Inc
References A. S. Nair (22) 2013; 9
25
26
10
11
12
13
14
15
16
17
18
19
C. Decaestecker (24) 2010; 9
1
2
3
4
5
6
7
8
9
20
21
M. C. Yiannakas (23) 2012; 63
37564518 - Comput Intell Neurosci. 2023 Aug 2;2023:9753618
References_xml – ident: 8
  doi: 10.1126/science.aam6960
– ident: 18
  doi: 10.1109/access.2019.2950122
– ident: 4
  doi: 10.1186/s13040-017-0147-3
– ident: 13
  doi: 10.1007/s13042-015-0328-7
– ident: 26
  doi: 10.1155/2021/4060686
– ident: 12
  doi: 10.1016/j.cmpb.2016.01.016
– ident: 3
  doi: 10.1016/j.jacr.2017.12.026
– ident: 19
  doi: 10.1007/s00521-021-05793-2
– ident: 7
  doi: 10.1007/s11036-017-0932-8
– ident: 11
  doi: 10.1016/j.ijleo.2013.10.043
– ident: 25
  doi: 10.1016/j.media.2013.03.001
– ident: 21
  doi: 10.1007/s13369-013-0559-4
– ident: 15
  doi: 10.2991/jrnal.2016.3.1.6
– ident: 5
  doi: 10.1001/jama.2017.14580
– ident: 9
  doi: 10.1001/jama.2016.17438
– ident: 14
  doi: 10.1007/s00521-021-05878-y
– ident: 10
  doi: 10.2200/s00692ed1v01y201601aim032
– ident: 1
  doi: 10.1002/rwm3.20554
– ident: 17
  doi: 10.1186/s12711-016-0262-5
– ident: 2
  doi: 10.1038/538291a
– volume: 9
  start-page: 4478
  issue: 19
  year: 2010
  ident: 24
  article-title: Requirements for the valid quantification of immunostains on tissue microarray materials using image analysis
  publication-title: Proteomics
  doi: 10.1002/pmic.200800936
– ident: 20
  doi: 10.1007/s12652-020-02665-w
– ident: 16
  doi: 10.1007/s12652-020-02451-8
– volume: 9
  start-page: 63
  issue: 2
  year: 2013
  ident: 22
  article-title: An unsupervised hybrid ga approach for identifying brain pathological tissue in mri images
  publication-title: International Journal of Computational Intelligence Research
– ident: 6
  doi: 10.1016/j.neuron.2017.06.011
– volume: 63
  start-page: 1054
  issue: 3
  year: 2012
  ident: 23
  article-title: Feasibility of grey matter and white matter segmentation of the upper cervical cord in vivo: a pilot study with application to magnetisation transfer measurement
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.07.048
– reference: 37564518 - Comput Intell Neurosci. 2023 Aug 2;2023:9753618
SSID ssj0057502
Score 2.2978764
SecondaryResourceType retracted_publication
Snippet In the field of medical image processing, due to the differences in tissues, organs, and imaging methods, obtained medical images have significant differences....
SourceID pubmedcentral
proquest
gale
pubmed
crossref
hindawi
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Active learning
Algorithms
Artificial Intelligence
Blood vessels
Clustering
Consciousness
Cutting
Data processing
Diabetes mellitus
Genetic algorithms
Humans
Image processing
Image Processing, Computer-Assisted - methods
Image segmentation
Machine learning
Mathematical optimization
Medical imaging
Medical imaging equipment
Neural networks
Neural Networks, Computer
Optimization
Organs
Retina
Sensitivity
Wavelet Analysis
Wavelet transforms
SummonAdditionalLinks – databaseName: Hindawi Publishing Open Access
  dbid: RHX
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFLdgAokLAgYsMCYjDS4owo1jOz4WtGm7TBMUqbco_lojtenUpiD-e95L3GgdoO0Y-dmO_LPfR_L8e4QcSzXCotwm1UZ7CFBUSDVzIlUhV1JUztgqdMUm1MVFMZ3qy0iStP77Fz5YOwzPs89c4DVJ0LUPC4GZW9_OpluFCw5Hn1oo4bwg2_s2v_1W3x3LE_Xv4xlGvr_qf_mXt9Mkb9id02fkaXQY6bhH-Dl54JsXZH_cQLC8-E0_0i6Fs_s2vk8alOopIej5Da7N9AvYKke_Y223zTVqh_5xHtJJLBFBx_Or5apuZwtaN_SyagetSCcdNvR8AaoHOl0t4nWl5iX5cXoy-XqWxoIKqQW73abeOa2dlUZYZrQZGaWsyXKlHeOZDlJZCJcC84aFwJU3DsIVoV3wFpwmzh1_RfaaZeMPCDU2V1YIqQsp84oxwNRVzGWeg0_HfUjIp-1ilzayjWPRi3nZRR1ClAhNGaFJyIdB-rpn2fiP3CHiVuLhg9EsrJotxwqmzBUvioQcRzzvGmULdhlP7LrMZAGuk2BcJOT90IwTYBZa45ebXgavFrNRQl73e2OYiCOxpFDQonZ2zSCAPN67LU096_i8dcYKLbM393v7t-QJPmK62ogfkr12tfHvyCP7s63Xq6PuZPwB5esHoA
  priority: 102
  providerName: Hindawi Publishing
Title Artificial Intelligence-Based Semisupervised Self-Training Algorithm in Pathological Tissue Image Segmentation
URI https://dx.doi.org/10.1155/2022/3500592
https://www.ncbi.nlm.nih.gov/pubmed/35733571
https://www.proquest.com/docview/2680915035
https://www.proquest.com/docview/2680235801
https://pubmed.ncbi.nlm.nih.gov/PMC9208962
Volume 2022
WOSCitedRecordID wos000823736700019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 20250131
  omitProxy: false
  ssIdentifier: ssj0057502
  issn: 1687-5265
  databaseCode: M7P
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 20250131
  omitProxy: false
  ssIdentifier: ssj0057502
  issn: 1687-5265
  databaseCode: K7-
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 20250131
  omitProxy: false
  ssIdentifier: ssj0057502
  issn: 1687-5265
  databaseCode: M7S
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 20250131
  omitProxy: false
  ssIdentifier: ssj0057502
  issn: 1687-5265
  databaseCode: 7X7
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Middle East & Africa Database
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 20250131
  omitProxy: false
  ssIdentifier: ssj0057502
  issn: 1687-5265
  databaseCode: CWDGH
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/middleeastafrica
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest advanced technologies & aerospace journals
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 20250131
  omitProxy: false
  ssIdentifier: ssj0057502
  issn: 1687-5265
  databaseCode: P5Z
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 20250131
  omitProxy: false
  ssIdentifier: ssj0057502
  issn: 1687-5265
  databaseCode: BENPR
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 20250131
  omitProxy: false
  ssIdentifier: ssj0057502
  issn: 1687-5265
  databaseCode: PIMPY
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0057502
  issn: 1687-5265
  databaseCode: 24P
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1db9Mw0GIbSLzwNQaBURlp8IKiuXFsx0-oQ5tWIapoK1LhJao_slZq07K2IP49d4lbVsTHAy-WrLvYce58H875jpAjqdpYlNvE2mgPDooqY82ciFWZKimGzthhWRebUL1eNhjoPBy4LUJY5Vom1oLazSyekR8nMgPVJhgXb-dfYqwahX9XQwmNHbLXTsDWB37Oxee1JAZLpIk5lLCRMA38OvBdCPT5k2Mu8O5lsqWSgmC-M0KX-Nv4d4bnr_GTNxTS2f3_XcoDci-YorTT8M5DcstXj8h-pwI3fPqdvqZ1cGh96r5PKsRqkk3Q7o0snvEJaEFHL7Fq3GqOcqfpTsq4H4pP0M7kCmZfjqZ0XNF8uNzIW9qvqU67UxBq8NDVNFyEqh6Tj2en_XfncSjVEFuwCJaxd05rZ6URlhlt2kYpa5JUacd4okupLDhiJfOGlSVX3jhwhIR2pbdgjnHu-AHZrWaVf0qosamyQkidSZkOGQNucUPmEs_BWuS-jMibNbUKG_KYYzmNSVH7M0IUSNsi0DYirzbY8yZ_xx_wDpHwBW5rGM3CV7NFR8GUqeJZFpGjwBD_GmVN8SLIgkXxk9wRebkB4wQY31b52arBwUvLrB2RJw1zbSbimLJSKICoLbbbIGCG8G1INR7VmcJ1wjItk2d_f63n5C4uAgPg2vyQ7C6vV_4FuW2_LseL6xbZUQNVt1mL7J2c9vIL6L1XcQvjZPO6vWzVGw_gefdD_gl6F-eDHz03MYE
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1ZbxMxEB6VAoIXrnIEChip5QWt6qzj9foBoXBUjVqiSgSp6suyPraJlGxCs6Hqn-I3MrNHaBDHUx94XHnWXnu_uezxDMBWpNpUlNsE2miPDorKAs2dDFTWUZFMnbFpVhabUP1-fHSkD9fge3MXhsIqG5lYCmo3tbRHvhNGMao2yYV8M_saUNUoOl1tSmhUsNj352foss1f997j_90Ow90Pg3d7QV1VILCovIrAO6e1s5GRlhtt2kYpa8KO0o6LUGeRsugzZNwbnmVCeePQZpfaZd6i5SCEE9jvFbiKD5oEwaE8biQ_Wj5VjGOEjEtp55tAeylpjyHcEZLueoYrKrBWBNeH5IKfjX5n6P4ar3lBAe7e_t-W7g7cqk1t1q144y6s-fwebHTztJhOztlLVga_lqcKG5ATVZVMg_UuZCkN3qKWd-wTVcVbzEiuVo_jLBjUxTVYd3yCsy2GEzbK2WFaLPUJG5SoZr0JCm186WRSX_TK78PnS5n5A1jPp7l_BMzYjrJSRjqOok7KOXKDS7kLvUBrWPisBa8adCS2ztNO5ULGSemvSZkQlpIaSy3YXlLPqvwkf6DbJKAlJLawN4urZpOuwiE7SsRxC7ZqAP6rlwZhSS3r5slPeLXgxbKZBqD4vdxPFxUNXcrm7RY8rMC8HEhQSk6psEWtwHxJQBnQV1vy0bDMhK5DHusofPz3z3oON_YGHw-Sg15__wncpAlRsF9bbMJ6cbrwT-Ga_VaM5qfPSnZm8OWymeAH1YOHng
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLZGB4gXbuNSGGCkjRcUNbXjOH5AqDAqqkEViSJtTyHxZa3UpmVNmfbX-HWck0tZEZenPfAY-cSOne_c7ONzCNkLZReLcmeeypQFB0U6T_lGeNIFMhSpyXTqymITcjiMjo5UvEW-N3dhMKyykYmloDZzjXvkHRZGoNqEz0XH1WER8UH_9eKrhxWk8KS1KadRQeTQnp-B-7Z8NTiAf73PWP_d6O17r64w4GlQZIVnjVHK6DAT2s9U1s2k1BkLpDI-Z8qFUoP_4Hyb-c5xaTMD9rtQxlkNVgTnhkO_V8g2mOQsaJHtePAxPm70ANhBVcRjCGyMSeibsHshcMeBdbjAm59sQyHWauHaGB3ys8nvzN5fozcvqMP-rf95IW-Tm7URTnsV19whWza_S3Z6eVrMZ-f0BS3DYsvzhh2SI1WVZoMOLuQv9d6A_jf0E9bLWy1Q4laPU-eN6rIbtDc9gdkW4xmd5DROi7WmoaMS73QwA3EOL53M6itg-T3y-VJmfp-08nluHxKa6UBqIUIVhWGQ-j7wiUl9wywHO5lb1yYvG6Qkus7gjoVEpknpyQmRIK6SGldtsr-mXlSZS_5At4ugS1CgQW8aVk0nPQlDBpJHUZvs1WD8Vy8N2pJaCi6Tn1Brk-frZhwAI_tyO19VNHhd2--2yYMK2OuBOCbrFBJa5Abk1wSYG32zJZ-MyxzpivmRCtmjv3_WM3IdsJ98GAwPH5MbOB-MAuzyXdIqTlf2CbmqvxWT5enTmrcp-XLZXPAD6PGRxQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+Intelligence-Based+Semisupervised+Self-Training+Algorithm+in+Pathological+Tissue+Image+Segmentation&rft.jtitle=Computational+intelligence+and+neuroscience&rft.au=Li%2C+Qun&rft.au=Liu%2C+Linlin&rft.date=2022-06-13&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1687-5265&rft.eissn=1687-5273&rft.volume=2022&rft_id=info:doi/10.1155%2F2022%2F3500592&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-5265&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-5265&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-5265&client=summon