Simultaneous Tensor Decomposition and Completion Using Factor Priors
The success of research on matrix completion is evident in a variety of real-world applications. Tensor completion, which is a high-order extension of matrix completion, has also generated a great deal of research interest in recent years. Given a tensor with incomplete entries, existing methods use...
Uloženo v:
| Vydáno v: | IEEE transactions on pattern analysis and machine intelligence Ročník 36; číslo 3; s. 577 - 591 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Los Alamitos, CA
IEEE
01.03.2014
IEEE Computer Society The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 0162-8828, 1939-3539, 2160-9292, 1939-3539 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The success of research on matrix completion is evident in a variety of real-world applications. Tensor completion, which is a high-order extension of matrix completion, has also generated a great deal of research interest in recent years. Given a tensor with incomplete entries, existing methods use either factorization or completion schemes to recover the missing parts. However, as the number of missing entries increases, factorization schemes may overfit the model because of incorrectly predefined ranks, while completion schemes may fail to interpret the model factors. In this paper, we introduce a novel concept: complete the missing entries and simultaneously capture the underlying model structure. To this end, we propose a method called simultaneous tensor decomposition and completion (STDC) that combines a rank minimization technique with Tucker model decomposition. Moreover, as the model structure is implicitly included in the Tucker model, we use factor priors, which are usually known a priori in real-world tensor objects, to characterize the underlying joint-manifold drawn from the model factors. By exploiting this auxiliary information, our method leverages two classic schemes and accurately estimates the model factors and missing entries. We conducted experiments to empirically verify the convergence of our algorithm on synthetic data and evaluate its effectiveness on various kinds of real-world data. The results demonstrate the efficacy of the proposed method and its potential usage in tensor-based applications. It also outperforms state-of-the-art methods on multilinear model analysis and visual data completion tasks. |
|---|---|
| AbstractList | The success of research on matrix completion is evident in a variety of real-world applications. Tensor completion, which is a high-order extension of matrix completion, has also generated a great deal of research interest in recent years. Given a tensor with incomplete entries, existing methods use either factorization or completion schemes to recover the missing parts. However, as the number of missing entries increases, factorization schemes may overfit the model because of incorrectly predefined ranks, while completion schemes may fail to interpret the model factors. In this paper, we introduce a novel concept: complete the missing entries and simultaneously capture the underlying model structure. To this end, we propose a method called simultaneous tensor decomposition and completion (STDC) that combines a rank minimization technique with Tucker model decomposition. Moreover, as the model structure is implicitly included in the Tucker model, we use factor priors, which are usually known a priori in real-world tensor objects, to characterize the underlying joint-manifold drawn from the model factors. By exploiting this auxiliary information, our method leverages two classic schemes and accurately estimates the model factors and missing entries. We conducted experiments to empirically verify the convergence of our algorithm on synthetic data and evaluate its effectiveness on various kinds of real-world data. The results demonstrate the efficacy of the proposed method and its potential usage in tensor-based applications. It also outperforms state-of-the-art methods on multilinear model analysis and visual data completion tasks.The success of research on matrix completion is evident in a variety of real-world applications. Tensor completion, which is a high-order extension of matrix completion, has also generated a great deal of research interest in recent years. Given a tensor with incomplete entries, existing methods use either factorization or completion schemes to recover the missing parts. However, as the number of missing entries increases, factorization schemes may overfit the model because of incorrectly predefined ranks, while completion schemes may fail to interpret the model factors. In this paper, we introduce a novel concept: complete the missing entries and simultaneously capture the underlying model structure. To this end, we propose a method called simultaneous tensor decomposition and completion (STDC) that combines a rank minimization technique with Tucker model decomposition. Moreover, as the model structure is implicitly included in the Tucker model, we use factor priors, which are usually known a priori in real-world tensor objects, to characterize the underlying joint-manifold drawn from the model factors. By exploiting this auxiliary information, our method leverages two classic schemes and accurately estimates the model factors and missing entries. We conducted experiments to empirically verify the convergence of our algorithm on synthetic data and evaluate its effectiveness on various kinds of real-world data. The results demonstrate the efficacy of the proposed method and its potential usage in tensor-based applications. It also outperforms state-of-the-art methods on multilinear model analysis and visual data completion tasks. The success of research on matrix completion is evident in a variety of real-world applications. Tensor completion, which is a high-order extension of matrix completion, has also generated a great deal of research interest in recent years. Given a tensor with incomplete entries, existing methods use either factorization or completion schemes to recover the missing parts. However, as the number of missing entries increases, factorization schemes may overfit the model because of incorrectly predefined ranks, while completion schemes may fail to interpret the model factors. In this paper, we introduce a novel concept: complete the missing entries and simultaneously capture the underlying model structure. To this end, we propose a method called simultaneous tensor decomposition and completion (STDC) that combines a rank minimization technique with Tucker model decomposition. Moreover, as the model structure is implicitly included in the Tucker model, we use factor priors, which are usually known a priori in real-world tensor objects, to characterize the underlying joint-manifold drawn from the model factors. By exploiting this auxiliary information, our method leverages two classic schemes and accurately estimates the model factors and missing entries. We conducted experiments to empirically verify the convergence of our algorithm on synthetic data and evaluate its effectiveness on various kinds of real-world data. The results demonstrate the efficacy of the proposed method and its potential usage in tensor-based applications. It also outperforms state-of-the-art methods on multilinear model analysis and visual data completion tasks. |
| Author | Yi-Lei Chen Liao, Hong-Yuan Mark Chiou-Ting Hsu |
| Author_xml | – sequence: 1 surname: Yi-Lei Chen fullname: Yi-Lei Chen email: fallcolor@gmail.com organization: Dept. of Comput. Sci., Nat. Tsing Hua Univ., Hsinchu, Taiwan – sequence: 2 surname: Chiou-Ting Hsu fullname: Chiou-Ting Hsu email: cthsu@cs.nthu.edu.tw organization: Dept. of Comput. Sci., Nat. Tsing Hua Univ., Hsinchu, Taiwan – sequence: 3 givenname: Hong-Yuan Mark surname: Liao fullname: Liao, Hong-Yuan Mark email: liao@iis.sinica.edu.tw organization: Inst. of Inf. Sci., Acad. Sinica, Taipei, Taiwan |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28402995$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/24457512$$D View this record in MEDLINE/PubMed |
| BookMark | eNqF0c9rFDEUB_AgFbtdvXoRZEAKXmZ9L79zLFtbCxULbs9DNpORlJnJmswc_O_NdtcKBfEUHny-L3l5Z-RkjKMn5C3CChHMp83dxdebFQVkK5T8BVlQlFAbaugJWQBKWmtN9Sk5y_kBALkA9oqcUs6FEkgX5PJ7GOZ-sqOPc642fswxVZfexWEXc5hCHCs7ttW61L1_LO9zGH9UV9ZNRd6lEFN-TV52ts_-zfFckvurz5v1l_r22_XN-uK2dhzkVHvtoTPdFoSWIDuwTrRCo2jRy05RppilovOcsdZJ1FpvGXKu6N55UJYtycdD312KP2efp2YI2fm-Pzy_QamQSwZU_Z9yQxWgKJctyYdn9CHOaSyDNCig9ONGm6LeH9W8HXzb7FIYbPrV_PnKAs6PwGZn-y7Z0YX812kO1BhR3OrgXIo5J989EYRmv9PmcafNfqdlIl4C_FnAhcnudzElG_p_x94dYsF7_3SHFFpxIdhv96eqww |
| CODEN | ITPIDJ |
| CitedBy_id | crossref_primary_10_1080_1206212X_2023_2219836 crossref_primary_10_1109_TNNLS_2016_2611525 crossref_primary_10_3390_a11070094 crossref_primary_10_1145_3417337 crossref_primary_10_3233_JIFS_202582 crossref_primary_10_1007_s00034_017_0732_1 crossref_primary_10_1109_JSTARS_2020_3012443 crossref_primary_10_1007_s11431_020_1839_5 crossref_primary_10_1016_j_mri_2022_01_013 crossref_primary_10_1109_TIP_2021_3128321 crossref_primary_10_3389_fninf_2022_880301 crossref_primary_10_1016_j_apm_2023_06_031 crossref_primary_10_1109_TCSVT_2021_3114208 crossref_primary_10_1109_TCSVT_2024_3514614 crossref_primary_10_1109_TCSVT_2022_3181471 crossref_primary_10_1016_j_trc_2019_08_013 crossref_primary_10_1109_TNNLS_2023_3266841 crossref_primary_10_1007_s00521_022_08023_5 crossref_primary_10_1007_s10044_024_01342_4 crossref_primary_10_1109_TSP_2022_3201330 crossref_primary_10_1145_3532189 crossref_primary_10_3390_app15010322 crossref_primary_10_1093_biostatistics_kxae047 crossref_primary_10_1109_TNNLS_2021_3083931 crossref_primary_10_1587_transinf_2018EDP7291 crossref_primary_10_1016_j_dsp_2019_08_001 crossref_primary_10_1109_TSP_2017_2695566 crossref_primary_10_1007_s00362_018_1043_8 crossref_primary_10_1137_19M1306518 crossref_primary_10_1109_TMM_2018_2806225 crossref_primary_10_1016_j_image_2018_09_010 crossref_primary_10_1007_s11431_020_1876_3 crossref_primary_10_3389_fnins_2022_866735 crossref_primary_10_1109_JSTSP_2020_3042063 crossref_primary_10_3390_e23091117 crossref_primary_10_1109_TCI_2016_2575740 crossref_primary_10_1016_j_image_2024_117193 crossref_primary_10_1049_iet_cvi_2016_0074 crossref_primary_10_1109_TCYB_2021_3140148 crossref_primary_10_1016_j_sigpro_2016_10_009 crossref_primary_10_1109_TCBB_2015_2465893 crossref_primary_10_3389_fams_2025_1594873 crossref_primary_10_1007_s10915_022_02006_3 crossref_primary_10_1109_TETCI_2019_2901540 crossref_primary_10_1007_s13042_021_01422_5 crossref_primary_10_1016_j_neucom_2020_01_009 crossref_primary_10_1137_140983689 crossref_primary_10_1007_s00521_015_2050_5 crossref_primary_10_1109_TSP_2016_2572047 crossref_primary_10_1109_TNNLS_2019_2956153 crossref_primary_10_1109_TPAMI_2015_2392756 crossref_primary_10_1177_1550147720916408 crossref_primary_10_1016_j_knosys_2023_110510 crossref_primary_10_1360_SSM_2024_0024 crossref_primary_10_1109_TNNLS_2015_2496858 crossref_primary_10_1109_LSP_2020_3030212 crossref_primary_10_1007_s12559_018_9574_9 crossref_primary_10_1109_ACCESS_2020_3008004 crossref_primary_10_1016_j_sigpro_2021_108425 crossref_primary_10_1109_TSP_2016_2586759 crossref_primary_10_1109_LSP_2025_3547662 crossref_primary_10_1109_TCYB_2014_2376938 crossref_primary_10_1049_iet_ipr_2018_6594 crossref_primary_10_1002_dac_4433 crossref_primary_10_1016_j_sigpro_2015_09_036 crossref_primary_10_1109_TGRS_2018_2872888 crossref_primary_10_1109_TVT_2018_2833505 crossref_primary_10_1109_ACCESS_2019_2894622 crossref_primary_10_1007_s10915_022_02005_4 crossref_primary_10_1109_TCYB_2018_2802934 crossref_primary_10_1109_TCSVT_2024_3442295 crossref_primary_10_3934_ipi_2021001 crossref_primary_10_1109_TNNLS_2021_3106654 crossref_primary_10_1049_itr2_12099 crossref_primary_10_1109_TNNLS_2018_2851612 crossref_primary_10_1016_j_cam_2022_114947 crossref_primary_10_1016_j_image_2019_08_001 crossref_primary_10_1109_ACCESS_2018_2866194 crossref_primary_10_1016_j_ins_2019_06_061 crossref_primary_10_1049_iet_ipr_2017_1203 crossref_primary_10_3390_math11071682 crossref_primary_10_1109_TGRS_2023_3284481 crossref_primary_10_1016_j_patcog_2021_108311 crossref_primary_10_1109_TNNLS_2022_3165076 crossref_primary_10_1109_ACCESS_2023_3291744 crossref_primary_10_1109_TNNLS_2015_2423694 crossref_primary_10_1016_j_patcog_2024_110678 crossref_primary_10_1109_ACCESS_2020_2984588 crossref_primary_10_1007_s41095_020_0176_6 crossref_primary_10_1109_TNNLS_2015_2465178 crossref_primary_10_1109_TIP_2017_2672439 crossref_primary_10_1016_j_image_2024_117152 crossref_primary_10_1109_ACCESS_2018_2850324 crossref_primary_10_1109_ACCESS_2024_3359036 crossref_primary_10_1109_TPAMI_2016_2554107 crossref_primary_10_1016_j_knosys_2018_02_027 crossref_primary_10_1109_TCYB_2022_3169800 crossref_primary_10_1109_TSP_2019_2946022 crossref_primary_10_1109_LSP_2019_2900126 crossref_primary_10_1109_TNNLS_2019_2952427 crossref_primary_10_1155_2018_2598160 crossref_primary_10_1016_j_sigpro_2021_108339 crossref_primary_10_1007_s10619_017_7199_8 crossref_primary_10_1016_j_neucom_2021_08_112 crossref_primary_10_1109_TNNLS_2016_2545400 crossref_primary_10_1016_j_neucom_2016_10_030 crossref_primary_10_1016_j_sigpro_2018_09_039 crossref_primary_10_1016_j_ins_2019_01_031 crossref_primary_10_1109_TCYB_2014_2374695 crossref_primary_10_1109_TCYB_2023_3234356 crossref_primary_10_1016_j_bspc_2021_103302 crossref_primary_10_1016_j_artint_2015_09_001 crossref_primary_10_1109_TIP_2024_3489272 crossref_primary_10_1016_j_neunet_2022_05_023 crossref_primary_10_1145_3278607 crossref_primary_10_1016_j_physa_2015_09_105 crossref_primary_10_3390_s24020334 |
| Cites_doi | 10.1007/s10107-009-0306-5 10.1109/ICCV.2009.5459463 10.1109/CVPR.1991.139758 10.1038/44565 10.1109/TPAMI.2011.238 10.1109/TIP.2011.2169274 10.1137/110822347 10.1109/34.598228 10.1137/080738970 10.1137/110820361 10.1109/TPAMI.2003.1251154 10.1137/070697835 10.1109/TPAMI.2012.97 10.1007/978-3-642-23783-6_32 10.1109/TSMCB.2011.2168953 10.1109/TIP.2013.2292303 10.1109/TPAMI.2005.55 10.1109/TSMCB.2010.2097588 10.5555/2981562.2981720 10.1109/ICIP.2011.6116443 10.1109/TPAMI.2012.39 10.1109/TPAMI.2012.132 10.1109/ICIG.2011.86 10.1109/CVPR.2010.5540138 10.1109/TSMCB.2012.2185490 10.1109/TIP.2003.819861 10.1109/CVPR.2010.5539849 10.1137/070711621 10.1007/978-3-642-15558-1_57 10.1007/s11263-012-0515-x 10.1090/S0025-5718-2012-02598-1 10.1109/TIP.2011.2158229 10.1109/TPAMI.2012.88 10.1109/ICCV.2007.4408932 10.1007/s10994-013-5366-3 10.1137/s0895479896305696 10.1016/j.chemolab.2010.08.004 10.1088/0266-5611/27/2/025010 10.1109/TPAMI.2007.250598 10.1162/NECO_a_00369 |
| ContentType | Journal Article |
| Copyright | 2015 INIST-CNRS Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2014 |
| Copyright_xml | – notice: 2015 INIST-CNRS – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2014 |
| DBID | 97E RIA RIE AAYXX CITATION IQODW NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 F28 FR3 |
| DOI | 10.1109/TPAMI.2013.164 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Pascal-Francis PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
| DatabaseTitle | CrossRef PubMed Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
| DatabaseTitleList | MEDLINE - Academic PubMed Technology Research Database Technology Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science Applied Sciences |
| EISSN | 2160-9292 1939-3539 |
| EndPage | 591 |
| ExternalDocumentID | 3238373051 24457512 28402995 10_1109_TPAMI_2013_164 6587455 |
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- -DZ -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E 9M8 AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ADRHT AENEX AETEA AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P FA8 HZ~ H~9 IBMZZ ICLAB IEDLZ IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNI RNS RXW RZB TAE TN5 UHB VH1 XJT ~02 AAYXX CITATION AAYOK IQODW RIG NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 F28 FR3 |
| ID | FETCH-LOGICAL-c406t-e8e0f9fb058606f0ac5d5815d1e6f72373a25fe433dc61888b314472ac5de07a3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 150 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000331450100014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0162-8828 1939-3539 |
| IngestDate | Sun Sep 28 08:03:51 EDT 2025 Mon Sep 29 03:11:50 EDT 2025 Sun Nov 09 08:27:10 EST 2025 Mon Jul 21 05:55:04 EDT 2025 Wed Apr 02 07:17:44 EDT 2025 Sat Nov 29 08:11:02 EST 2025 Tue Nov 18 22:00:30 EST 2025 Wed Aug 27 02:47:50 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Computer vision Data analysis Adaptive resonance theory Minimization Modeling multilinear model analysis Missing data Tensor completion Completeness Factorization method factor priors Tucker decomposition Tensor method Synthetic data |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c406t-e8e0f9fb058606f0ac5d5815d1e6f72373a25fe433dc61888b314472ac5de07a3 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| PMID | 24457512 |
| PQID | 1504634989 |
| PQPubID | 85458 |
| PageCount | 15 |
| ParticipantIDs | pascalfrancis_primary_28402995 crossref_primary_10_1109_TPAMI_2013_164 crossref_citationtrail_10_1109_TPAMI_2013_164 ieee_primary_6587455 proquest_journals_1504634989 proquest_miscellaneous_1671463027 proquest_miscellaneous_1492701543 pubmed_primary_24457512 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-03-01 |
| PublicationDateYYYYMMDD | 2014-03-01 |
| PublicationDate_xml | – month: 03 year: 2014 text: 2014-03-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Los Alamitos, CA |
| PublicationPlace_xml | – name: Los Alamitos, CA – name: United States – name: New York |
| PublicationTitle | IEEE transactions on pattern analysis and machine intelligence |
| PublicationTitleAbbrev | TPAMI |
| PublicationTitleAlternate | IEEE Trans Pattern Anal Mach Intell |
| PublicationYear | 2014 |
| Publisher | IEEE IEEE Computer Society The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: IEEE Computer Society – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 Tomioka (ref26) 2011 ref34 ref15 ref37 ref14 ref31 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref19 Li (ref18) Bertsekas (ref35) 1982 Adams (ref30) ref24 ref46 ref23 ref45 ref25 ref47 ref20 ref42 ref41 ref22 ref44 ref21 ref43 ref28 ref27 ref29 ref8 ref7 Duda (ref12) 2000 ref9 Shen (ref38) 2011 ref4 ref3 Lin (ref36) 2009 ref6 ref5 ref40 |
| References_xml | – ident: ref14 doi: 10.1007/s10107-009-0306-5 – ident: ref23 doi: 10.1109/ICCV.2009.5459463 – ident: ref43 doi: 10.1109/CVPR.1991.139758 – ident: ref13 doi: 10.1038/44565 – ident: ref19 doi: 10.1109/TPAMI.2011.238 – year: 2011 ident: ref26 article-title: Estimation of Low-Rank Tensors via Convex Optimization publication-title: Arxiv Preprint arXiv:1010.0789 – ident: ref6 doi: 10.1109/TIP.2011.2169274 – ident: ref37 doi: 10.1137/110822347 – ident: ref45 doi: 10.1109/34.598228 – ident: ref15 doi: 10.1137/080738970 – ident: ref34 doi: 10.1137/110820361 – ident: ref41 doi: 10.1109/TPAMI.2003.1251154 – ident: ref17 doi: 10.1137/070697835 – ident: ref11 doi: 10.1109/TPAMI.2012.97 – ident: ref32 doi: 10.1007/978-3-642-23783-6_32 – volume-title: technical report year: 2011 ident: ref38 article-title: Augmented Lagrangian Alternating Direction Method for Matrix Separation Based on Low-Rank Factorization – ident: ref9 doi: 10.1109/TSMCB.2011.2168953 – ident: ref33 doi: 10.1109/TIP.2013.2292303 – ident: ref44 doi: 10.1109/TPAMI.2005.55 – ident: ref22 doi: 10.1109/TSMCB.2010.2097588 – volume-title: Technical Report UILU-ENG-09-2215 year: 2009 ident: ref36 article-title: The Augmented Lagrange Multiplier Method for Exact Recovery of Corrupted Low-Rank Matrices – start-page: 1 volume-title: Proc. 26th Conf. Uncertainty in Artificial Intelligence ident: ref30 article-title: Incorporating Side Information in Probabilistic Matrix Factorization with Gaussian Process – ident: ref31 doi: 10.5555/2981562.2981720 – ident: ref2 doi: 10.1109/ICIP.2011.6116443 – ident: ref27 doi: 10.1109/TPAMI.2012.39 – ident: ref10 doi: 10.1109/TPAMI.2012.132 – start-page: 1126 volume-title: Proc. 21st Int’l Joint Conf. Artificial Intelligence ident: ref18 article-title: Relation Regularized Matrix Factorization – ident: ref7 doi: 10.1109/ICIG.2011.86 – ident: ref4 doi: 10.1109/CVPR.2010.5540138 – ident: ref16 doi: 10.1109/TSMCB.2012.2185490 – ident: ref46 doi: 10.1109/TIP.2003.819861 – ident: ref3 doi: 10.1109/CVPR.2010.5539849 – ident: ref20 doi: 10.1137/070711621 – ident: ref24 doi: 10.1007/978-3-642-15558-1_57 – ident: ref5 doi: 10.1007/s11263-012-0515-x – ident: ref42 doi: 10.1090/S0025-5718-2012-02598-1 – ident: ref47 doi: 10.1109/TIP.2011.2158229 – volume-title: Constrained Optimization and Lagrange Multiplier Method year: 1982 ident: ref35 – ident: ref8 doi: 10.1109/TPAMI.2012.88 – ident: ref1 doi: 10.1109/ICCV.2007.4408932 – volume-title: Pattern Classification year: 2000 ident: ref12 – ident: ref28 doi: 10.1007/s10994-013-5366-3 – ident: ref29 doi: 10.1137/s0895479896305696 – ident: ref21 doi: 10.1016/j.chemolab.2010.08.004 – ident: ref25 doi: 10.1088/0266-5611/27/2/025010 – ident: ref40 doi: 10.1109/TPAMI.2007.250598 – ident: ref39 doi: 10.1162/NECO_a_00369 |
| SSID | ssj0014503 |
| Score | 2.4403825 |
| Snippet | The success of research on matrix completion is evident in a variety of real-world applications. Tensor completion, which is a high-order extension of matrix... |
| SourceID | proquest pubmed pascalfrancis crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 577 |
| SubjectTerms | Applied sciences Approximation methods Artificial intelligence Brain modeling Computer science; control theory; systems Connectionism. Neural networks Convergence Decomposition Effectiveness Equations Exact sciences and technology factor priors Factorization Mathematical analysis Mathematical model Mathematical models Matrix decomposition multilinear model analysis Pattern recognition. Digital image processing. Computational geometry Tasks Tensile stress Tensor completion Tensors Tucker decomposition Visualization |
| Title | Simultaneous Tensor Decomposition and Completion Using Factor Priors |
| URI | https://ieeexplore.ieee.org/document/6587455 https://www.ncbi.nlm.nih.gov/pubmed/24457512 https://www.proquest.com/docview/1504634989 https://www.proquest.com/docview/1492701543 https://www.proquest.com/docview/1671463027 |
| Volume | 36 |
| WOSCitedRecordID | wos000331450100014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2160-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014503 issn: 0162-8828 databaseCode: RIE dateStart: 19790101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB_a4oM-WG39iNYjguCLaZPsbnb3sVgPfbAceMK9hb3dDRyURJK7_v2d2exFC1bwLSFDmMwHM5OZnR_AB8eEZ7myGW_WVca1q8jnbEab1xtaiCULG8Am5PW1Wq304gA-TWdhvPdh-Myf02Xo5bvO7uhX2QVGS8mFOIRDKeV4VmvqGHARUJAxg0EPxzIiLmgscn2xXFx-_0ZTXOwciwNa_4tMSFGU92JRAFeh0UgzoHSaEdbi4bwzxJ_58f9x_gyexjwzvRwN4zkc-PYEjvcYDml06RN48sdCwlO4-rGhCUPT-m43pEsscbs-vfI0dx6Hu1LTupReQ0u78TaMHKTzgNqTLvpN1w8v4Of8y_Lz1yziLGQWw_k288rnjW7WuVBYzjS5scIJVQhX-KqRJZPMlKLxnDFnqwJL5jXDMkyWROdzadhLOGq71r-GFLOVwghRcsobjFFrwSrutFGFLStXmgSyvcRrG5eQExbGTR2KkVzXQVk1KatGZSXwcaL_Na7feJDylMQ-UUWJJzC7p9DpOYblHEMxEpztNVxH9x1qzJLRVrlWOoH302N0POqmjDrAmkmXkjJQ9g-aSmIkotZwAq9G6_nNQDTCN39n_C08xk_j47jbGRxt-51_B4_s7XYz9DP0gJWaBQ-4A3fU_rg |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB9qFdQHq221sbVGEHwxbTa7m80-FuvRYnsceELfwt5mAweSSHLn39-ZzV60YIW-JWQIk_lgZjKz8wP4WHHpeFrYRNSLPBG6ysnnbEKb12taiKWY9WATajotbm70bAs-j2dhnHN--Myd0KXv5VetXdOvslOMlkpI-QgeSyEyNpzWGnsGQnocZMxh0MexkAgrGlmqT-ezs-tLmuPiJ1ge0AJgZENJlt2JRh5ehYYjTY_yqQdgi_szTx-BJjsP4_0lvAiZZnw2mMYr2HLNLuxsUBzi4NS78PyvlYR7cP59STOGpnHtuo_nWOS2XXzuaPI8jHfFpqlieg2t7cZbP3QQTzxuTzzrlm3X78OPydf5l4skIC0kFgP6KnGFS2tdL1JZYEFTp8bKShZMVszltcq44iaTtROcVzZnWDQvOBZiKiM6lyrDX8N20zbuAGLMV5iRMhOUORhTLCTPRaVNwWyWV5mJINlIvLRhDTmhYfwsfTmS6tIrqyRllaisCD6N9L-GBRz3Uu6R2EeqIPEIju8odHyOgTnFYIwERxsNl8GB-xLzZLRWoQsdwYfxMboe9VMGHWDVpDNFOSj_D02uMBZRcziCN4P1_GEgGOHbfzP-Hp5ezK-vyqvL6bdDeIafKYbhtyPYXnVr9w6e2N-rZd8dez-4BdhaASY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simultaneous+Tensor+Decomposition+and+Completion+Using+Factor+Priors&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Chen%2C+Yi-Lei&rft.au=Hsu%2C+Chiou-Ting&rft.au=Liao%2C+Hong-Yuan+Mark&rft.date=2014-03-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0162-8828&rft.eissn=1939-3539&rft.volume=36&rft.issue=3&rft.spage=577&rft_id=info:doi/10.1109%2FTPAMI.2013.164&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3238373051 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon |