Real-time optimal energy management strategy for a dual-mode power-split hybrid electric vehicle based on an explicit model predictive control algorithm
To improve fuel economy and reduce online computation time and microprocessor hardware resources, a real-time implementable energy management strategy for a dual-mode power-split hybrid electric vehicle (HEV) based on an explicit model predictive control (EMPC) method is proposed in this paper. The...
Uloženo v:
| Vydáno v: | Energy (Oxford) Ročník 172; s. 1161 - 1178 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Oxford
Elsevier Ltd
01.04.2019
Elsevier BV |
| Témata: | |
| ISSN: | 0360-5442, 1873-6785 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | To improve fuel economy and reduce online computation time and microprocessor hardware resources, a real-time implementable energy management strategy for a dual-mode power-split hybrid electric vehicle (HEV) based on an explicit model predictive control (EMPC) method is proposed in this paper. The proposed strategy includes an accurate control-oriented model and a dynamic process coordination control algorithm. The energy management optimal control problem is formulated as a multiparameter quadratic programming optimization problem, and the EMPC control laws are obtained by solving the multiparameter quadratic programming problem offline. The laws are then used online to realize real-time control. A traditional model predictive control (MPC)-based control strategy, DP-based control strategy and rule-based control strategy are considered benchmark strategies for verification of the proposed EMPC-based energy management strategy. The simulation results indicate the EMPC controller has far lower microprocessor hardware costs than the MPC controller but equivalent control performance. As the prediction horizon increases, fuel consumption remains nearly the same between the MPC-based control strategy and EMPC-based control strategy. The consumption time of the MPC-based control strategy increases significantly, while the consumption time of the EMPC-based control strategy is nearly unchanged. Compared with the benchmark algorithms, the elapsed time of the EMPC controller maximum reduced by 97.46%, and the fuel economy improved by 23.37%.
•A novel control-oriented model reflects the dynamic characteristics of the powertrain.•An MPC-based strategy guarantees the feasibility and optimality of the controller.•A dynamic coordination control algorithm balances the relation of mode shift process.•A multiparameter quadratic programming algorithm obtains online control laws.•The elapsed time reduces 97.46% and fuel economy improves 23.37% by EMPC Controller. |
|---|---|
| AbstractList | To improve fuel economy and reduce online computation time and microprocessor hardware resources, a real-time implementable energy management strategy for a dual-mode power-split hybrid electric vehicle (HEV) based on an explicit model predictive control (EMPC) method is proposed in this paper. The proposed strategy includes an accurate control-oriented model and a dynamic process coordination control algorithm. The energy management optimal control problem is formulated as a multiparameter quadratic programming optimization problem, and the EMPC control laws are obtained by solving the multiparameter quadratic programming problem offline. The laws are then used online to realize real-time control. A traditional model predictive control (MPC)-based control strategy, DP-based control strategy and rule-based control strategy are considered benchmark strategies for verification of the proposed EMPC-based energy management strategy. The simulation results indicate the EMPC controller has far lower microprocessor hardware costs than the MPC controller but equivalent control performance. As the prediction horizon increases, fuel consumption remains nearly the same between the MPC-based control strategy and EMPC-based control strategy. The consumption time of the MPC-based control strategy increases significantly, while the consumption time of the EMPC-based control strategy is nearly unchanged. Compared with the benchmark algorithms, the elapsed time of the EMPC controller maximum reduced by 97.46%, and the fuel economy improved by 23.37%. To improve fuel economy and reduce online computation time and microprocessor hardware resources, a real-time implementable energy management strategy for a dual-mode power-split hybrid electric vehicle (HEV) based on an explicit model predictive control (EMPC) method is proposed in this paper. The proposed strategy includes an accurate control-oriented model and a dynamic process coordination control algorithm. The energy management optimal control problem is formulated as a multiparameter quadratic programming optimization problem, and the EMPC control laws are obtained by solving the multiparameter quadratic programming problem offline. The laws are then used online to realize real-time control. A traditional model predictive control (MPC)-based control strategy, DP-based control strategy and rule-based control strategy are considered benchmark strategies for verification of the proposed EMPC-based energy management strategy. The simulation results indicate the EMPC controller has far lower microprocessor hardware costs than the MPC controller but equivalent control performance. As the prediction horizon increases, fuel consumption remains nearly the same between the MPC-based control strategy and EMPC-based control strategy. The consumption time of the MPC-based control strategy increases significantly, while the consumption time of the EMPC-based control strategy is nearly unchanged. Compared with the benchmark algorithms, the elapsed time of the EMPC controller maximum reduced by 97.46%, and the fuel economy improved by 23.37%. •A novel control-oriented model reflects the dynamic characteristics of the powertrain.•An MPC-based strategy guarantees the feasibility and optimality of the controller.•A dynamic coordination control algorithm balances the relation of mode shift process.•A multiparameter quadratic programming algorithm obtains online control laws.•The elapsed time reduces 97.46% and fuel economy improves 23.37% by EMPC Controller. |
| Author | Xiang, Changle Liu, Hui Li, Xunming Wang, Weida Han, Lijin |
| Author_xml | – sequence: 1 givenname: Xunming orcidid: 0000-0003-2293-857X surname: Li fullname: Li, Xunming organization: School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China – sequence: 2 givenname: Lijin surname: Han fullname: Han, Lijin email: lj.han@163.com organization: School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China – sequence: 3 givenname: Hui surname: Liu fullname: Liu, Hui organization: School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China – sequence: 4 givenname: Weida surname: Wang fullname: Wang, Weida organization: School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China – sequence: 5 givenname: Changle surname: Xiang fullname: Xiang, Changle organization: School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China |
| BookMark | eNqFkc2KFDEUhYPMgD09voGLgBs3VSap37gQZBh_YECQcR1upW51p0klZZJu7TfxcSdNuZqFri5czne495wbcuW8Q0Jec1Zyxtt3hxIdht25FIzLkvGSNeIF2fC-q4q265srsmFVy4qmrsVLchPjgTHW9FJuyJ_vCLZIZkbqlzzA0tWLzuBghzO6RGMKkDDvJh8o0PGYkdmPSBf_C0MRF2sS3Z-HYEaKFnUKRtMT7o22SAeIOFLvKDiKv7NUZ_GFtnQJOBqdzAmp9i4FbynYnQ8m7edbcj2Bjfjq79ySH5_uH---FA_fPn-9-_hQ6Jq1qUDoBtYLWfcomwZaUYHGWg6dHKCX2HcIbcUE6-ocxARdJ1pZaT1UUwUDx6Hakrer7xL8zyPGpGYTNVoLDv0xKiEEZ6LtMrYlb55JD_4YXL4uq3jbyyafkFXvV5UOPsaAk8oPQzKXB8FYxZm6lKYOag1aXUpTjKtcWobrZ_AScinh_D_sw4phTupkMKioDTqd4w25DjV682-DJ56OuLY |
| CitedBy_id | crossref_primary_10_1016_j_energy_2023_130097 crossref_primary_10_3390_electronics12020301 crossref_primary_10_1016_j_renene_2025_123394 crossref_primary_10_1016_j_est_2022_106112 crossref_primary_10_1016_j_enconman_2021_113919 crossref_primary_10_1016_j_energy_2020_118366 crossref_primary_10_1016_j_apenergy_2021_116932 crossref_primary_10_1016_j_measen_2023_101001 crossref_primary_10_1109_TITS_2020_3037884 crossref_primary_10_1007_s12239_021_0069_4 crossref_primary_10_1016_j_rser_2022_112947 crossref_primary_10_1109_TTE_2022_3227334 crossref_primary_10_1109_TVT_2022_3195769 crossref_primary_10_1177_1687814020962624 crossref_primary_10_1186_s10033_022_00816_y crossref_primary_10_1016_j_energy_2021_121370 crossref_primary_10_1016_j_energy_2022_123357 crossref_primary_10_1007_s12239_025_00267_z crossref_primary_10_1109_TVT_2021_3138440 crossref_primary_10_1002_er_6503 crossref_primary_10_3390_machines11060576 crossref_primary_10_3390_en15093235 crossref_primary_10_3390_app112411752 crossref_primary_10_1016_j_apenergy_2019_113400 crossref_primary_10_1007_s10661_025_14060_z crossref_primary_10_1016_j_energy_2021_122944 crossref_primary_10_1016_j_etran_2020_100064 crossref_primary_10_1007_s40998_024_00767_1 crossref_primary_10_1016_j_energy_2023_129176 crossref_primary_10_1016_j_ijhydene_2020_03_091 crossref_primary_10_1016_j_epsr_2024_110372 crossref_primary_10_1016_j_egyr_2021_09_119 crossref_primary_10_1109_ACCESS_2019_2933015 crossref_primary_10_1016_j_energy_2020_119070 crossref_primary_10_1109_ACCESS_2022_3208365 crossref_primary_10_1016_j_energy_2021_121960 crossref_primary_10_1007_s40430_024_05349_0 crossref_primary_10_1016_j_ast_2025_110311 crossref_primary_10_1109_TPEL_2019_2953050 crossref_primary_10_1109_ACCESS_2019_2926203 crossref_primary_10_1146_annurev_control_042920_012513 crossref_primary_10_1016_j_energy_2024_133544 crossref_primary_10_1177_09544070221085960 crossref_primary_10_1016_j_energy_2020_118586 crossref_primary_10_1109_TIV_2024_3352171 crossref_primary_10_1016_j_apenergy_2024_125197 crossref_primary_10_1109_TTE_2020_2973577 crossref_primary_10_1016_j_energy_2023_126772 crossref_primary_10_1109_TITS_2024_3384358 crossref_primary_10_1109_ACCESS_2020_3042698 crossref_primary_10_1177_09544070241265773 crossref_primary_10_1016_j_ast_2022_107913 crossref_primary_10_1016_j_energy_2023_128231 crossref_primary_10_1016_j_energy_2021_120071 crossref_primary_10_3390_su151612488 crossref_primary_10_1016_j_ijhydene_2024_02_249 crossref_primary_10_1016_j_est_2025_115936 crossref_primary_10_1016_j_energy_2022_125598 crossref_primary_10_1016_j_energy_2022_125752 crossref_primary_10_3233_IDT_240298 crossref_primary_10_1007_s10462_022_10284_4 crossref_primary_10_1016_j_jclepro_2019_119735 crossref_primary_10_1016_j_energy_2021_122368 crossref_primary_10_1016_j_energy_2024_133153 crossref_primary_10_1109_TVT_2023_3237388 crossref_primary_10_1049_els2_12020 crossref_primary_10_3390_en17133059 crossref_primary_10_1016_j_jpowsour_2025_236815 crossref_primary_10_1109_TVT_2024_3384186 crossref_primary_10_1016_j_ast_2025_110899 crossref_primary_10_1016_j_est_2023_106802 crossref_primary_10_1109_LCSYS_2022_3228946 crossref_primary_10_1016_j_energy_2024_132368 crossref_primary_10_3390_app10238744 crossref_primary_10_1016_j_egyr_2023_01_042 crossref_primary_10_1016_j_ifacol_2025_08_153 crossref_primary_10_3390_en14010252 crossref_primary_10_1177_09544070211029791 crossref_primary_10_1016_j_energy_2020_117224 crossref_primary_10_1371_journal_pone_0292510 crossref_primary_10_1177_09544070211065266 crossref_primary_10_1109_TMECH_2021_3126674 crossref_primary_10_1177_09544070211046406 crossref_primary_10_1016_j_mechmachtheory_2023_105543 crossref_primary_10_1109_TTE_2023_3305520 crossref_primary_10_1016_j_energy_2022_123265 crossref_primary_10_1016_j_ijhydene_2019_12_201 crossref_primary_10_1016_j_energy_2020_118286 crossref_primary_10_1109_TMECH_2022_3156150 crossref_primary_10_1109_TVT_2021_3064407 crossref_primary_10_1016_j_energy_2022_123505 crossref_primary_10_3390_wevj15020061 |
| Cites_doi | 10.1016/j.jfranklin.2017.08.020 10.1016/j.jfranklin.2014.07.009 10.1016/j.energy.2017.09.061 10.1016/j.apenergy.2017.11.072 10.1016/S0005-1098(02)00308-4 10.1016/j.jfranklin.2017.12.039 10.1016/j.energy.2018.03.148 10.1109/TVT.2010.2090178 10.1109/TCST.2011.2134852 10.1016/j.apenergy.2016.12.056 10.1016/j.mechatronics.2015.04.020 10.1109/TIE.2015.2475419 10.1109/TVT.2018.2806400 10.1109/TCST.2016.2554558 10.1109/TCST.2012.2218656 10.1016/j.jpowsour.2016.11.106 10.1109/TVT.2015.2504510 10.1109/TVT.2012.2206064 10.1109/TCST.2015.2498141 10.1016/j.conengprac.2014.12.001 10.1109/TVT.2012.2217362 10.1109/TVT.2013.2287102 10.1109/TITS.2016.2580318 10.1109/TCST.2013.2272179 10.1016/j.mechatronics.2017.08.008 10.1016/j.apenergy.2013.11.002 10.1016/j.apenergy.2015.01.021 10.1109/TIE.2013.2279353 10.1109/TCST.2014.2361294 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier Ltd Copyright Elsevier BV Apr 1, 2019 |
| Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright Elsevier BV Apr 1, 2019 |
| DBID | AAYXX CITATION 7SP 7ST 7TB 8FD C1K F28 FR3 KR7 L7M SOI 7S9 L.6 |
| DOI | 10.1016/j.energy.2019.01.052 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Environmental Sciences |
| EISSN | 1873-6785 |
| EndPage | 1178 |
| ExternalDocumentID | 10_1016_j_energy_2019_01_052 S0360544219300544 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SES SPC SPCBC SSR SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ 9DU AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABFNM ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AGQPQ AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW WUQ ~HD 7SP 7ST 7TB 8FD AGCQF C1K F28 FR3 KR7 L7M SOI 7S9 L.6 |
| ID | FETCH-LOGICAL-c406t-ea7b082948e955a623ace49b79ba89e87ea6302074678fa772693ccb3f3ab1eb3 |
| ISICitedReferencesCount | 97 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000464488100096&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0360-5442 |
| IngestDate | Sun Sep 28 02:17:38 EDT 2025 Wed Aug 13 08:36:20 EDT 2025 Tue Nov 18 22:15:50 EST 2025 Sat Nov 29 01:40:46 EST 2025 Fri Feb 23 02:23:57 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Real-time energy management strategy Explicit model predictive control algorithm Dynamic coordination control Multiparameter quadratic programming Power-split HEV Control-oriented model |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c406t-ea7b082948e955a623ace49b79ba89e87ea6302074678fa772693ccb3f3ab1eb3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-2293-857X |
| PQID | 2216895955 |
| PQPubID | 2045484 |
| PageCount | 18 |
| ParticipantIDs | proquest_miscellaneous_2221026769 proquest_journals_2216895955 crossref_citationtrail_10_1016_j_energy_2019_01_052 crossref_primary_10_1016_j_energy_2019_01_052 elsevier_sciencedirect_doi_10_1016_j_energy_2019_01_052 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-04-01 |
| PublicationDateYYYYMMDD | 2019-04-01 |
| PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Energy (Oxford) |
| PublicationYear | 2019 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Wirasingha, Emadi (bib1) 2011; 60 Murphey, Park, Chen, Kuang, Masrur, Phillips (bib9) 2012; 61 Huang, Wang, Khajepour, He, Ji (bib19) 2017; 341 Emekli, Güvenç (bib28) 2017; 25 Onori, Tribioli (bib6) Jun 1 2015; 147 Borhan, Vahidi, Phillips, Kuang, Kolmanovsky, Cairano (bib20) 2012; 20 Zhang, Luo, Li, Li (bib27) 2018; 67 Tøndel, Johansen, Bemporad (bib33) 2003; 39 Chao, Moura, Xiaosong, Hedrick, Fengchun (bib15) 2015; 23 Xiang, Ding, Wang, He (bib21) Mar 1 2017; 189 Cairano, Liang, Kolmanovsky, Kuang, Phillips (bib25) 2013; 21 Hou, Ouyang, Xu, Wang (bib5) Feb 15 2014; 115 Hou, Xu, Wang, Ouyang, Peng (bib13) 2015; 352 Tian, Li, Wang, Huang, Tian (bib18) 2018; 142 Cairano, Bernardini, Bemporad, Kolmanovsky (bib23) 2014; 22 Grancharova, Johansen (bib30) 2012 Liu, Zou, Liu, Sun (bib11) 2015; 62 Liu, Li, Wang, Han, Xiang (bib14) 2018; 152 Unger, Kozek, Jakubek (bib24) 2015; 36 Wang, Wang, Wang, Zeng (bib3) 2018; 355 Ripaccioli, Bemporad, Assadian, Dextreit, Cairano, Kolmanovsky (bib22) 2009 Zhang (bib17) 2017; 46 Padmarajan, McGordon, Jennings (bib2) 2016; 65 Taghavipour, Azad, McPhee (bib26) 2015; 29 Zhang, Xi, Langari (bib16) 2017; 18 Vagg, Akehurst, Brace, Ash (bib8) 2016; 24 Zhao, Liu, Stobart, Deng, Winward, Dong (bib29) 2014; 61 Murphey (bib10) 2013; 62 Zheng, Mi, Jun, Xianzhi, Chenwen (bib4) 2014; 63 Li, Zhou, Yang, Xiong, You, Han (bib7) 2017; 354 Baotic (bib31) 2002 Kvasnica, Baotíc, Christophersen (bib32) 2006 Xiong, Cao, Yu (bib12) 2018; 211 Xiang (10.1016/j.energy.2019.01.052_bib21) 2017; 189 Onori (10.1016/j.energy.2019.01.052_bib6) 2015; 147 Wang (10.1016/j.energy.2019.01.052_bib3) 2018; 355 Vagg (10.1016/j.energy.2019.01.052_bib8) 2016; 24 Taghavipour (10.1016/j.energy.2019.01.052_bib26) 2015; 29 Padmarajan (10.1016/j.energy.2019.01.052_bib2) 2016; 65 Li (10.1016/j.energy.2019.01.052_bib7) 2017; 354 Ripaccioli (10.1016/j.energy.2019.01.052_bib22) 2009 Kvasnica (10.1016/j.energy.2019.01.052_bib32) 2006 Tøndel (10.1016/j.energy.2019.01.052_bib33) 2003; 39 Cairano (10.1016/j.energy.2019.01.052_bib23) 2014; 22 Zhang (10.1016/j.energy.2019.01.052_bib27) 2018; 67 Cairano (10.1016/j.energy.2019.01.052_bib25) 2013; 21 Chao (10.1016/j.energy.2019.01.052_bib15) 2015; 23 Zheng (10.1016/j.energy.2019.01.052_bib4) 2014; 63 Murphey (10.1016/j.energy.2019.01.052_bib9) 2012; 61 Huang (10.1016/j.energy.2019.01.052_bib19) 2017; 341 Hou (10.1016/j.energy.2019.01.052_bib5) 2014; 115 Borhan (10.1016/j.energy.2019.01.052_bib20) 2012; 20 Emekli (10.1016/j.energy.2019.01.052_bib28) 2017; 25 Liu (10.1016/j.energy.2019.01.052_bib11) 2015; 62 Liu (10.1016/j.energy.2019.01.052_bib14) 2018; 152 Wirasingha (10.1016/j.energy.2019.01.052_bib1) 2011; 60 Tian (10.1016/j.energy.2019.01.052_bib18) 2018; 142 Zhang (10.1016/j.energy.2019.01.052_bib16) 2017; 18 Zhang (10.1016/j.energy.2019.01.052_bib17) 2017; 46 Unger (10.1016/j.energy.2019.01.052_bib24) 2015; 36 Hou (10.1016/j.energy.2019.01.052_bib13) 2015; 352 Baotic (10.1016/j.energy.2019.01.052_bib31) 2002 Zhao (10.1016/j.energy.2019.01.052_bib29) 2014; 61 Grancharova (10.1016/j.energy.2019.01.052_bib30) 2012 Xiong (10.1016/j.energy.2019.01.052_bib12) 2018; 211 Murphey (10.1016/j.energy.2019.01.052_bib10) 2013; 62 |
| References_xml | – volume: 18 start-page: 416 year: 2017 end-page: 430 ident: bib16 article-title: Real-time energy management strategy based on velocity forecasts using V2V and V2I communications publication-title: IEEE Trans Intell Transport Syst – start-page: 321 year: 2009 end-page: 335 ident: bib22 article-title: Hybrid modeling, identification, and predictive control: an application to hybrid electric vehicle energy management publication-title: Hybrid systems: computation and control, international conference, HSCC 2009, San Francisco, Ca, USA, April 13-15, 2009. Proceedings – volume: 63 start-page: 1567 year: 2014 end-page: 1580 ident: bib4 article-title: Energy management for a power-split plug-in hybrid electric vehicle based on dynamic programming and neural networks publication-title: IEEE Trans Veh Technol – volume: 142 start-page: 55 year: 2018 end-page: 67 ident: bib18 article-title: Data-driven hierarchical control for online energy management of plug-in hybrid electric city bus publication-title: Energy – volume: 355 start-page: 2283 year: 2018 end-page: 2312 ident: bib3 article-title: Control rules extraction and parameters optimization of energy management for bus series-parallel AMT hybrid powertrain publication-title: J Franklin Inst – volume: 352 start-page: 500 year: 2015 end-page: 518 ident: bib13 article-title: Energy management of plug-in hybrid electric vehicles with unknown trip length publication-title: J Franklin Inst – volume: 21 start-page: 2091 year: 2013 end-page: 2103 ident: bib25 article-title: Power smoothing energy management and its application to a series hybrid powertrain publication-title: IEEE Trans Contr Syst Technol – year: 2012 ident: bib30 article-title: Explicit nonlinear model predictive control [M] – volume: 341 start-page: 91 year: 2017 end-page: 106 ident: bib19 article-title: Model predictive control power management strategies for HEVs: a review publication-title: J Power Sources – volume: 24 start-page: 853 year: 2016 end-page: 866 ident: bib8 article-title: Stochastic dynamic programming in the real-world control of hybrid electric vehicles publication-title: IEEE Trans Contr Syst Technol – volume: 60 start-page: 111 year: 2011 end-page: 122 ident: bib1 article-title: Classification and review of control strategies for plug-in hybrid electric vehicles publication-title: IEEE Trans Veh Technol – year: 2006 ident: bib32 article-title: Multi-parametric toolbox – volume: 23 start-page: 1075 year: 2015 end-page: 1086 ident: bib15 article-title: Dynamic traffic feedback data enabled energy management in plug-in hybrid electric vehicles publication-title: IEEE Trans Contr Syst Technol – volume: 20 start-page: 593 year: 2012 end-page: 603 ident: bib20 article-title: MPC-based energy management of a power-split hybrid electric vehicle publication-title: IEEE Trans Contr Syst Technol – volume: 147 start-page: 224 year: Jun 1 2015 end-page: 234 ident: bib6 article-title: Adaptive Pontryagin's Minimum Principle supervisory controller design for the plug-in hybrid GM Chevrolet Volt publication-title: Appl Energy – volume: 152 start-page: 427 year: 2018 end-page: 444 ident: bib14 article-title: Markov velocity predictor and radial basis function neural network-based real-time energy management strategy for plug-in hybrid electric vehicles publication-title: Energy – volume: 46 start-page: 177 year: 2017 end-page: 192 ident: bib17 article-title: Optimal energy management strategy for parallel plug-in hybrid electric vehicle based on driving behavior analysis and real time traffic information prediction publication-title: Mechatronics – volume: 39 start-page: 945 year: 2003 end-page: 950 ident: bib33 article-title: Evaluation of piecewise affine control via binary search tree publication-title: Automatica – volume: 29 start-page: 13 year: 2015 end-page: 27 ident: bib26 article-title: Real-time predictive control strategy for a plug-in hybrid electric powertrain publication-title: Mechatronics – year: 2002 ident: bib31 article-title: An efficient algorithm for multiparametric quadratic programming – volume: 62 start-page: 69 year: 2013 end-page: 79 ident: bib10 article-title: Intelligent hybrid vehicle power control-Part II: online intelligent energy management publication-title: IEEE Trans Veh Technol – volume: 36 start-page: 120 year: 2015 end-page: 132 ident: bib24 article-title: Nonlinear model predictive energy management controller with load and cycle prediction for non-road HEV publication-title: Contr Eng Pract – volume: 61 start-page: 3519 year: 2012 end-page: 3530 ident: bib9 article-title: Intelligent hybrid vehicle power control-Part I: machine learning of optimal vehicle power publication-title: IEEE Trans Veh Technol – volume: 25 start-page: 521 year: 2017 end-page: 534 ident: bib28 article-title: Explicit MIMO model predictive boost pressure control of a two-stage turbocharged diesel engine publication-title: IEEE Trans Contr Syst Technol – volume: 65 start-page: 8757 year: 2016 end-page: 8762 ident: bib2 article-title: Blended rule-based energy management for PHEV: system structure and strategy publication-title: IEEE Trans Veh Technol – volume: 67 start-page: 4693 year: 2018 end-page: 4701 ident: bib27 article-title: Real-time energy-efficient control for fully electric vehicles based on an explicit model predictive control method publication-title: IEEE Trans Veh Technol – volume: 61 start-page: 3540 year: 2014 end-page: 3552 ident: bib29 article-title: An explicit model predictive control framework for turbocharged diesel engines publication-title: IEEE Trans Ind Electron – volume: 354 start-page: 6588 year: 2017 end-page: 6609 ident: bib7 article-title: A novel combinatorial optimization algorithm for energy management strategy of plug-in hybrid electric vehicle publication-title: J Franklin Inst – volume: 22 start-page: 1018 year: 2014 end-page: 1031 ident: bib23 article-title: Stochastic MPC with learning for driver-predictive vehicle control and its application to HEV energy management publication-title: IEEE Trans Contr Syst Technol – volume: 211 start-page: 538 year: 2018 end-page: 548 ident: bib12 article-title: Reinforcement learning-based real-time power management for hybrid energy storage system in the plug-in hybrid electric vehicle publication-title: Appl Energy – volume: 62 start-page: 7837 year: 2015 end-page: 7846 ident: bib11 article-title: Reinforcement learning of adaptive energy management with transition probability for a hybrid electric tracked vehicle publication-title: IEEE Trans Ind Electron – volume: 189 start-page: 640 year: Mar 1 2017 end-page: 653 ident: bib21 article-title: Energy management of a dual-mode power-split hybrid electric vehicle based on velocity prediction and nonlinear model predictive control publication-title: Appl Energy – volume: 115 start-page: 174 year: Feb 15 2014 end-page: 189 ident: bib5 article-title: Approximate Pontryagin's minimum principle applied to the energy management of plug-in hybrid electric vehicles publication-title: Appl Energy – volume: 354 start-page: 6588 issue: 15 year: 2017 ident: 10.1016/j.energy.2019.01.052_bib7 article-title: A novel combinatorial optimization algorithm for energy management strategy of plug-in hybrid electric vehicle publication-title: J Franklin Inst doi: 10.1016/j.jfranklin.2017.08.020 – volume: 352 start-page: 500 issue: 2 year: 2015 ident: 10.1016/j.energy.2019.01.052_bib13 article-title: Energy management of plug-in hybrid electric vehicles with unknown trip length publication-title: J Franklin Inst doi: 10.1016/j.jfranklin.2014.07.009 – volume: 142 start-page: 55 year: 2018 ident: 10.1016/j.energy.2019.01.052_bib18 article-title: Data-driven hierarchical control for online energy management of plug-in hybrid electric city bus publication-title: Energy doi: 10.1016/j.energy.2017.09.061 – volume: 211 start-page: 538 year: 2018 ident: 10.1016/j.energy.2019.01.052_bib12 article-title: Reinforcement learning-based real-time power management for hybrid energy storage system in the plug-in hybrid electric vehicle publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.11.072 – volume: 39 start-page: 945 issue: 5 year: 2003 ident: 10.1016/j.energy.2019.01.052_bib33 article-title: Evaluation of piecewise affine control via binary search tree publication-title: Automatica doi: 10.1016/S0005-1098(02)00308-4 – volume: 355 start-page: 2283 issue: 5 year: 2018 ident: 10.1016/j.energy.2019.01.052_bib3 article-title: Control rules extraction and parameters optimization of energy management for bus series-parallel AMT hybrid powertrain publication-title: J Franklin Inst doi: 10.1016/j.jfranklin.2017.12.039 – volume: 152 start-page: 427 year: 2018 ident: 10.1016/j.energy.2019.01.052_bib14 article-title: Markov velocity predictor and radial basis function neural network-based real-time energy management strategy for plug-in hybrid electric vehicles publication-title: Energy doi: 10.1016/j.energy.2018.03.148 – volume: 60 start-page: 111 issue: 1 year: 2011 ident: 10.1016/j.energy.2019.01.052_bib1 article-title: Classification and review of control strategies for plug-in hybrid electric vehicles publication-title: IEEE Trans Veh Technol doi: 10.1109/TVT.2010.2090178 – volume: 20 start-page: 593 issue: 3 year: 2012 ident: 10.1016/j.energy.2019.01.052_bib20 article-title: MPC-based energy management of a power-split hybrid electric vehicle publication-title: IEEE Trans Contr Syst Technol doi: 10.1109/TCST.2011.2134852 – volume: 189 start-page: 640 year: 2017 ident: 10.1016/j.energy.2019.01.052_bib21 article-title: Energy management of a dual-mode power-split hybrid electric vehicle based on velocity prediction and nonlinear model predictive control publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.12.056 – volume: 29 start-page: 13 year: 2015 ident: 10.1016/j.energy.2019.01.052_bib26 article-title: Real-time predictive control strategy for a plug-in hybrid electric powertrain publication-title: Mechatronics doi: 10.1016/j.mechatronics.2015.04.020 – volume: 62 start-page: 7837 issue: 12 year: 2015 ident: 10.1016/j.energy.2019.01.052_bib11 article-title: Reinforcement learning of adaptive energy management with transition probability for a hybrid electric tracked vehicle publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2015.2475419 – volume: 67 start-page: 4693 issue: 6 year: 2018 ident: 10.1016/j.energy.2019.01.052_bib27 article-title: Real-time energy-efficient control for fully electric vehicles based on an explicit model predictive control method publication-title: IEEE Trans Veh Technol doi: 10.1109/TVT.2018.2806400 – volume: 25 start-page: 521 issue: 2 year: 2017 ident: 10.1016/j.energy.2019.01.052_bib28 article-title: Explicit MIMO model predictive boost pressure control of a two-stage turbocharged diesel engine publication-title: IEEE Trans Contr Syst Technol doi: 10.1109/TCST.2016.2554558 – year: 2006 ident: 10.1016/j.energy.2019.01.052_bib32 – volume: 21 start-page: 2091 issue: 6 year: 2013 ident: 10.1016/j.energy.2019.01.052_bib25 article-title: Power smoothing energy management and its application to a series hybrid powertrain publication-title: IEEE Trans Contr Syst Technol doi: 10.1109/TCST.2012.2218656 – year: 2002 ident: 10.1016/j.energy.2019.01.052_bib31 – volume: 341 start-page: 91 year: 2017 ident: 10.1016/j.energy.2019.01.052_bib19 article-title: Model predictive control power management strategies for HEVs: a review publication-title: J Power Sources doi: 10.1016/j.jpowsour.2016.11.106 – year: 2012 ident: 10.1016/j.energy.2019.01.052_bib30 – volume: 65 start-page: 8757 issue: 10 year: 2016 ident: 10.1016/j.energy.2019.01.052_bib2 article-title: Blended rule-based energy management for PHEV: system structure and strategy publication-title: IEEE Trans Veh Technol doi: 10.1109/TVT.2015.2504510 – volume: 61 start-page: 3519 issue: 8 year: 2012 ident: 10.1016/j.energy.2019.01.052_bib9 article-title: Intelligent hybrid vehicle power control-Part I: machine learning of optimal vehicle power publication-title: IEEE Trans Veh Technol doi: 10.1109/TVT.2012.2206064 – volume: 24 start-page: 853 issue: 3 year: 2016 ident: 10.1016/j.energy.2019.01.052_bib8 article-title: Stochastic dynamic programming in the real-world control of hybrid electric vehicles publication-title: IEEE Trans Contr Syst Technol doi: 10.1109/TCST.2015.2498141 – start-page: 321 year: 2009 ident: 10.1016/j.energy.2019.01.052_bib22 article-title: Hybrid modeling, identification, and predictive control: an application to hybrid electric vehicle energy management – volume: 36 start-page: 120 year: 2015 ident: 10.1016/j.energy.2019.01.052_bib24 article-title: Nonlinear model predictive energy management controller with load and cycle prediction for non-road HEV publication-title: Contr Eng Pract doi: 10.1016/j.conengprac.2014.12.001 – volume: 62 start-page: 69 issue: 1 year: 2013 ident: 10.1016/j.energy.2019.01.052_bib10 article-title: Intelligent hybrid vehicle power control-Part II: online intelligent energy management publication-title: IEEE Trans Veh Technol doi: 10.1109/TVT.2012.2217362 – volume: 63 start-page: 1567 issue: 4 year: 2014 ident: 10.1016/j.energy.2019.01.052_bib4 article-title: Energy management for a power-split plug-in hybrid electric vehicle based on dynamic programming and neural networks publication-title: IEEE Trans Veh Technol doi: 10.1109/TVT.2013.2287102 – volume: 18 start-page: 416 issue: 2 year: 2017 ident: 10.1016/j.energy.2019.01.052_bib16 article-title: Real-time energy management strategy based on velocity forecasts using V2V and V2I communications publication-title: IEEE Trans Intell Transport Syst doi: 10.1109/TITS.2016.2580318 – volume: 22 start-page: 1018 issue: 3 year: 2014 ident: 10.1016/j.energy.2019.01.052_bib23 article-title: Stochastic MPC with learning for driver-predictive vehicle control and its application to HEV energy management publication-title: IEEE Trans Contr Syst Technol doi: 10.1109/TCST.2013.2272179 – volume: 46 start-page: 177 year: 2017 ident: 10.1016/j.energy.2019.01.052_bib17 article-title: Optimal energy management strategy for parallel plug-in hybrid electric vehicle based on driving behavior analysis and real time traffic information prediction publication-title: Mechatronics doi: 10.1016/j.mechatronics.2017.08.008 – volume: 115 start-page: 174 year: 2014 ident: 10.1016/j.energy.2019.01.052_bib5 article-title: Approximate Pontryagin's minimum principle applied to the energy management of plug-in hybrid electric vehicles publication-title: Appl Energy doi: 10.1016/j.apenergy.2013.11.002 – volume: 147 start-page: 224 year: 2015 ident: 10.1016/j.energy.2019.01.052_bib6 article-title: Adaptive Pontryagin's Minimum Principle supervisory controller design for the plug-in hybrid GM Chevrolet Volt publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.01.021 – volume: 61 start-page: 3540 issue: 7 year: 2014 ident: 10.1016/j.energy.2019.01.052_bib29 article-title: An explicit model predictive control framework for turbocharged diesel engines publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2013.2279353 – volume: 23 start-page: 1075 issue: 3 year: 2015 ident: 10.1016/j.energy.2019.01.052_bib15 article-title: Dynamic traffic feedback data enabled energy management in plug-in hybrid electric vehicles publication-title: IEEE Trans Contr Syst Technol doi: 10.1109/TCST.2014.2361294 |
| SSID | ssj0005899 |
| Score | 2.5759037 |
| Snippet | To improve fuel economy and reduce online computation time and microprocessor hardware resources, a real-time implementable energy management strategy for a... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1161 |
| SubjectTerms | Algorithms Benchmarks Computer simulation Consumption Control algorithms Control systems Control theory Control-oriented model Controllers Dynamic coordination control Electric vehicles energy Energy efficiency Energy management energy use and consumption Explicit model predictive control algorithm Fuel consumption Fuel economy fuels Hardware Hybrid electric vehicles Internet Mathematical models Multiparameter quadratic programming Optimal control Optimization Power-split HEV Predictive control Quadratic programming Real time Real-time energy management strategy Resource management Strategy Time optimal control vehicles (equipment) |
| Title | Real-time optimal energy management strategy for a dual-mode power-split hybrid electric vehicle based on an explicit model predictive control algorithm |
| URI | https://dx.doi.org/10.1016/j.energy.2019.01.052 https://www.proquest.com/docview/2216895955 https://www.proquest.com/docview/2221026769 |
| Volume | 172 |
| WOSCitedRecordID | wos000464488100096&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect customDbUrl: eissn: 1873-6785 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005899 issn: 0360-5442 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bi9NAFB7qrqAvoquL1VVG8C1Emlsz87hIRUUW0RX7FiaTiU1pk9K0pf4T_4F_03PmkuwFWRV8CW06yYR8X885mXznHEJesjwMeSAiH7CO_biUuZ_jV5kXrIyjqJSi1M0m0rMzNp3yj4PBT5cLs1ukdc32e776r1DDPgAbU2f_Au7upLADPgPosAXYYftHwH-C0M_HlvFeA-ZgCRAok9-37JQuXmtq0hqxpvAwH8vHnjjeCpum-S1Ephtv9h2zuTzTKKeS3k7NcC4PHV_haRUzNghYVBIG6446WHGgqLQF7TTwYvGtWVeb2fLSOwBzRVjqdG_U9d16xActL5hu66Vzqto-mgyJal71EqJqq_3mtupfChjD9VVVdp3BLmcE_IIKRq-xuTybXtRkcrtGfhLHl-226fljLW8QmKLu1osHgekMdM1DmMWK-Stz61Hbx3XdVlNH90rt7c84Mc4LYS4Gt_EtchimCQcPcHj6bjJ936uJmG5V2l2oy9LUUsLrc_0uCroSD-gg5_w-uWefTuipYdUDMlD1EbnjktfbI3I86RMjYaD1DO1D8qOjHbW0o-Z6aE876mhHAXMqaEc7eoF21NCOOtpRSzuqaUebmoqaOtpRTTva045a2tGOdo_IlzeT89dvfdv1w5cQXG58JdIcE75jpniSCAjPhVQxz1OeC8YVS5UYR_CQg31yWCng6XDMIynzqIxEHqg8OiYHdVOrx4SmpShloZKIj2Ism8RZUQThmDFVhKNCyCGJHAqZtCXxsTPLInPax3lm7lWG2GWjIAPshsTvjlqZkjA3jE8dwJkNa024mgEnbzjyxPEhsxamzcIwGDOewL0Zkhfdz-AU8E2fqFWzxTG4koPq9Sf_PPlTcrf_f56Qg816q56R23K3qdr1c8v_X_D15tk |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-time+optimal+energy+management+strategy+for+a+dual-mode+power-split+hybrid+electric+vehicle+based+on+an+explicit+model+predictive+control+algorithm&rft.jtitle=Energy+%28Oxford%29&rft.au=Li%2C+Xunming&rft.au=Han%2C+Lijin&rft.au=Liu%2C+Hui&rft.au=Wang%2C+Weida&rft.date=2019-04-01&rft.pub=Elsevier+Ltd&rft.issn=0360-5442&rft.volume=172&rft.spage=1161&rft.epage=1178&rft_id=info:doi/10.1016%2Fj.energy.2019.01.052&rft.externalDocID=S0360544219300544 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon |