Real-time optimal energy management strategy for a dual-mode power-split hybrid electric vehicle based on an explicit model predictive control algorithm

To improve fuel economy and reduce online computation time and microprocessor hardware resources, a real-time implementable energy management strategy for a dual-mode power-split hybrid electric vehicle (HEV) based on an explicit model predictive control (EMPC) method is proposed in this paper. The...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Energy (Oxford) Ročník 172; s. 1161 - 1178
Hlavní autoři: Li, Xunming, Han, Lijin, Liu, Hui, Wang, Weida, Xiang, Changle
Médium: Journal Article
Jazyk:angličtina
Vydáno: Oxford Elsevier Ltd 01.04.2019
Elsevier BV
Témata:
ISSN:0360-5442, 1873-6785
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract To improve fuel economy and reduce online computation time and microprocessor hardware resources, a real-time implementable energy management strategy for a dual-mode power-split hybrid electric vehicle (HEV) based on an explicit model predictive control (EMPC) method is proposed in this paper. The proposed strategy includes an accurate control-oriented model and a dynamic process coordination control algorithm. The energy management optimal control problem is formulated as a multiparameter quadratic programming optimization problem, and the EMPC control laws are obtained by solving the multiparameter quadratic programming problem offline. The laws are then used online to realize real-time control. A traditional model predictive control (MPC)-based control strategy, DP-based control strategy and rule-based control strategy are considered benchmark strategies for verification of the proposed EMPC-based energy management strategy. The simulation results indicate the EMPC controller has far lower microprocessor hardware costs than the MPC controller but equivalent control performance. As the prediction horizon increases, fuel consumption remains nearly the same between the MPC-based control strategy and EMPC-based control strategy. The consumption time of the MPC-based control strategy increases significantly, while the consumption time of the EMPC-based control strategy is nearly unchanged. Compared with the benchmark algorithms, the elapsed time of the EMPC controller maximum reduced by 97.46%, and the fuel economy improved by 23.37%. •A novel control-oriented model reflects the dynamic characteristics of the powertrain.•An MPC-based strategy guarantees the feasibility and optimality of the controller.•A dynamic coordination control algorithm balances the relation of mode shift process.•A multiparameter quadratic programming algorithm obtains online control laws.•The elapsed time reduces 97.46% and fuel economy improves 23.37% by EMPC Controller.
AbstractList To improve fuel economy and reduce online computation time and microprocessor hardware resources, a real-time implementable energy management strategy for a dual-mode power-split hybrid electric vehicle (HEV) based on an explicit model predictive control (EMPC) method is proposed in this paper. The proposed strategy includes an accurate control-oriented model and a dynamic process coordination control algorithm. The energy management optimal control problem is formulated as a multiparameter quadratic programming optimization problem, and the EMPC control laws are obtained by solving the multiparameter quadratic programming problem offline. The laws are then used online to realize real-time control. A traditional model predictive control (MPC)-based control strategy, DP-based control strategy and rule-based control strategy are considered benchmark strategies for verification of the proposed EMPC-based energy management strategy. The simulation results indicate the EMPC controller has far lower microprocessor hardware costs than the MPC controller but equivalent control performance. As the prediction horizon increases, fuel consumption remains nearly the same between the MPC-based control strategy and EMPC-based control strategy. The consumption time of the MPC-based control strategy increases significantly, while the consumption time of the EMPC-based control strategy is nearly unchanged. Compared with the benchmark algorithms, the elapsed time of the EMPC controller maximum reduced by 97.46%, and the fuel economy improved by 23.37%.
To improve fuel economy and reduce online computation time and microprocessor hardware resources, a real-time implementable energy management strategy for a dual-mode power-split hybrid electric vehicle (HEV) based on an explicit model predictive control (EMPC) method is proposed in this paper. The proposed strategy includes an accurate control-oriented model and a dynamic process coordination control algorithm. The energy management optimal control problem is formulated as a multiparameter quadratic programming optimization problem, and the EMPC control laws are obtained by solving the multiparameter quadratic programming problem offline. The laws are then used online to realize real-time control. A traditional model predictive control (MPC)-based control strategy, DP-based control strategy and rule-based control strategy are considered benchmark strategies for verification of the proposed EMPC-based energy management strategy. The simulation results indicate the EMPC controller has far lower microprocessor hardware costs than the MPC controller but equivalent control performance. As the prediction horizon increases, fuel consumption remains nearly the same between the MPC-based control strategy and EMPC-based control strategy. The consumption time of the MPC-based control strategy increases significantly, while the consumption time of the EMPC-based control strategy is nearly unchanged. Compared with the benchmark algorithms, the elapsed time of the EMPC controller maximum reduced by 97.46%, and the fuel economy improved by 23.37%. •A novel control-oriented model reflects the dynamic characteristics of the powertrain.•An MPC-based strategy guarantees the feasibility and optimality of the controller.•A dynamic coordination control algorithm balances the relation of mode shift process.•A multiparameter quadratic programming algorithm obtains online control laws.•The elapsed time reduces 97.46% and fuel economy improves 23.37% by EMPC Controller.
Author Xiang, Changle
Liu, Hui
Li, Xunming
Wang, Weida
Han, Lijin
Author_xml – sequence: 1
  givenname: Xunming
  orcidid: 0000-0003-2293-857X
  surname: Li
  fullname: Li, Xunming
  organization: School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
– sequence: 2
  givenname: Lijin
  surname: Han
  fullname: Han, Lijin
  email: lj.han@163.com
  organization: School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
– sequence: 3
  givenname: Hui
  surname: Liu
  fullname: Liu, Hui
  organization: School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
– sequence: 4
  givenname: Weida
  surname: Wang
  fullname: Wang, Weida
  organization: School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
– sequence: 5
  givenname: Changle
  surname: Xiang
  fullname: Xiang, Changle
  organization: School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
BookMark eNqFkc2KFDEUhYPMgD09voGLgBs3VSap37gQZBh_YECQcR1upW51p0klZZJu7TfxcSdNuZqFri5czne495wbcuW8Q0Jec1Zyxtt3hxIdht25FIzLkvGSNeIF2fC-q4q265srsmFVy4qmrsVLchPjgTHW9FJuyJ_vCLZIZkbqlzzA0tWLzuBghzO6RGMKkDDvJh8o0PGYkdmPSBf_C0MRF2sS3Z-HYEaKFnUKRtMT7o22SAeIOFLvKDiKv7NUZ_GFtnQJOBqdzAmp9i4FbynYnQ8m7edbcj2Bjfjq79ySH5_uH---FA_fPn-9-_hQ6Jq1qUDoBtYLWfcomwZaUYHGWg6dHKCX2HcIbcUE6-ocxARdJ1pZaT1UUwUDx6Hakrer7xL8zyPGpGYTNVoLDv0xKiEEZ6LtMrYlb55JD_4YXL4uq3jbyyafkFXvV5UOPsaAk8oPQzKXB8FYxZm6lKYOag1aXUpTjKtcWobrZ_AScinh_D_sw4phTupkMKioDTqd4w25DjV682-DJ56OuLY
CitedBy_id crossref_primary_10_1016_j_energy_2023_130097
crossref_primary_10_3390_electronics12020301
crossref_primary_10_1016_j_renene_2025_123394
crossref_primary_10_1016_j_est_2022_106112
crossref_primary_10_1016_j_enconman_2021_113919
crossref_primary_10_1016_j_energy_2020_118366
crossref_primary_10_1016_j_apenergy_2021_116932
crossref_primary_10_1016_j_measen_2023_101001
crossref_primary_10_1109_TITS_2020_3037884
crossref_primary_10_1007_s12239_021_0069_4
crossref_primary_10_1016_j_rser_2022_112947
crossref_primary_10_1109_TTE_2022_3227334
crossref_primary_10_1109_TVT_2022_3195769
crossref_primary_10_1177_1687814020962624
crossref_primary_10_1186_s10033_022_00816_y
crossref_primary_10_1016_j_energy_2021_121370
crossref_primary_10_1016_j_energy_2022_123357
crossref_primary_10_1007_s12239_025_00267_z
crossref_primary_10_1109_TVT_2021_3138440
crossref_primary_10_1002_er_6503
crossref_primary_10_3390_machines11060576
crossref_primary_10_3390_en15093235
crossref_primary_10_3390_app112411752
crossref_primary_10_1016_j_apenergy_2019_113400
crossref_primary_10_1007_s10661_025_14060_z
crossref_primary_10_1016_j_energy_2021_122944
crossref_primary_10_1016_j_etran_2020_100064
crossref_primary_10_1007_s40998_024_00767_1
crossref_primary_10_1016_j_energy_2023_129176
crossref_primary_10_1016_j_ijhydene_2020_03_091
crossref_primary_10_1016_j_epsr_2024_110372
crossref_primary_10_1016_j_egyr_2021_09_119
crossref_primary_10_1109_ACCESS_2019_2933015
crossref_primary_10_1016_j_energy_2020_119070
crossref_primary_10_1109_ACCESS_2022_3208365
crossref_primary_10_1016_j_energy_2021_121960
crossref_primary_10_1007_s40430_024_05349_0
crossref_primary_10_1016_j_ast_2025_110311
crossref_primary_10_1109_TPEL_2019_2953050
crossref_primary_10_1109_ACCESS_2019_2926203
crossref_primary_10_1146_annurev_control_042920_012513
crossref_primary_10_1016_j_energy_2024_133544
crossref_primary_10_1177_09544070221085960
crossref_primary_10_1016_j_energy_2020_118586
crossref_primary_10_1109_TIV_2024_3352171
crossref_primary_10_1016_j_apenergy_2024_125197
crossref_primary_10_1109_TTE_2020_2973577
crossref_primary_10_1016_j_energy_2023_126772
crossref_primary_10_1109_TITS_2024_3384358
crossref_primary_10_1109_ACCESS_2020_3042698
crossref_primary_10_1177_09544070241265773
crossref_primary_10_1016_j_ast_2022_107913
crossref_primary_10_1016_j_energy_2023_128231
crossref_primary_10_1016_j_energy_2021_120071
crossref_primary_10_3390_su151612488
crossref_primary_10_1016_j_ijhydene_2024_02_249
crossref_primary_10_1016_j_est_2025_115936
crossref_primary_10_1016_j_energy_2022_125598
crossref_primary_10_1016_j_energy_2022_125752
crossref_primary_10_3233_IDT_240298
crossref_primary_10_1007_s10462_022_10284_4
crossref_primary_10_1016_j_jclepro_2019_119735
crossref_primary_10_1016_j_energy_2021_122368
crossref_primary_10_1016_j_energy_2024_133153
crossref_primary_10_1109_TVT_2023_3237388
crossref_primary_10_1049_els2_12020
crossref_primary_10_3390_en17133059
crossref_primary_10_1016_j_jpowsour_2025_236815
crossref_primary_10_1109_TVT_2024_3384186
crossref_primary_10_1016_j_ast_2025_110899
crossref_primary_10_1016_j_est_2023_106802
crossref_primary_10_1109_LCSYS_2022_3228946
crossref_primary_10_1016_j_energy_2024_132368
crossref_primary_10_3390_app10238744
crossref_primary_10_1016_j_egyr_2023_01_042
crossref_primary_10_1016_j_ifacol_2025_08_153
crossref_primary_10_3390_en14010252
crossref_primary_10_1177_09544070211029791
crossref_primary_10_1016_j_energy_2020_117224
crossref_primary_10_1371_journal_pone_0292510
crossref_primary_10_1177_09544070211065266
crossref_primary_10_1109_TMECH_2021_3126674
crossref_primary_10_1177_09544070211046406
crossref_primary_10_1016_j_mechmachtheory_2023_105543
crossref_primary_10_1109_TTE_2023_3305520
crossref_primary_10_1016_j_energy_2022_123265
crossref_primary_10_1016_j_ijhydene_2019_12_201
crossref_primary_10_1016_j_energy_2020_118286
crossref_primary_10_1109_TMECH_2022_3156150
crossref_primary_10_1109_TVT_2021_3064407
crossref_primary_10_1016_j_energy_2022_123505
crossref_primary_10_3390_wevj15020061
Cites_doi 10.1016/j.jfranklin.2017.08.020
10.1016/j.jfranklin.2014.07.009
10.1016/j.energy.2017.09.061
10.1016/j.apenergy.2017.11.072
10.1016/S0005-1098(02)00308-4
10.1016/j.jfranklin.2017.12.039
10.1016/j.energy.2018.03.148
10.1109/TVT.2010.2090178
10.1109/TCST.2011.2134852
10.1016/j.apenergy.2016.12.056
10.1016/j.mechatronics.2015.04.020
10.1109/TIE.2015.2475419
10.1109/TVT.2018.2806400
10.1109/TCST.2016.2554558
10.1109/TCST.2012.2218656
10.1016/j.jpowsour.2016.11.106
10.1109/TVT.2015.2504510
10.1109/TVT.2012.2206064
10.1109/TCST.2015.2498141
10.1016/j.conengprac.2014.12.001
10.1109/TVT.2012.2217362
10.1109/TVT.2013.2287102
10.1109/TITS.2016.2580318
10.1109/TCST.2013.2272179
10.1016/j.mechatronics.2017.08.008
10.1016/j.apenergy.2013.11.002
10.1016/j.apenergy.2015.01.021
10.1109/TIE.2013.2279353
10.1109/TCST.2014.2361294
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright Elsevier BV Apr 1, 2019
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright Elsevier BV Apr 1, 2019
DBID AAYXX
CITATION
7SP
7ST
7TB
8FD
C1K
F28
FR3
KR7
L7M
SOI
7S9
L.6
DOI 10.1016/j.energy.2019.01.052
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
EISSN 1873-6785
EndPage 1178
ExternalDocumentID 10_1016_j_energy_2019_01_052
S0360544219300544
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
WUQ
~HD
7SP
7ST
7TB
8FD
AGCQF
C1K
F28
FR3
KR7
L7M
SOI
7S9
L.6
ID FETCH-LOGICAL-c406t-ea7b082948e955a623ace49b79ba89e87ea6302074678fa772693ccb3f3ab1eb3
ISICitedReferencesCount 97
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000464488100096&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0360-5442
IngestDate Sun Sep 28 02:17:38 EDT 2025
Wed Aug 13 08:36:20 EDT 2025
Tue Nov 18 22:15:50 EST 2025
Sat Nov 29 01:40:46 EST 2025
Fri Feb 23 02:23:57 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Real-time energy management strategy
Explicit model predictive control algorithm
Dynamic coordination control
Multiparameter quadratic programming
Power-split HEV
Control-oriented model
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c406t-ea7b082948e955a623ace49b79ba89e87ea6302074678fa772693ccb3f3ab1eb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2293-857X
PQID 2216895955
PQPubID 2045484
PageCount 18
ParticipantIDs proquest_miscellaneous_2221026769
proquest_journals_2216895955
crossref_citationtrail_10_1016_j_energy_2019_01_052
crossref_primary_10_1016_j_energy_2019_01_052
elsevier_sciencedirect_doi_10_1016_j_energy_2019_01_052
PublicationCentury 2000
PublicationDate 2019-04-01
PublicationDateYYYYMMDD 2019-04-01
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Energy (Oxford)
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Wirasingha, Emadi (bib1) 2011; 60
Murphey, Park, Chen, Kuang, Masrur, Phillips (bib9) 2012; 61
Huang, Wang, Khajepour, He, Ji (bib19) 2017; 341
Emekli, Güvenç (bib28) 2017; 25
Onori, Tribioli (bib6) Jun 1 2015; 147
Borhan, Vahidi, Phillips, Kuang, Kolmanovsky, Cairano (bib20) 2012; 20
Zhang, Luo, Li, Li (bib27) 2018; 67
Tøndel, Johansen, Bemporad (bib33) 2003; 39
Chao, Moura, Xiaosong, Hedrick, Fengchun (bib15) 2015; 23
Xiang, Ding, Wang, He (bib21) Mar 1 2017; 189
Cairano, Liang, Kolmanovsky, Kuang, Phillips (bib25) 2013; 21
Hou, Ouyang, Xu, Wang (bib5) Feb 15 2014; 115
Hou, Xu, Wang, Ouyang, Peng (bib13) 2015; 352
Tian, Li, Wang, Huang, Tian (bib18) 2018; 142
Cairano, Bernardini, Bemporad, Kolmanovsky (bib23) 2014; 22
Grancharova, Johansen (bib30) 2012
Liu, Zou, Liu, Sun (bib11) 2015; 62
Liu, Li, Wang, Han, Xiang (bib14) 2018; 152
Unger, Kozek, Jakubek (bib24) 2015; 36
Wang, Wang, Wang, Zeng (bib3) 2018; 355
Ripaccioli, Bemporad, Assadian, Dextreit, Cairano, Kolmanovsky (bib22) 2009
Zhang (bib17) 2017; 46
Padmarajan, McGordon, Jennings (bib2) 2016; 65
Taghavipour, Azad, McPhee (bib26) 2015; 29
Zhang, Xi, Langari (bib16) 2017; 18
Vagg, Akehurst, Brace, Ash (bib8) 2016; 24
Zhao, Liu, Stobart, Deng, Winward, Dong (bib29) 2014; 61
Murphey (bib10) 2013; 62
Zheng, Mi, Jun, Xianzhi, Chenwen (bib4) 2014; 63
Li, Zhou, Yang, Xiong, You, Han (bib7) 2017; 354
Baotic (bib31) 2002
Kvasnica, Baotíc, Christophersen (bib32) 2006
Xiong, Cao, Yu (bib12) 2018; 211
Xiang (10.1016/j.energy.2019.01.052_bib21) 2017; 189
Onori (10.1016/j.energy.2019.01.052_bib6) 2015; 147
Wang (10.1016/j.energy.2019.01.052_bib3) 2018; 355
Vagg (10.1016/j.energy.2019.01.052_bib8) 2016; 24
Taghavipour (10.1016/j.energy.2019.01.052_bib26) 2015; 29
Padmarajan (10.1016/j.energy.2019.01.052_bib2) 2016; 65
Li (10.1016/j.energy.2019.01.052_bib7) 2017; 354
Ripaccioli (10.1016/j.energy.2019.01.052_bib22) 2009
Kvasnica (10.1016/j.energy.2019.01.052_bib32) 2006
Tøndel (10.1016/j.energy.2019.01.052_bib33) 2003; 39
Cairano (10.1016/j.energy.2019.01.052_bib23) 2014; 22
Zhang (10.1016/j.energy.2019.01.052_bib27) 2018; 67
Cairano (10.1016/j.energy.2019.01.052_bib25) 2013; 21
Chao (10.1016/j.energy.2019.01.052_bib15) 2015; 23
Zheng (10.1016/j.energy.2019.01.052_bib4) 2014; 63
Murphey (10.1016/j.energy.2019.01.052_bib9) 2012; 61
Huang (10.1016/j.energy.2019.01.052_bib19) 2017; 341
Hou (10.1016/j.energy.2019.01.052_bib5) 2014; 115
Borhan (10.1016/j.energy.2019.01.052_bib20) 2012; 20
Emekli (10.1016/j.energy.2019.01.052_bib28) 2017; 25
Liu (10.1016/j.energy.2019.01.052_bib11) 2015; 62
Liu (10.1016/j.energy.2019.01.052_bib14) 2018; 152
Wirasingha (10.1016/j.energy.2019.01.052_bib1) 2011; 60
Tian (10.1016/j.energy.2019.01.052_bib18) 2018; 142
Zhang (10.1016/j.energy.2019.01.052_bib16) 2017; 18
Zhang (10.1016/j.energy.2019.01.052_bib17) 2017; 46
Unger (10.1016/j.energy.2019.01.052_bib24) 2015; 36
Hou (10.1016/j.energy.2019.01.052_bib13) 2015; 352
Baotic (10.1016/j.energy.2019.01.052_bib31) 2002
Zhao (10.1016/j.energy.2019.01.052_bib29) 2014; 61
Grancharova (10.1016/j.energy.2019.01.052_bib30) 2012
Xiong (10.1016/j.energy.2019.01.052_bib12) 2018; 211
Murphey (10.1016/j.energy.2019.01.052_bib10) 2013; 62
References_xml – volume: 18
  start-page: 416
  year: 2017
  end-page: 430
  ident: bib16
  article-title: Real-time energy management strategy based on velocity forecasts using V2V and V2I communications
  publication-title: IEEE Trans Intell Transport Syst
– start-page: 321
  year: 2009
  end-page: 335
  ident: bib22
  article-title: Hybrid modeling, identification, and predictive control: an application to hybrid electric vehicle energy management
  publication-title: Hybrid systems: computation and control, international conference, HSCC 2009, San Francisco, Ca, USA, April 13-15, 2009. Proceedings
– volume: 63
  start-page: 1567
  year: 2014
  end-page: 1580
  ident: bib4
  article-title: Energy management for a power-split plug-in hybrid electric vehicle based on dynamic programming and neural networks
  publication-title: IEEE Trans Veh Technol
– volume: 142
  start-page: 55
  year: 2018
  end-page: 67
  ident: bib18
  article-title: Data-driven hierarchical control for online energy management of plug-in hybrid electric city bus
  publication-title: Energy
– volume: 355
  start-page: 2283
  year: 2018
  end-page: 2312
  ident: bib3
  article-title: Control rules extraction and parameters optimization of energy management for bus series-parallel AMT hybrid powertrain
  publication-title: J Franklin Inst
– volume: 352
  start-page: 500
  year: 2015
  end-page: 518
  ident: bib13
  article-title: Energy management of plug-in hybrid electric vehicles with unknown trip length
  publication-title: J Franklin Inst
– volume: 21
  start-page: 2091
  year: 2013
  end-page: 2103
  ident: bib25
  article-title: Power smoothing energy management and its application to a series hybrid powertrain
  publication-title: IEEE Trans Contr Syst Technol
– year: 2012
  ident: bib30
  article-title: Explicit nonlinear model predictive control [M]
– volume: 341
  start-page: 91
  year: 2017
  end-page: 106
  ident: bib19
  article-title: Model predictive control power management strategies for HEVs: a review
  publication-title: J Power Sources
– volume: 24
  start-page: 853
  year: 2016
  end-page: 866
  ident: bib8
  article-title: Stochastic dynamic programming in the real-world control of hybrid electric vehicles
  publication-title: IEEE Trans Contr Syst Technol
– volume: 60
  start-page: 111
  year: 2011
  end-page: 122
  ident: bib1
  article-title: Classification and review of control strategies for plug-in hybrid electric vehicles
  publication-title: IEEE Trans Veh Technol
– year: 2006
  ident: bib32
  article-title: Multi-parametric toolbox
– volume: 23
  start-page: 1075
  year: 2015
  end-page: 1086
  ident: bib15
  article-title: Dynamic traffic feedback data enabled energy management in plug-in hybrid electric vehicles
  publication-title: IEEE Trans Contr Syst Technol
– volume: 20
  start-page: 593
  year: 2012
  end-page: 603
  ident: bib20
  article-title: MPC-based energy management of a power-split hybrid electric vehicle
  publication-title: IEEE Trans Contr Syst Technol
– volume: 147
  start-page: 224
  year: Jun 1 2015
  end-page: 234
  ident: bib6
  article-title: Adaptive Pontryagin's Minimum Principle supervisory controller design for the plug-in hybrid GM Chevrolet Volt
  publication-title: Appl Energy
– volume: 152
  start-page: 427
  year: 2018
  end-page: 444
  ident: bib14
  article-title: Markov velocity predictor and radial basis function neural network-based real-time energy management strategy for plug-in hybrid electric vehicles
  publication-title: Energy
– volume: 46
  start-page: 177
  year: 2017
  end-page: 192
  ident: bib17
  article-title: Optimal energy management strategy for parallel plug-in hybrid electric vehicle based on driving behavior analysis and real time traffic information prediction
  publication-title: Mechatronics
– volume: 39
  start-page: 945
  year: 2003
  end-page: 950
  ident: bib33
  article-title: Evaluation of piecewise affine control via binary search tree
  publication-title: Automatica
– volume: 29
  start-page: 13
  year: 2015
  end-page: 27
  ident: bib26
  article-title: Real-time predictive control strategy for a plug-in hybrid electric powertrain
  publication-title: Mechatronics
– year: 2002
  ident: bib31
  article-title: An efficient algorithm for multiparametric quadratic programming
– volume: 62
  start-page: 69
  year: 2013
  end-page: 79
  ident: bib10
  article-title: Intelligent hybrid vehicle power control-Part II: online intelligent energy management
  publication-title: IEEE Trans Veh Technol
– volume: 36
  start-page: 120
  year: 2015
  end-page: 132
  ident: bib24
  article-title: Nonlinear model predictive energy management controller with load and cycle prediction for non-road HEV
  publication-title: Contr Eng Pract
– volume: 61
  start-page: 3519
  year: 2012
  end-page: 3530
  ident: bib9
  article-title: Intelligent hybrid vehicle power control-Part I: machine learning of optimal vehicle power
  publication-title: IEEE Trans Veh Technol
– volume: 25
  start-page: 521
  year: 2017
  end-page: 534
  ident: bib28
  article-title: Explicit MIMO model predictive boost pressure control of a two-stage turbocharged diesel engine
  publication-title: IEEE Trans Contr Syst Technol
– volume: 65
  start-page: 8757
  year: 2016
  end-page: 8762
  ident: bib2
  article-title: Blended rule-based energy management for PHEV: system structure and strategy
  publication-title: IEEE Trans Veh Technol
– volume: 67
  start-page: 4693
  year: 2018
  end-page: 4701
  ident: bib27
  article-title: Real-time energy-efficient control for fully electric vehicles based on an explicit model predictive control method
  publication-title: IEEE Trans Veh Technol
– volume: 61
  start-page: 3540
  year: 2014
  end-page: 3552
  ident: bib29
  article-title: An explicit model predictive control framework for turbocharged diesel engines
  publication-title: IEEE Trans Ind Electron
– volume: 354
  start-page: 6588
  year: 2017
  end-page: 6609
  ident: bib7
  article-title: A novel combinatorial optimization algorithm for energy management strategy of plug-in hybrid electric vehicle
  publication-title: J Franklin Inst
– volume: 22
  start-page: 1018
  year: 2014
  end-page: 1031
  ident: bib23
  article-title: Stochastic MPC with learning for driver-predictive vehicle control and its application to HEV energy management
  publication-title: IEEE Trans Contr Syst Technol
– volume: 211
  start-page: 538
  year: 2018
  end-page: 548
  ident: bib12
  article-title: Reinforcement learning-based real-time power management for hybrid energy storage system in the plug-in hybrid electric vehicle
  publication-title: Appl Energy
– volume: 62
  start-page: 7837
  year: 2015
  end-page: 7846
  ident: bib11
  article-title: Reinforcement learning of adaptive energy management with transition probability for a hybrid electric tracked vehicle
  publication-title: IEEE Trans Ind Electron
– volume: 189
  start-page: 640
  year: Mar 1 2017
  end-page: 653
  ident: bib21
  article-title: Energy management of a dual-mode power-split hybrid electric vehicle based on velocity prediction and nonlinear model predictive control
  publication-title: Appl Energy
– volume: 115
  start-page: 174
  year: Feb 15 2014
  end-page: 189
  ident: bib5
  article-title: Approximate Pontryagin's minimum principle applied to the energy management of plug-in hybrid electric vehicles
  publication-title: Appl Energy
– volume: 354
  start-page: 6588
  issue: 15
  year: 2017
  ident: 10.1016/j.energy.2019.01.052_bib7
  article-title: A novel combinatorial optimization algorithm for energy management strategy of plug-in hybrid electric vehicle
  publication-title: J Franklin Inst
  doi: 10.1016/j.jfranklin.2017.08.020
– volume: 352
  start-page: 500
  issue: 2
  year: 2015
  ident: 10.1016/j.energy.2019.01.052_bib13
  article-title: Energy management of plug-in hybrid electric vehicles with unknown trip length
  publication-title: J Franklin Inst
  doi: 10.1016/j.jfranklin.2014.07.009
– volume: 142
  start-page: 55
  year: 2018
  ident: 10.1016/j.energy.2019.01.052_bib18
  article-title: Data-driven hierarchical control for online energy management of plug-in hybrid electric city bus
  publication-title: Energy
  doi: 10.1016/j.energy.2017.09.061
– volume: 211
  start-page: 538
  year: 2018
  ident: 10.1016/j.energy.2019.01.052_bib12
  article-title: Reinforcement learning-based real-time power management for hybrid energy storage system in the plug-in hybrid electric vehicle
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.11.072
– volume: 39
  start-page: 945
  issue: 5
  year: 2003
  ident: 10.1016/j.energy.2019.01.052_bib33
  article-title: Evaluation of piecewise affine control via binary search tree
  publication-title: Automatica
  doi: 10.1016/S0005-1098(02)00308-4
– volume: 355
  start-page: 2283
  issue: 5
  year: 2018
  ident: 10.1016/j.energy.2019.01.052_bib3
  article-title: Control rules extraction and parameters optimization of energy management for bus series-parallel AMT hybrid powertrain
  publication-title: J Franklin Inst
  doi: 10.1016/j.jfranklin.2017.12.039
– volume: 152
  start-page: 427
  year: 2018
  ident: 10.1016/j.energy.2019.01.052_bib14
  article-title: Markov velocity predictor and radial basis function neural network-based real-time energy management strategy for plug-in hybrid electric vehicles
  publication-title: Energy
  doi: 10.1016/j.energy.2018.03.148
– volume: 60
  start-page: 111
  issue: 1
  year: 2011
  ident: 10.1016/j.energy.2019.01.052_bib1
  article-title: Classification and review of control strategies for plug-in hybrid electric vehicles
  publication-title: IEEE Trans Veh Technol
  doi: 10.1109/TVT.2010.2090178
– volume: 20
  start-page: 593
  issue: 3
  year: 2012
  ident: 10.1016/j.energy.2019.01.052_bib20
  article-title: MPC-based energy management of a power-split hybrid electric vehicle
  publication-title: IEEE Trans Contr Syst Technol
  doi: 10.1109/TCST.2011.2134852
– volume: 189
  start-page: 640
  year: 2017
  ident: 10.1016/j.energy.2019.01.052_bib21
  article-title: Energy management of a dual-mode power-split hybrid electric vehicle based on velocity prediction and nonlinear model predictive control
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.12.056
– volume: 29
  start-page: 13
  year: 2015
  ident: 10.1016/j.energy.2019.01.052_bib26
  article-title: Real-time predictive control strategy for a plug-in hybrid electric powertrain
  publication-title: Mechatronics
  doi: 10.1016/j.mechatronics.2015.04.020
– volume: 62
  start-page: 7837
  issue: 12
  year: 2015
  ident: 10.1016/j.energy.2019.01.052_bib11
  article-title: Reinforcement learning of adaptive energy management with transition probability for a hybrid electric tracked vehicle
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2015.2475419
– volume: 67
  start-page: 4693
  issue: 6
  year: 2018
  ident: 10.1016/j.energy.2019.01.052_bib27
  article-title: Real-time energy-efficient control for fully electric vehicles based on an explicit model predictive control method
  publication-title: IEEE Trans Veh Technol
  doi: 10.1109/TVT.2018.2806400
– volume: 25
  start-page: 521
  issue: 2
  year: 2017
  ident: 10.1016/j.energy.2019.01.052_bib28
  article-title: Explicit MIMO model predictive boost pressure control of a two-stage turbocharged diesel engine
  publication-title: IEEE Trans Contr Syst Technol
  doi: 10.1109/TCST.2016.2554558
– year: 2006
  ident: 10.1016/j.energy.2019.01.052_bib32
– volume: 21
  start-page: 2091
  issue: 6
  year: 2013
  ident: 10.1016/j.energy.2019.01.052_bib25
  article-title: Power smoothing energy management and its application to a series hybrid powertrain
  publication-title: IEEE Trans Contr Syst Technol
  doi: 10.1109/TCST.2012.2218656
– year: 2002
  ident: 10.1016/j.energy.2019.01.052_bib31
– volume: 341
  start-page: 91
  year: 2017
  ident: 10.1016/j.energy.2019.01.052_bib19
  article-title: Model predictive control power management strategies for HEVs: a review
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2016.11.106
– year: 2012
  ident: 10.1016/j.energy.2019.01.052_bib30
– volume: 65
  start-page: 8757
  issue: 10
  year: 2016
  ident: 10.1016/j.energy.2019.01.052_bib2
  article-title: Blended rule-based energy management for PHEV: system structure and strategy
  publication-title: IEEE Trans Veh Technol
  doi: 10.1109/TVT.2015.2504510
– volume: 61
  start-page: 3519
  issue: 8
  year: 2012
  ident: 10.1016/j.energy.2019.01.052_bib9
  article-title: Intelligent hybrid vehicle power control-Part I: machine learning of optimal vehicle power
  publication-title: IEEE Trans Veh Technol
  doi: 10.1109/TVT.2012.2206064
– volume: 24
  start-page: 853
  issue: 3
  year: 2016
  ident: 10.1016/j.energy.2019.01.052_bib8
  article-title: Stochastic dynamic programming in the real-world control of hybrid electric vehicles
  publication-title: IEEE Trans Contr Syst Technol
  doi: 10.1109/TCST.2015.2498141
– start-page: 321
  year: 2009
  ident: 10.1016/j.energy.2019.01.052_bib22
  article-title: Hybrid modeling, identification, and predictive control: an application to hybrid electric vehicle energy management
– volume: 36
  start-page: 120
  year: 2015
  ident: 10.1016/j.energy.2019.01.052_bib24
  article-title: Nonlinear model predictive energy management controller with load and cycle prediction for non-road HEV
  publication-title: Contr Eng Pract
  doi: 10.1016/j.conengprac.2014.12.001
– volume: 62
  start-page: 69
  issue: 1
  year: 2013
  ident: 10.1016/j.energy.2019.01.052_bib10
  article-title: Intelligent hybrid vehicle power control-Part II: online intelligent energy management
  publication-title: IEEE Trans Veh Technol
  doi: 10.1109/TVT.2012.2217362
– volume: 63
  start-page: 1567
  issue: 4
  year: 2014
  ident: 10.1016/j.energy.2019.01.052_bib4
  article-title: Energy management for a power-split plug-in hybrid electric vehicle based on dynamic programming and neural networks
  publication-title: IEEE Trans Veh Technol
  doi: 10.1109/TVT.2013.2287102
– volume: 18
  start-page: 416
  issue: 2
  year: 2017
  ident: 10.1016/j.energy.2019.01.052_bib16
  article-title: Real-time energy management strategy based on velocity forecasts using V2V and V2I communications
  publication-title: IEEE Trans Intell Transport Syst
  doi: 10.1109/TITS.2016.2580318
– volume: 22
  start-page: 1018
  issue: 3
  year: 2014
  ident: 10.1016/j.energy.2019.01.052_bib23
  article-title: Stochastic MPC with learning for driver-predictive vehicle control and its application to HEV energy management
  publication-title: IEEE Trans Contr Syst Technol
  doi: 10.1109/TCST.2013.2272179
– volume: 46
  start-page: 177
  year: 2017
  ident: 10.1016/j.energy.2019.01.052_bib17
  article-title: Optimal energy management strategy for parallel plug-in hybrid electric vehicle based on driving behavior analysis and real time traffic information prediction
  publication-title: Mechatronics
  doi: 10.1016/j.mechatronics.2017.08.008
– volume: 115
  start-page: 174
  year: 2014
  ident: 10.1016/j.energy.2019.01.052_bib5
  article-title: Approximate Pontryagin's minimum principle applied to the energy management of plug-in hybrid electric vehicles
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2013.11.002
– volume: 147
  start-page: 224
  year: 2015
  ident: 10.1016/j.energy.2019.01.052_bib6
  article-title: Adaptive Pontryagin's Minimum Principle supervisory controller design for the plug-in hybrid GM Chevrolet Volt
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.01.021
– volume: 61
  start-page: 3540
  issue: 7
  year: 2014
  ident: 10.1016/j.energy.2019.01.052_bib29
  article-title: An explicit model predictive control framework for turbocharged diesel engines
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2013.2279353
– volume: 23
  start-page: 1075
  issue: 3
  year: 2015
  ident: 10.1016/j.energy.2019.01.052_bib15
  article-title: Dynamic traffic feedback data enabled energy management in plug-in hybrid electric vehicles
  publication-title: IEEE Trans Contr Syst Technol
  doi: 10.1109/TCST.2014.2361294
SSID ssj0005899
Score 2.5759037
Snippet To improve fuel economy and reduce online computation time and microprocessor hardware resources, a real-time implementable energy management strategy for a...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1161
SubjectTerms Algorithms
Benchmarks
Computer simulation
Consumption
Control algorithms
Control systems
Control theory
Control-oriented model
Controllers
Dynamic coordination control
Electric vehicles
energy
Energy efficiency
Energy management
energy use and consumption
Explicit model predictive control algorithm
Fuel consumption
Fuel economy
fuels
Hardware
Hybrid electric vehicles
Internet
Mathematical models
Multiparameter quadratic programming
Optimal control
Optimization
Power-split HEV
Predictive control
Quadratic programming
Real time
Real-time energy management strategy
Resource management
Strategy
Time optimal control
vehicles (equipment)
Title Real-time optimal energy management strategy for a dual-mode power-split hybrid electric vehicle based on an explicit model predictive control algorithm
URI https://dx.doi.org/10.1016/j.energy.2019.01.052
https://www.proquest.com/docview/2216895955
https://www.proquest.com/docview/2221026769
Volume 172
WOSCitedRecordID wos000464488100096&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect
  customDbUrl:
  eissn: 1873-6785
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005899
  issn: 0360-5442
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bi9NAFB7qrqAvoquL1VVG8C1Emlsz87hIRUUW0RX7FiaTiU1pk9K0pf4T_4F_03PmkuwFWRV8CW06yYR8X885mXznHEJesjwMeSAiH7CO_biUuZ_jV5kXrIyjqJSi1M0m0rMzNp3yj4PBT5cLs1ukdc32e776r1DDPgAbU2f_Au7upLADPgPosAXYYftHwH-C0M_HlvFeA-ZgCRAok9-37JQuXmtq0hqxpvAwH8vHnjjeCpum-S1Ephtv9h2zuTzTKKeS3k7NcC4PHV_haRUzNghYVBIG6446WHGgqLQF7TTwYvGtWVeb2fLSOwBzRVjqdG_U9d16xActL5hu66Vzqto-mgyJal71EqJqq_3mtupfChjD9VVVdp3BLmcE_IIKRq-xuTybXtRkcrtGfhLHl-226fljLW8QmKLu1osHgekMdM1DmMWK-Stz61Hbx3XdVlNH90rt7c84Mc4LYS4Gt_EtchimCQcPcHj6bjJ936uJmG5V2l2oy9LUUsLrc_0uCroSD-gg5_w-uWefTuipYdUDMlD1EbnjktfbI3I86RMjYaD1DO1D8qOjHbW0o-Z6aE876mhHAXMqaEc7eoF21NCOOtpRSzuqaUebmoqaOtpRTTva045a2tGOdo_IlzeT89dvfdv1w5cQXG58JdIcE75jpniSCAjPhVQxz1OeC8YVS5UYR_CQg31yWCng6XDMIynzqIxEHqg8OiYHdVOrx4SmpShloZKIj2Ism8RZUQThmDFVhKNCyCGJHAqZtCXxsTPLInPax3lm7lWG2GWjIAPshsTvjlqZkjA3jE8dwJkNa024mgEnbzjyxPEhsxamzcIwGDOewL0Zkhfdz-AU8E2fqFWzxTG4koPq9Sf_PPlTcrf_f56Qg816q56R23K3qdr1c8v_X_D15tk
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-time+optimal+energy+management+strategy+for+a+dual-mode+power-split+hybrid+electric+vehicle+based+on+an+explicit+model+predictive+control+algorithm&rft.jtitle=Energy+%28Oxford%29&rft.au=Li%2C+Xunming&rft.au=Han%2C+Lijin&rft.au=Liu%2C+Hui&rft.au=Wang%2C+Weida&rft.date=2019-04-01&rft.pub=Elsevier+Ltd&rft.issn=0360-5442&rft.volume=172&rft.spage=1161&rft.epage=1178&rft_id=info:doi/10.1016%2Fj.energy.2019.01.052&rft.externalDocID=S0360544219300544
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon