Simultaneous Tensor Decomposition and Completion Using Factor Priors

The success of research on matrix completion is evident in a variety of real-world applications. Tensor completion, which is a high-order extension of matrix completion, has also generated a great deal of research interest in recent years. Given a tensor with incomplete entries, existing methods use...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence Jg. 36; H. 3; S. 577 - 591
Hauptverfasser: Yi-Lei Chen, Chiou-Ting Hsu, Liao, Hong-Yuan Mark
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Los Alamitos, CA IEEE 01.03.2014
IEEE Computer Society
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0162-8828, 1939-3539, 2160-9292, 1939-3539
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The success of research on matrix completion is evident in a variety of real-world applications. Tensor completion, which is a high-order extension of matrix completion, has also generated a great deal of research interest in recent years. Given a tensor with incomplete entries, existing methods use either factorization or completion schemes to recover the missing parts. However, as the number of missing entries increases, factorization schemes may overfit the model because of incorrectly predefined ranks, while completion schemes may fail to interpret the model factors. In this paper, we introduce a novel concept: complete the missing entries and simultaneously capture the underlying model structure. To this end, we propose a method called simultaneous tensor decomposition and completion (STDC) that combines a rank minimization technique with Tucker model decomposition. Moreover, as the model structure is implicitly included in the Tucker model, we use factor priors, which are usually known a priori in real-world tensor objects, to characterize the underlying joint-manifold drawn from the model factors. By exploiting this auxiliary information, our method leverages two classic schemes and accurately estimates the model factors and missing entries. We conducted experiments to empirically verify the convergence of our algorithm on synthetic data and evaluate its effectiveness on various kinds of real-world data. The results demonstrate the efficacy of the proposed method and its potential usage in tensor-based applications. It also outperforms state-of-the-art methods on multilinear model analysis and visual data completion tasks.
AbstractList The success of research on matrix completion is evident in a variety of real-world applications. Tensor completion, which is a high-order extension of matrix completion, has also generated a great deal of research interest in recent years. Given a tensor with incomplete entries, existing methods use either factorization or completion schemes to recover the missing parts. However, as the number of missing entries increases, factorization schemes may overfit the model because of incorrectly predefined ranks, while completion schemes may fail to interpret the model factors. In this paper, we introduce a novel concept: complete the missing entries and simultaneously capture the underlying model structure. To this end, we propose a method called simultaneous tensor decomposition and completion (STDC) that combines a rank minimization technique with Tucker model decomposition. Moreover, as the model structure is implicitly included in the Tucker model, we use factor priors, which are usually known a priori in real-world tensor objects, to characterize the underlying joint-manifold drawn from the model factors. By exploiting this auxiliary information, our method leverages two classic schemes and accurately estimates the model factors and missing entries. We conducted experiments to empirically verify the convergence of our algorithm on synthetic data and evaluate its effectiveness on various kinds of real-world data. The results demonstrate the efficacy of the proposed method and its potential usage in tensor-based applications. It also outperforms state-of-the-art methods on multilinear model analysis and visual data completion tasks.
The success of research on matrix completion is evident in a variety of real-world applications. Tensor completion, which is a high-order extension of matrix completion, has also generated a great deal of research interest in recent years. Given a tensor with incomplete entries, existing methods use either factorization or completion schemes to recover the missing parts. However, as the number of missing entries increases, factorization schemes may overfit the model because of incorrectly predefined ranks, while completion schemes may fail to interpret the model factors. In this paper, we introduce a novel concept: complete the missing entries and simultaneously capture the underlying model structure. To this end, we propose a method called simultaneous tensor decomposition and completion (STDC) that combines a rank minimization technique with Tucker model decomposition. Moreover, as the model structure is implicitly included in the Tucker model, we use factor priors, which are usually known a priori in real-world tensor objects, to characterize the underlying joint-manifold drawn from the model factors. By exploiting this auxiliary information, our method leverages two classic schemes and accurately estimates the model factors and missing entries. We conducted experiments to empirically verify the convergence of our algorithm on synthetic data and evaluate its effectiveness on various kinds of real-world data. The results demonstrate the efficacy of the proposed method and its potential usage in tensor-based applications. It also outperforms state-of-the-art methods on multilinear model analysis and visual data completion tasks.The success of research on matrix completion is evident in a variety of real-world applications. Tensor completion, which is a high-order extension of matrix completion, has also generated a great deal of research interest in recent years. Given a tensor with incomplete entries, existing methods use either factorization or completion schemes to recover the missing parts. However, as the number of missing entries increases, factorization schemes may overfit the model because of incorrectly predefined ranks, while completion schemes may fail to interpret the model factors. In this paper, we introduce a novel concept: complete the missing entries and simultaneously capture the underlying model structure. To this end, we propose a method called simultaneous tensor decomposition and completion (STDC) that combines a rank minimization technique with Tucker model decomposition. Moreover, as the model structure is implicitly included in the Tucker model, we use factor priors, which are usually known a priori in real-world tensor objects, to characterize the underlying joint-manifold drawn from the model factors. By exploiting this auxiliary information, our method leverages two classic schemes and accurately estimates the model factors and missing entries. We conducted experiments to empirically verify the convergence of our algorithm on synthetic data and evaluate its effectiveness on various kinds of real-world data. The results demonstrate the efficacy of the proposed method and its potential usage in tensor-based applications. It also outperforms state-of-the-art methods on multilinear model analysis and visual data completion tasks.
Author Yi-Lei Chen
Liao, Hong-Yuan Mark
Chiou-Ting Hsu
Author_xml – sequence: 1
  surname: Yi-Lei Chen
  fullname: Yi-Lei Chen
  email: fallcolor@gmail.com
  organization: Dept. of Comput. Sci., Nat. Tsing Hua Univ., Hsinchu, Taiwan
– sequence: 2
  surname: Chiou-Ting Hsu
  fullname: Chiou-Ting Hsu
  email: cthsu@cs.nthu.edu.tw
  organization: Dept. of Comput. Sci., Nat. Tsing Hua Univ., Hsinchu, Taiwan
– sequence: 3
  givenname: Hong-Yuan Mark
  surname: Liao
  fullname: Liao, Hong-Yuan Mark
  email: liao@iis.sinica.edu.tw
  organization: Inst. of Inf. Sci., Acad. Sinica, Taipei, Taiwan
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28402995$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/24457512$$D View this record in MEDLINE/PubMed
BookMark eNqF0c9rFDEUB_AgFbtdvXoRZEAKXmZ9L79zLFtbCxULbs9DNpORlJnJmswc_O_NdtcKBfEUHny-L3l5Z-RkjKMn5C3CChHMp83dxdebFQVkK5T8BVlQlFAbaugJWQBKWmtN9Sk5y_kBALkA9oqcUs6FEkgX5PJ7GOZ-sqOPc642fswxVZfexWEXc5hCHCs7ttW61L1_LO9zGH9UV9ZNRd6lEFN-TV52ts_-zfFckvurz5v1l_r22_XN-uK2dhzkVHvtoTPdFoSWIDuwTrRCo2jRy05RppilovOcsdZJ1FpvGXKu6N55UJYtycdD312KP2efp2YI2fm-Pzy_QamQSwZU_Z9yQxWgKJctyYdn9CHOaSyDNCig9ONGm6LeH9W8HXzb7FIYbPrV_PnKAs6PwGZn-y7Z0YX812kO1BhR3OrgXIo5J989EYRmv9PmcafNfqdlIl4C_FnAhcnudzElG_p_x94dYsF7_3SHFFpxIdhv96eqww
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1080_1206212X_2023_2219836
crossref_primary_10_1109_TNNLS_2016_2611525
crossref_primary_10_3390_a11070094
crossref_primary_10_1145_3417337
crossref_primary_10_3233_JIFS_202582
crossref_primary_10_1007_s00034_017_0732_1
crossref_primary_10_1109_JSTARS_2020_3012443
crossref_primary_10_1007_s11431_020_1839_5
crossref_primary_10_1016_j_mri_2022_01_013
crossref_primary_10_1109_TIP_2021_3128321
crossref_primary_10_3389_fninf_2022_880301
crossref_primary_10_1016_j_apm_2023_06_031
crossref_primary_10_1109_TCSVT_2021_3114208
crossref_primary_10_1109_TCSVT_2024_3514614
crossref_primary_10_1109_TCSVT_2022_3181471
crossref_primary_10_1016_j_trc_2019_08_013
crossref_primary_10_1109_TNNLS_2023_3266841
crossref_primary_10_1007_s00521_022_08023_5
crossref_primary_10_1007_s10044_024_01342_4
crossref_primary_10_1109_TSP_2022_3201330
crossref_primary_10_1145_3532189
crossref_primary_10_3390_app15010322
crossref_primary_10_1093_biostatistics_kxae047
crossref_primary_10_1109_TNNLS_2021_3083931
crossref_primary_10_1587_transinf_2018EDP7291
crossref_primary_10_1016_j_dsp_2019_08_001
crossref_primary_10_1109_TSP_2017_2695566
crossref_primary_10_1007_s00362_018_1043_8
crossref_primary_10_1137_19M1306518
crossref_primary_10_1109_TMM_2018_2806225
crossref_primary_10_1016_j_image_2018_09_010
crossref_primary_10_1007_s11431_020_1876_3
crossref_primary_10_3389_fnins_2022_866735
crossref_primary_10_1109_JSTSP_2020_3042063
crossref_primary_10_3390_e23091117
crossref_primary_10_1109_TCI_2016_2575740
crossref_primary_10_1016_j_image_2024_117193
crossref_primary_10_1049_iet_cvi_2016_0074
crossref_primary_10_1109_TCYB_2021_3140148
crossref_primary_10_1016_j_sigpro_2016_10_009
crossref_primary_10_1109_TCBB_2015_2465893
crossref_primary_10_3389_fams_2025_1594873
crossref_primary_10_1007_s10915_022_02006_3
crossref_primary_10_1109_TETCI_2019_2901540
crossref_primary_10_1007_s13042_021_01422_5
crossref_primary_10_1016_j_neucom_2020_01_009
crossref_primary_10_1137_140983689
crossref_primary_10_1007_s00521_015_2050_5
crossref_primary_10_1109_TSP_2016_2572047
crossref_primary_10_1109_TNNLS_2019_2956153
crossref_primary_10_1109_TPAMI_2015_2392756
crossref_primary_10_1177_1550147720916408
crossref_primary_10_1016_j_knosys_2023_110510
crossref_primary_10_1360_SSM_2024_0024
crossref_primary_10_1109_TNNLS_2015_2496858
crossref_primary_10_1109_LSP_2020_3030212
crossref_primary_10_1007_s12559_018_9574_9
crossref_primary_10_1109_ACCESS_2020_3008004
crossref_primary_10_1016_j_sigpro_2021_108425
crossref_primary_10_1109_TSP_2016_2586759
crossref_primary_10_1109_LSP_2025_3547662
crossref_primary_10_1109_TCYB_2014_2376938
crossref_primary_10_1049_iet_ipr_2018_6594
crossref_primary_10_1002_dac_4433
crossref_primary_10_1016_j_sigpro_2015_09_036
crossref_primary_10_1109_TGRS_2018_2872888
crossref_primary_10_1109_TVT_2018_2833505
crossref_primary_10_1109_ACCESS_2019_2894622
crossref_primary_10_1007_s10915_022_02005_4
crossref_primary_10_1109_TCYB_2018_2802934
crossref_primary_10_1109_TCSVT_2024_3442295
crossref_primary_10_3934_ipi_2021001
crossref_primary_10_1109_TNNLS_2021_3106654
crossref_primary_10_1049_itr2_12099
crossref_primary_10_1109_TNNLS_2018_2851612
crossref_primary_10_1016_j_cam_2022_114947
crossref_primary_10_1016_j_image_2019_08_001
crossref_primary_10_1109_ACCESS_2018_2866194
crossref_primary_10_1016_j_ins_2019_06_061
crossref_primary_10_1049_iet_ipr_2017_1203
crossref_primary_10_3390_math11071682
crossref_primary_10_1109_TGRS_2023_3284481
crossref_primary_10_1016_j_patcog_2021_108311
crossref_primary_10_1109_TNNLS_2022_3165076
crossref_primary_10_1109_ACCESS_2023_3291744
crossref_primary_10_1109_TNNLS_2015_2423694
crossref_primary_10_1016_j_patcog_2024_110678
crossref_primary_10_1109_ACCESS_2020_2984588
crossref_primary_10_1007_s41095_020_0176_6
crossref_primary_10_1109_TNNLS_2015_2465178
crossref_primary_10_1109_TIP_2017_2672439
crossref_primary_10_1016_j_image_2024_117152
crossref_primary_10_1109_ACCESS_2018_2850324
crossref_primary_10_1109_ACCESS_2024_3359036
crossref_primary_10_1109_TPAMI_2016_2554107
crossref_primary_10_1016_j_knosys_2018_02_027
crossref_primary_10_1109_TCYB_2022_3169800
crossref_primary_10_1109_TSP_2019_2946022
crossref_primary_10_1109_LSP_2019_2900126
crossref_primary_10_1109_TNNLS_2019_2952427
crossref_primary_10_1155_2018_2598160
crossref_primary_10_1016_j_sigpro_2021_108339
crossref_primary_10_1007_s10619_017_7199_8
crossref_primary_10_1016_j_neucom_2021_08_112
crossref_primary_10_1109_TNNLS_2016_2545400
crossref_primary_10_1016_j_neucom_2016_10_030
crossref_primary_10_1016_j_sigpro_2018_09_039
crossref_primary_10_1016_j_ins_2019_01_031
crossref_primary_10_1109_TCYB_2014_2374695
crossref_primary_10_1109_TCYB_2023_3234356
crossref_primary_10_1016_j_bspc_2021_103302
crossref_primary_10_1016_j_artint_2015_09_001
crossref_primary_10_1109_TIP_2024_3489272
crossref_primary_10_1016_j_neunet_2022_05_023
crossref_primary_10_1145_3278607
crossref_primary_10_1016_j_physa_2015_09_105
crossref_primary_10_3390_s24020334
Cites_doi 10.1007/s10107-009-0306-5
10.1109/ICCV.2009.5459463
10.1109/CVPR.1991.139758
10.1038/44565
10.1109/TPAMI.2011.238
10.1109/TIP.2011.2169274
10.1137/110822347
10.1109/34.598228
10.1137/080738970
10.1137/110820361
10.1109/TPAMI.2003.1251154
10.1137/070697835
10.1109/TPAMI.2012.97
10.1007/978-3-642-23783-6_32
10.1109/TSMCB.2011.2168953
10.1109/TIP.2013.2292303
10.1109/TPAMI.2005.55
10.1109/TSMCB.2010.2097588
10.5555/2981562.2981720
10.1109/ICIP.2011.6116443
10.1109/TPAMI.2012.39
10.1109/TPAMI.2012.132
10.1109/ICIG.2011.86
10.1109/CVPR.2010.5540138
10.1109/TSMCB.2012.2185490
10.1109/TIP.2003.819861
10.1109/CVPR.2010.5539849
10.1137/070711621
10.1007/978-3-642-15558-1_57
10.1007/s11263-012-0515-x
10.1090/S0025-5718-2012-02598-1
10.1109/TIP.2011.2158229
10.1109/TPAMI.2012.88
10.1109/ICCV.2007.4408932
10.1007/s10994-013-5366-3
10.1137/s0895479896305696
10.1016/j.chemolab.2010.08.004
10.1088/0266-5611/27/2/025010
10.1109/TPAMI.2007.250598
10.1162/NECO_a_00369
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2014
Copyright_xml – notice: 2015 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2014
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
F28
FR3
DOI 10.1109/TPAMI.2013.164
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Technology Research Database
PubMed
Technology Research Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Applied Sciences
EISSN 2160-9292
1939-3539
EndPage 591
ExternalDocumentID 3238373051
24457512
28402995
10_1109_TPAMI_2013_164
6587455
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ADRHT
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
FA8
HZ~
H~9
IBMZZ
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RXW
RZB
TAE
TN5
UHB
VH1
XJT
~02
AAYXX
CITATION
AAYOK
IQODW
RIG
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
F28
FR3
ID FETCH-LOGICAL-c406t-e8e0f9fb058606f0ac5d5815d1e6f72373a25fe433dc61888b314472ac5de07a3
IEDL.DBID RIE
ISICitedReferencesCount 149
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000331450100014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0162-8828
1939-3539
IngestDate Sun Sep 28 08:03:51 EDT 2025
Mon Sep 29 03:11:50 EDT 2025
Sun Nov 09 08:27:10 EST 2025
Mon Jul 21 05:55:04 EDT 2025
Wed Apr 02 07:17:44 EDT 2025
Sat Nov 29 08:11:02 EST 2025
Tue Nov 18 22:00:30 EST 2025
Wed Aug 27 02:47:50 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Computer vision
Data analysis
Adaptive resonance theory
Minimization
Modeling
multilinear model analysis
Missing data
Tensor completion
Completeness
Factorization method
factor priors
Tucker decomposition
Tensor method
Synthetic data
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-e8e0f9fb058606f0ac5d5815d1e6f72373a25fe433dc61888b314472ac5de07a3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 24457512
PQID 1504634989
PQPubID 85458
PageCount 15
ParticipantIDs pascalfrancis_primary_28402995
crossref_primary_10_1109_TPAMI_2013_164
crossref_citationtrail_10_1109_TPAMI_2013_164
ieee_primary_6587455
proquest_journals_1504634989
proquest_miscellaneous_1671463027
proquest_miscellaneous_1492701543
pubmed_primary_24457512
PublicationCentury 2000
PublicationDate 2014-03-01
PublicationDateYYYYMMDD 2014-03-01
PublicationDate_xml – month: 03
  year: 2014
  text: 2014-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Los Alamitos, CA
PublicationPlace_xml – name: Los Alamitos, CA
– name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2014
Publisher IEEE
IEEE Computer Society
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: IEEE Computer Society
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
Tomioka (ref26) 2011
ref34
ref15
ref37
ref14
ref31
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref19
Li (ref18)
Bertsekas (ref35) 1982
Adams (ref30)
ref24
ref46
ref23
ref45
ref25
ref47
ref20
ref42
ref41
ref22
ref44
ref21
ref43
ref28
ref27
ref29
ref8
ref7
Duda (ref12) 2000
ref9
Shen (ref38) 2011
ref4
ref3
Lin (ref36) 2009
ref6
ref5
ref40
References_xml – ident: ref14
  doi: 10.1007/s10107-009-0306-5
– ident: ref23
  doi: 10.1109/ICCV.2009.5459463
– ident: ref43
  doi: 10.1109/CVPR.1991.139758
– ident: ref13
  doi: 10.1038/44565
– ident: ref19
  doi: 10.1109/TPAMI.2011.238
– year: 2011
  ident: ref26
  article-title: Estimation of Low-Rank Tensors via Convex Optimization
  publication-title: Arxiv Preprint arXiv:1010.0789
– ident: ref6
  doi: 10.1109/TIP.2011.2169274
– ident: ref37
  doi: 10.1137/110822347
– ident: ref45
  doi: 10.1109/34.598228
– ident: ref15
  doi: 10.1137/080738970
– ident: ref34
  doi: 10.1137/110820361
– ident: ref41
  doi: 10.1109/TPAMI.2003.1251154
– ident: ref17
  doi: 10.1137/070697835
– ident: ref11
  doi: 10.1109/TPAMI.2012.97
– ident: ref32
  doi: 10.1007/978-3-642-23783-6_32
– volume-title: technical report
  year: 2011
  ident: ref38
  article-title: Augmented Lagrangian Alternating Direction Method for Matrix Separation Based on Low-Rank Factorization
– ident: ref9
  doi: 10.1109/TSMCB.2011.2168953
– ident: ref33
  doi: 10.1109/TIP.2013.2292303
– ident: ref44
  doi: 10.1109/TPAMI.2005.55
– ident: ref22
  doi: 10.1109/TSMCB.2010.2097588
– volume-title: Technical Report UILU-ENG-09-2215
  year: 2009
  ident: ref36
  article-title: The Augmented Lagrange Multiplier Method for Exact Recovery of Corrupted Low-Rank Matrices
– start-page: 1
  volume-title: Proc. 26th Conf. Uncertainty in Artificial Intelligence
  ident: ref30
  article-title: Incorporating Side Information in Probabilistic Matrix Factorization with Gaussian Process
– ident: ref31
  doi: 10.5555/2981562.2981720
– ident: ref2
  doi: 10.1109/ICIP.2011.6116443
– ident: ref27
  doi: 10.1109/TPAMI.2012.39
– ident: ref10
  doi: 10.1109/TPAMI.2012.132
– start-page: 1126
  volume-title: Proc. 21st Int’l Joint Conf. Artificial Intelligence
  ident: ref18
  article-title: Relation Regularized Matrix Factorization
– ident: ref7
  doi: 10.1109/ICIG.2011.86
– ident: ref4
  doi: 10.1109/CVPR.2010.5540138
– ident: ref16
  doi: 10.1109/TSMCB.2012.2185490
– ident: ref46
  doi: 10.1109/TIP.2003.819861
– ident: ref3
  doi: 10.1109/CVPR.2010.5539849
– ident: ref20
  doi: 10.1137/070711621
– ident: ref24
  doi: 10.1007/978-3-642-15558-1_57
– ident: ref5
  doi: 10.1007/s11263-012-0515-x
– ident: ref42
  doi: 10.1090/S0025-5718-2012-02598-1
– ident: ref47
  doi: 10.1109/TIP.2011.2158229
– volume-title: Constrained Optimization and Lagrange Multiplier Method
  year: 1982
  ident: ref35
– ident: ref8
  doi: 10.1109/TPAMI.2012.88
– ident: ref1
  doi: 10.1109/ICCV.2007.4408932
– volume-title: Pattern Classification
  year: 2000
  ident: ref12
– ident: ref28
  doi: 10.1007/s10994-013-5366-3
– ident: ref29
  doi: 10.1137/s0895479896305696
– ident: ref21
  doi: 10.1016/j.chemolab.2010.08.004
– ident: ref25
  doi: 10.1088/0266-5611/27/2/025010
– ident: ref40
  doi: 10.1109/TPAMI.2007.250598
– ident: ref39
  doi: 10.1162/NECO_a_00369
SSID ssj0014503
Score 2.4405024
Snippet The success of research on matrix completion is evident in a variety of real-world applications. Tensor completion, which is a high-order extension of matrix...
SourceID proquest
pubmed
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 577
SubjectTerms Applied sciences
Approximation methods
Artificial intelligence
Brain modeling
Computer science; control theory; systems
Connectionism. Neural networks
Convergence
Decomposition
Effectiveness
Equations
Exact sciences and technology
factor priors
Factorization
Mathematical analysis
Mathematical model
Mathematical models
Matrix decomposition
multilinear model analysis
Pattern recognition. Digital image processing. Computational geometry
Tasks
Tensile stress
Tensor completion
Tensors
Tucker decomposition
Visualization
Title Simultaneous Tensor Decomposition and Completion Using Factor Priors
URI https://ieeexplore.ieee.org/document/6587455
https://www.ncbi.nlm.nih.gov/pubmed/24457512
https://www.proquest.com/docview/1504634989
https://www.proquest.com/docview/1492701543
https://www.proquest.com/docview/1671463027
Volume 36
WOSCitedRecordID wos000331450100014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2160-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014503
  issn: 0162-8828
  databaseCode: RIE
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Na9wwEB2S0EN7aJqkH26TRYVCL3UiS7JlH0OTJT00LHQLezOyNIaFYBd7N78_I9nrNtAUerPRYGSNxjPPM5oH8CnRaEXiiriqHY-VUDI2wqmYiwplxQ0F5SqQTejb23y1KhZ78GU6C4OIofgMz_1lyOW71m79r7IL8pZapek-7Guth7NaU8ZApYEFmSIYsnCCEWODxoQXF8vF5fdvvopLnhM48O1_lfLpBvHIFwVyFV8aaXpanXqgtXg67gz-Z374fzN_BS_HOJNdDhvjCPawOYbDHYcDG036GF780ZDwBK5-rH2FoWmw3fZsSRC37dgV-rrzsbiLmcYx_xjftJtuQ8kBmwfWHrbo1m3Xv4af8-vl15t45FmILbnzTYw58rqoK57mBGdqbmzq0jxJXYJZrYXU0oi0RiWls1lCkLmSBMO08HLItZFv4KBpG3wHTCbS0qfXWplplTltUNYqQ1ULwzErXATxbsVLOzYh91wYd2UAI7wog7JKr6ySlBXB50n-19B-40nJE7_sk9S44hHMHil0Gie3zMkVk8DpTsPlaL59SVGyyqQq8iKCj9MwGZ7Ppgw6IMxUCO0jUPkPmUyTJ_Kp4QjeDrvn9wTGTfj-7xP_AM_p1dRQ7nYKB5tui2fwzN5v1n03IwtY5bNgAQ-wB__D
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Ra9RAEB5qFdQHq23VaK0RBF9Mu9ndZJPHYj1abI8DT-hb2OzOwoEkktz5-53d5KIFK_iWsEPY7Oxk5st8OwPwPlVoeGrLpHaWJZJLkWhuZcJ4jaJmmoJyGZpNqPm8uLkpFzvwcToLg4iBfIYn_jLk8m1rNv5X2Sl5SyWz7B7cz6Tk6XBaa8oZyCz0QaYYhmycgMRYojFl5elycXZ96Xlc4oTggS8ALKVPOPBb3ii0V_HkSN3T-rihscXdkWfwQLO9_5v7U3gyRprx2bA1nsEONvuwt-3iEI9GvQ-P_yhJeADnX1eeY6gbbDd9vCSQ23bxOXrm-UjvinVjY_8YX7abbgPpIJ6Fvj3xolu1XX8I32afl58ukrHTQmLIoa8TLJC50tUsKwjQOKZNZrMizWyKuVNcKKF55lAKYU2eEmiuBQExxb0cMqXFc9ht2gZfQixSYejja4zIlcyt0iiczFE6rhnmpY0g2a54ZcYy5L4bxvcqwBFWVkFZlVdWRcqK4MMk_2MowHGn5IFf9klqXPEIjm8pdBonx8zIGZPA0VbD1WjAfUVxssyFLIsygnfTMJmez6cMOiDUVHLlY1DxD5lckS_yyeEIXgy75_cExk346u8TfwsPL5bXV9XV5fzLa3hErykH8tsR7K67Db6BB-bnetV3x8EOfgEXpgIx
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simultaneous+Tensor+Decomposition+and+Completion+Using+Factor+Priors&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=CHEN%2C+Yi-Lei&rft.au=HSU%2C+Chiou-Ting&rft.au=MARK+LIAO%2C+Hong-Yuan&rft.date=2014-03-01&rft.pub=IEEE+Computer+Society&rft.issn=0162-8828&rft.volume=36&rft.issue=3&rft.spage=577&rft.epage=591&rft_id=info:doi/10.1109%2FTPAMI.2013.164&rft.externalDBID=n%2Fa&rft.externalDocID=28402995
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon