WeDIV – An improved k-means clustering algorithm with a weighted distance and a novel internal validation index
Designing appropriate similarity metrics (distance) and estimating the optimal number of clusters have been two important issues in cluster analysis. This study proposed an improved k-means clustering algorithm involving a Weighted Distance and a novel Internal Validation index (WeDIV). The weighted...
Gespeichert in:
| Veröffentlicht in: | Egyptian informatics journal Jg. 23; H. 4; S. 133 - 144 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
01.12.2022
Elsevier |
| Schlagworte: | |
| ISSN: | 1110-8665, 2090-4754 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Designing appropriate similarity metrics (distance) and estimating the optimal number of clusters have been two important issues in cluster analysis. This study proposed an improved k-means clustering algorithm involving a Weighted Distance and a novel Internal Validation index (WeDIV). The weighted distance, EP_dis, was designed by considering the relative contribution between Euclidean and Pearson distances with a weighted strategy. This strategy can effectively capture information reflecting the globally spatial correlation and locally variable trend simultaneously in high-dimensional space. The new internal validation index,RCH, inspired by the Calinski-Harabasz (CH) index and the analysis of variance, was developed to automatically estimate the optimal number of clusters. The EP_dis was proved reliable in mathematics and was validated on two simulated datasets. Four simulated datasets representing different properties were used to validate the effectiveness of RCH. Furthermore, We compared the clustering performance of WeDIV with 12 prevailing clustering algorithms on 16 UCI datasets. The results demonstrated that WeDIV outperforms the others regardless of specifying the number of clusters or not. |
|---|---|
| AbstractList | Designing appropriate similarity metrics (distance) and estimating the optimal number of clusters have been two important issues in cluster analysis. This study proposed an improved k-means clustering algorithm involving a Weighted Distance and a novel Internal Validation index (WeDIV). The weighted distance, EP_dis, was designed by considering the relative contribution between Euclidean and Pearson distances with a weighted strategy. This strategy can effectively capture information reflecting the globally spatial correlation and locally variable trend simultaneously in high-dimensional space. The new internal validation index,RCH, inspired by the Calinski-Harabasz (CH) index and the analysis of variance, was developed to automatically estimate the optimal number of clusters. The EP_dis was proved reliable in mathematics and was validated on two simulated datasets. Four simulated datasets representing different properties were used to validate the effectiveness of RCH. Furthermore, We compared the clustering performance of WeDIV with 12 prevailing clustering algorithms on 16 UCI datasets. The results demonstrated that WeDIV outperforms the others regardless of specifying the number of clusters or not. |
| Author | Sabo, Umar Jlbrilla Ning, Zilan Chen, Jin Huang, Jianjun Yuan, Zheming Dai, Zhijun |
| Author_xml | – sequence: 1 givenname: Zilan surname: Ning fullname: Ning, Zilan organization: Hunan Engineering & Technology Research Centre for Agricultural Big Data Analysis & Decision-making, Hunan Agricultural University, Changsha 410128, China – sequence: 2 givenname: Jin surname: Chen fullname: Chen, Jin organization: Hunan Engineering & Technology Research Centre for Agricultural Big Data Analysis & Decision-making, Hunan Agricultural University, Changsha 410128, China – sequence: 3 givenname: Jianjun surname: Huang fullname: Huang, Jianjun organization: Hunan Engineering & Technology Research Centre for Agricultural Big Data Analysis & Decision-making, Hunan Agricultural University, Changsha 410128, China – sequence: 4 givenname: Umar Jlbrilla surname: Sabo fullname: Sabo, Umar Jlbrilla organization: Hunan Engineering & Technology Research Centre for Agricultural Big Data Analysis & Decision-making, Hunan Agricultural University, Changsha 410128, China – sequence: 5 givenname: Zheming surname: Yuan fullname: Yuan, Zheming organization: Hunan Engineering & Technology Research Centre for Agricultural Big Data Analysis & Decision-making, Hunan Agricultural University, Changsha 410128, China – sequence: 6 givenname: Zhijun surname: Dai fullname: Dai, Zhijun email: daizhijun@hunau.edu.cn organization: Hunan Engineering & Technology Research Centre for Agricultural Big Data Analysis & Decision-making, Hunan Agricultural University, Changsha 410128, China |
| BookMark | eNp9kUtuFDEQhi0UJIaQA7DzBbqxHT-6xSoKr5EiseGxtKrt8sRNjzvYZgI77sANOQlOBrFgES9sqezvU7n-p-QkrQkJec5ZzxnXL-Ye49wLJkTPxp4x8YhsBBtZJ42SJ2TDOWfdoLV6Qs5KmVlbmgup9IZ8_Yyvtp_o75-_6EWicX-T1wN6-qXbI6RC3fKtVMwx7SgsuzXHer2nt22nQG8x7q5re-xjqZAcUki-1VMzLDSmxiVY6AGW6KHGtemTx-_PyOMAS8Gzv-cp-fjm9YfLd93V-7fby4urzkmma4fGKa8nPTiBZhhGFkCJ4NzAUIPiQgQ5BqGDYaHdc3UuJqEmJyUH0b7tzk_J9uj1K8z2Jsc95B92hWjvC2veWcg1ugWtB82NAT0FzaQAnCYMftAKOZeGedNc_OhyeS0lY_jn48zeRWBn2yKwdxFYNtoWQWPMf4yL9X4ONUNcHiRfHkls4zlEzLa4iG3APmZ0tfUfH6D_AMdVpFQ |
| CitedBy_id | crossref_primary_10_3390_agriculture14111915 crossref_primary_10_7717_peerj_14706 crossref_primary_10_1002_qre_3725 crossref_primary_10_52080_rvgluz_30_110_17 |
| Cites_doi | 10.1016/j.patcog.2018.05.028 10.1126/science.1242072 10.1016/j.eswa.2016.08.059 10.1016/j.compag.2019.104962 10.1111/j.2517-6161.1977.tb01600.x 10.1016/0098-3004(84)90020-7 10.1016/j.ins.2018.06.035 10.1016/j.asoc.2011.11.008 10.1109/TIT.1982.1056489 10.1016/j.spl.2013.09.026 10.1186/s12859-016-0893-0 10.1093/biomet/74.1.71 10.1039/D0RA00061B 10.1016/j.patcog.2011.08.012 10.1186/s12920-018-0433-z 10.1007/s10115-007-0114-2 10.1109/ICDM.2010.35 10.1016/0377-0427(87)90125-7 10.1016/j.eswa.2018.09.006 10.1263/jbb.105.273 10.14257/ijast.2014.62.04 10.1016/j.knosys.2018.10.022 10.1093/comjnl/16.1.30 10.1109/TPAMI.1979.4766909 10.1016/j.patcog.2019.04.014 10.1016/j.patrec.2018.09.003 10.1038/s41576-018-0088-9 10.1016/j.patcog.2018.05.011 10.1016/j.asoc.2016.01.040 10.1016/j.patrec.2017.09.025 10.1016/j.eswa.2019.05.030 10.1093/bib/bby076 10.1016/j.ins.2015.11.005 10.1016/j.ins.2017.05.024 10.1016/j.patcog.2012.04.031 10.1109/TETC.2014.2330519 10.1016/j.eswa.2016.09.025 10.1016/j.eswa.2008.01.039 10.1016/j.eswa.2012.07.021 10.1016/j.knosys.2018.03.009 10.1016/j.knosys.2016.06.031 10.4018/IJISMD.2019010103 10.1111/1467-9868.00293 10.1016/j.ins.2017.07.036 10.1016/j.patcog.2017.05.017 10.1016/j.patrec.2012.06.008 10.1016/j.measurement.2019.106952 10.1145/331499.331504 10.1155/2015/626975 10.1016/0304-3975(85)90224-5 10.1109/TAC.1974.1100705 10.1016/j.patrec.2009.09.011 10.1016/j.bdq.2017.07.001 10.1016/j.patcog.2017.09.045 10.1016/S0031-3203(01)00197-2 10.1007/s00357-010-9049-5 10.1016/j.knosys.2018.10.001 10.1007/BF02294245 10.1109/TIT.2014.2375327 10.2307/2348072 |
| ContentType | Journal Article |
| Copyright | 2022 |
| Copyright_xml | – notice: 2022 |
| DBID | 6I. AAFTH AAYXX CITATION DOA |
| DOI | 10.1016/j.eij.2022.09.002 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2090-4754 |
| EndPage | 144 |
| ExternalDocumentID | oai_doaj_org_article_da6177a6bf6042aebbefd865e11470d7 10_1016_j_eij_2022_09_002 S1110866522000639 |
| GroupedDBID | --K 0R~ 0SF 1B1 4.4 457 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABMAC ACGFS ADBBV ADEZE AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV E3Z EBS EJD FDB GROUPED_DOAJ HZ~ IPNFZ IXB KQ8 M41 NCXOZ O-L O9- OK1 RIG ROL SES SSZ AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION |
| ID | FETCH-LOGICAL-c406t-e7c5d6b68c2e78890fa52fcc80e6a5122f49f26f70fe781532b25bc441a2475c3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000903536100012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1110-8665 |
| IngestDate | Fri Oct 03 12:50:25 EDT 2025 Wed Oct 29 21:26:25 EDT 2025 Tue Nov 18 22:16:04 EST 2025 Wed May 17 00:08:12 EDT 2023 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | EP_dis Internal validation index Weighted distance Clustering RCH |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c406t-e7c5d6b68c2e78890fa52fcc80e6a5122f49f26f70fe781532b25bc441a2475c3 |
| OpenAccessLink | https://doaj.org/article/da6177a6bf6042aebbefd865e11470d7 |
| PageCount | 12 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_da6177a6bf6042aebbefd865e11470d7 crossref_primary_10_1016_j_eij_2022_09_002 crossref_citationtrail_10_1016_j_eij_2022_09_002 elsevier_sciencedirect_doi_10_1016_j_eij_2022_09_002 |
| PublicationCentury | 2000 |
| PublicationDate | December 2022 2022-12-00 2022-12-01 |
| PublicationDateYYYYMMDD | 2022-12-01 |
| PublicationDate_xml | – month: 12 year: 2022 text: December 2022 |
| PublicationDecade | 2020 |
| PublicationTitle | Egyptian informatics journal |
| PublicationYear | 2022 |
| Publisher | Elsevier B.V Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier |
| References | Zhang, Yang, Li, Zhang, Wang, Fujita (b0080) 2020; 199 Pelleg, Moore (b0145) 2002 Gonzalez (b0240) 1985; 38 Mittal M, Sharma RK, Singh VP. Modified single pass clustering with variable threshold approach. Int J Innov Comput Inf Control 2015;11(1):375–386. Fulekar (b0335) 2009 Kaufman L, Rousseeuw PJ. Finding Groups in Data: An Introduction to Cluster Analysis (DBLP); 2009. Chiang, Mirkin (b0190) 2010; 27 Jiang, Liu, Du, Sui (b0260) 2016; 332 Park, Jun (b0130) 2009; 36 Qi, Ma, Ma, Zou (b0345) 2019; 4 Milligan, Cooper (b0185) 1985; 50 Bousidis, Zouzias, Mahoney, Drineas (b0210) 2015; 61 Janani, Vijayarani (b0045) 2019; 134 Hussain, Haris (b0195) 2019; 118 Arima, Hakamada, Okamoto, Hanai (b0305) 2008; 105 Amorim, Mirkin (b0290) 2012; 45 Fahad, Alshatri, Tari, Alamri, Bouras (b0015) 2014; 2 Fränti, Sieranoja (b0275) 2019; 93 Bicego, Figueiredo (b0225) 2018; 83 Chakraborty, Das (b0295) 2017; 100 Celebi, Kingravi, Vela (b0200) 2013; 40 Bezdek (b0135) 1981 Caliński, Harabasz (b0175) 1974; 3 Vladimir, Tallulash, Martin (b0350) 2019; 20 Meng, Liang, Cao, He (b0300) 2018; 463–464 Kumar, Sahoo (b0255) 2014; 62 Sibson (b0105) 1973; 16 Bezdek, Ehrlich, Full (b0140) 1984; 10 Taiyun, Chen, Lin, Wang, Yang, Yang (b0150) 2019; 20 Wang, Yang, Liu, Fujita (b0030) 2019; 163 Khanmohammadi, Adibeig, Shanehbandy (b0065) 2017; 67 Rousseeuw (b0170) 1987; 20 Zhang, Yang, Li, Fujita (b0025) 2019; 163 Kumar, Reddy (b0265) 2017; 418 Lam, Tsang (b0050) 2012; 12 Li, Dai, Cao, Luo, Chen, Yuan (b0355) 2020; 10 Nithya, Appathurai, Venkatadri, Ramji, Palagan (b0070) 2020; 149 Gupta, Datta, Das (b0320) 2018; 116 Liu, Li, Xiong, Gao, Wu (b0155) 2010 Jain, Murty, Flynn (b0010) 1999; 31 Mur, Dormido, Duro, Dormido-Canto, Vega (b0310) 2016; 65 Rodriguez, Laio (b0235) 2014; 344 Zhang, Cao, Zhang (b0340) 2014; 37 Sun C, Dai Z, Zhang H, Li L Yuan Z. Binary Matrix Shuffling Filter for Feature Selection in Neuronal Morphology Classification. Computational and Mathematical Methods in Medicine 2015;(2015-3-29):626975. Yang, Lai, Lin (b0100) 2012; 45 Mclachlan GJ, Basford KE. Mixture models: inference and applications to clustering (M. Dekker); 1988. Davies, Bouldin (b0165) 1979; PAMI-1 Chen, Wang, Li, Zhang, Yuan (b0360) 2016; 17 Zhou, Yang, Ding, Luo (b0160) 2014; 34 Tian, Li, Zeng, Evans, Zhang (b0035) 2019; 165 Lloyd (b0230) 1982; 28 Dempster, Laird, Rubin (b0095) 1977; 39 Akaike (b0330) 1974; 19 Yang, Nataliani (b0085) 2017; 71 Renato, Makarenkov, Mirkin (b0110) 2016; 370 Wu, Kumar, Quinlan, Ghosh, Yang, Motoda, Mclachlan, Ng, Liu, Yu, Zhou, Steinbach, Hand, Steinberg (b0115) 2008; 14 James, James (b0325) 1987; 74 Gan, Li, Zou, Xin, Guan (b0060) 2018; 11 Capo, Perez, Lozano (b0220) 2017; 117 Wu, Yang (b0280) 2002; 35 Tibshirani, Hastie (b0180) 2001; 63 Sarkar, Saha, Maulik (b0075) 2016; 46 MacQueen (b0125) 1967 Jain (b0205) 2010; 31 Mittal, Sharma, Singh, Kumar (b0270) 2019; 10 Melnykov, Melnykov (b0285) 2014; 84 Kakushadze, Yu (b0055) 2017; 13 Hatamlou (b0250) 2012; 33 Zhang, Wang, Huang, Zheng, Zhou (b0020) 2018; 150 Karmitsa, Bagirov, Taheri (b0215) 2018; 83 Jia, Carson, Wang, Yu (b0040) 2018; 76 Zhang, Mańdziuk, Quek, Goh (b0315) 2017; 415–416 Arthur D, Vassilvitskii S. K-Means++: The Advantages of Careful Seeding. Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms: 1027–1035; 2007. Sibson (10.1016/j.eij.2022.09.002_b0105) 1973; 16 Chiang (10.1016/j.eij.2022.09.002_b0190) 2010; 27 Wu (10.1016/j.eij.2022.09.002_b0280) 2002; 35 Gonzalez (10.1016/j.eij.2022.09.002_b0240) 1985; 38 Kumar (10.1016/j.eij.2022.09.002_b0265) 2017; 418 Hussain (10.1016/j.eij.2022.09.002_b0195) 2019; 118 Wu (10.1016/j.eij.2022.09.002_b0115) 2008; 14 Lam (10.1016/j.eij.2022.09.002_b0050) 2012; 12 Kakushadze (10.1016/j.eij.2022.09.002_b0055) 2017; 13 Rousseeuw (10.1016/j.eij.2022.09.002_b0170) 1987; 20 Wang (10.1016/j.eij.2022.09.002_b0030) 2019; 163 Park (10.1016/j.eij.2022.09.002_b0130) 2009; 36 Kumar (10.1016/j.eij.2022.09.002_b0255) 2014; 62 Gan (10.1016/j.eij.2022.09.002_b0060) 2018; 11 Renato (10.1016/j.eij.2022.09.002_b0110) 2016; 370 Arima (10.1016/j.eij.2022.09.002_b0305) 2008; 105 Gupta (10.1016/j.eij.2022.09.002_b0320) 2018; 116 Yang (10.1016/j.eij.2022.09.002_b0085) 2017; 71 Fahad (10.1016/j.eij.2022.09.002_b0015) 2014; 2 Vladimir (10.1016/j.eij.2022.09.002_b0350) 2019; 20 Bicego (10.1016/j.eij.2022.09.002_b0225) 2018; 83 Karmitsa (10.1016/j.eij.2022.09.002_b0215) 2018; 83 Khanmohammadi (10.1016/j.eij.2022.09.002_b0065) 2017; 67 James (10.1016/j.eij.2022.09.002_b0325) 1987; 74 Pelleg (10.1016/j.eij.2022.09.002_b0145) 2002 MacQueen (10.1016/j.eij.2022.09.002_b0125) 1967 Sarkar (10.1016/j.eij.2022.09.002_b0075) 2016; 46 Tibshirani (10.1016/j.eij.2022.09.002_b0180) 2001; 63 Chen (10.1016/j.eij.2022.09.002_b0360) 2016; 17 Jiang (10.1016/j.eij.2022.09.002_b0260) 2016; 332 Amorim (10.1016/j.eij.2022.09.002_b0290) 2012; 45 Qi (10.1016/j.eij.2022.09.002_b0345) 2019; 4 Akaike (10.1016/j.eij.2022.09.002_b0330) 1974; 19 Davies (10.1016/j.eij.2022.09.002_b0165) 1979; PAMI-1 Capo (10.1016/j.eij.2022.09.002_b0220) 2017; 117 Nithya (10.1016/j.eij.2022.09.002_b0070) 2020; 149 Zhang (10.1016/j.eij.2022.09.002_b0020) 2018; 150 Caliński (10.1016/j.eij.2022.09.002_b0175) 1974; 3 Milligan (10.1016/j.eij.2022.09.002_b0185) 1985; 50 Bezdek (10.1016/j.eij.2022.09.002_b0140) 1984; 10 Zhang (10.1016/j.eij.2022.09.002_b0080) 2020; 199 Lloyd (10.1016/j.eij.2022.09.002_b0230) 1982; 28 10.1016/j.eij.2022.09.002_b0090 Janani (10.1016/j.eij.2022.09.002_b0045) 2019; 134 Fränti (10.1016/j.eij.2022.09.002_b0275) 2019; 93 Zhang (10.1016/j.eij.2022.09.002_b0025) 2019; 163 Liu (10.1016/j.eij.2022.09.002_b0155) 2010 Rodriguez (10.1016/j.eij.2022.09.002_b0235) 2014; 344 Melnykov (10.1016/j.eij.2022.09.002_b0285) 2014; 84 Meng (10.1016/j.eij.2022.09.002_b0300) 2018; 463–464 Mur (10.1016/j.eij.2022.09.002_b0310) 2016; 65 Zhang (10.1016/j.eij.2022.09.002_b0340) 2014; 37 Taiyun (10.1016/j.eij.2022.09.002_b0150) 2019; 20 Jain (10.1016/j.eij.2022.09.002_b0010) 1999; 31 Hatamlou (10.1016/j.eij.2022.09.002_b0250) 2012; 33 Chakraborty (10.1016/j.eij.2022.09.002_b0295) 2017; 100 Jia (10.1016/j.eij.2022.09.002_b0040) 2018; 76 Bezdek (10.1016/j.eij.2022.09.002_b0135) 1981 Dempster (10.1016/j.eij.2022.09.002_b0095) 1977; 39 Mittal (10.1016/j.eij.2022.09.002_b0270) 2019; 10 Li (10.1016/j.eij.2022.09.002_b0355) 2020; 10 10.1016/j.eij.2022.09.002_b0120 Jain (10.1016/j.eij.2022.09.002_b0205) 2010; 31 Celebi (10.1016/j.eij.2022.09.002_b0200) 2013; 40 Tian (10.1016/j.eij.2022.09.002_b0035) 2019; 165 10.1016/j.eij.2022.09.002_b0005 Zhang (10.1016/j.eij.2022.09.002_b0315) 2017; 415–416 Yang (10.1016/j.eij.2022.09.002_b0100) 2012; 45 10.1016/j.eij.2022.09.002_b0245 Bousidis (10.1016/j.eij.2022.09.002_b0210) 2015; 61 10.1016/j.eij.2022.09.002_b0365 Zhou (10.1016/j.eij.2022.09.002_b0160) 2014; 34 Fulekar (10.1016/j.eij.2022.09.002_b0335) 2009 |
| References_xml | – volume: 418 start-page: 286 year: 2017 end-page: 301 ident: b0265 article-title: An Efficient k-Means Clustering Filtering Algorithm Using Density Based Initial Cluster Centers publication-title: Inf Sci – reference: Mclachlan GJ, Basford KE. Mixture models: inference and applications to clustering (M. Dekker); 1988. – volume: 150 start-page: 127 year: 2018 end-page: 138 ident: b0020 article-title: TW-Co-k-means: Two-level weighted collaborative k-means for multi-view clustering publication-title: Knowl-Based Syst – volume: 116 start-page: 72 year: 2018 end-page: 79 ident: b0320 article-title: Fast automatic estimation of the number of clusters from the minimum inter-center distance for k-means clustering publication-title: Pattern Recogn Lett – volume: 37 start-page: 1 year: 2014 end-page: 6 ident: b0340 article-title: Comparison of cluster analysis methods for gene expression profile publication-title: J Nanjing Agric Univ – volume: 67 start-page: 12 year: 2017 end-page: 18 ident: b0065 article-title: An improved overlapping k-means clustering method for medical applications publication-title: Expert Syst Appl – volume: 38 start-page: 293 year: 1985 end-page: 306 ident: b0240 article-title: Clustering to minimize the maximum intercluster distance publication-title: Theor Comput Sci – volume: 93 start-page: 95 year: 2019 end-page: 112 ident: b0275 article-title: How much k-means can be improved by using better initialization and repeats? publication-title: Pattern Recogn – volume: 163 start-page: 1009 year: 2019 end-page: 1019 ident: b0030 article-title: A study of graph-based system for multi-view clustering publication-title: Knowl-Based Syst – volume: 63 start-page: 411 year: 2001 end-page: 423 ident: b0180 article-title: Estimating the Number of Clusters in a Data Set via the Gap Statistic publication-title: J R Stat Soc Ser B – volume: 20 start-page: 2316 year: 2019 end-page: 2326 ident: b0150 article-title: Impact of similarity metrics on single-cell rna-seq data clustering publication-title: Briefings Bioinformatics – volume: 20 start-page: 13 year: 1987 ident: b0170 article-title: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis publication-title: J Comput Appl Math – volume: 20 start-page: 273 year: 2019 end-page: 282 ident: b0350 article-title: Challenges in unsupervised clustering of single-cell RNA-seq data publication-title: Nat Rev Genet – volume: 31 start-page: 651 year: 2010 end-page: 666 ident: b0205 article-title: Data clustering: 50 years beyond K-means publication-title: Pattern Recogn Lett – volume: 83 start-page: 52 year: 2018 end-page: 63 ident: b0225 article-title: Clustering via binary embedding publication-title: Pattern Recogn – volume: 31 start-page: 264 year: 1999 end-page: 323 ident: b0010 article-title: Data clustering: a review publication-title: ACM Comput Surveys – volume: 163 start-page: 776 year: 2019 end-page: 786 ident: b0025 article-title: A multitask multiview clustering algorithm in heterogeneous situations based on LLE and LE publication-title: Knowl-Based Syst – volume: 13 start-page: 7 year: 2017 end-page: 31 ident: b0055 article-title: K-means and cluster models for cancer signatures publication-title: Biomol Detection Quantification – volume: 105 start-page: 273 year: 2008 end-page: 281 ident: b0305 article-title: Modified Fuzzy Gap statistic for estimating preferable number of clusters in Fuzzy k-means clustering publication-title: J Biosci Bioeng – volume: 76 start-page: 691 year: 2018 end-page: 703 ident: b0040 article-title: Concept decompositions for short text clustering by identifying word communities publication-title: Pattern Recogn – start-page: 911 year: 2010 end-page: 916 ident: b0155 article-title: Understanding of Internal Clustering Validation Measures publication-title: 2010 IEEE International Conference on Data Mining – volume: 14 start-page: 1 year: 2008 end-page: 37 ident: b0115 article-title: Top 10 algorithms in data mining publication-title: Knowl Inf Syst – volume: 199 year: 2020 ident: b0080 article-title: CMC: A Consensus Multi-view Clustering Model for Predicting Alzheimer’s Disease Progression publication-title: Comput Methods Programs Biomed – volume: 45 start-page: 3950 year: 2012 end-page: 3961 ident: b0100 article-title: A robust EM clustering algorithm for Gaussian mixture models publication-title: Pattern Recogn – volume: 46 start-page: 527 year: 2016 end-page: 536 ident: b0075 article-title: Rough Possibilistic Type-2 Fuzzy C-Means clustering for MR brain image segmentation publication-title: Appl Soft Comput – volume: 40 start-page: 200 year: 2013 end-page: 210 ident: b0200 article-title: A comparative study of efficient initialization methods for the k-means clustering algorithm publication-title: Expert Syst Appl – volume: 35 start-page: 2267 year: 2002 end-page: 2278 ident: b0280 article-title: Alternative c-means clustering algorithms publication-title: Pattern Recogn – volume: 149 year: 2020 ident: b0070 article-title: Kidney disease detection and segmentation using artificial neural network and multi-kernel k-means clustering for ultrasound images publication-title: Measurement – volume: 370 start-page: 343 year: 2016 end-page: 354 ident: b0110 article-title: A-Ward_p publication-title: Inf Sci – volume: 65 start-page: 304 year: 2016 end-page: 314 ident: b0310 article-title: Determination of the optimal number of clusters using a spectral clustering optimization publication-title: Expert Syst Appl – volume: 100 start-page: 67 year: 2017 end-page: 73 ident: b0295 article-title: k-Means clustering with a new divergence-based distance metric: Convergence and performance analysis publication-title: Pattern Recogn Lett – volume: 11 start-page: 65 year: 2018 end-page: 72 ident: b0060 article-title: Identification of cancer subtypes from single-cell RNA-seq data using a consensus clustering method publication-title: BMC Med Genomics – volume: 10 start-page: 42 year: 2019 end-page: 59 ident: b0270 article-title: Adaptive threshold based clustering: a deterministic partitioning approach publication-title: Int J Inf Syst Model Design – volume: 45 start-page: 1061 year: 2012 end-page: 1075 ident: b0290 article-title: Minkowski metric, feature weighting and anomalous cluster initializing in K-Means clustering publication-title: Pattern Recogn – start-page: 727 year: 2002 end-page: 734 ident: b0145 article-title: X-means: Extending K-means with Efficient Estimation of the Number of Clusters publication-title: Mach Learn – volume: 332 start-page: 167 year: 2016 end-page: 183 ident: b0260 article-title: Initialization of K-modes Clustering Using Outlier Detection Techniques publication-title: Inf Sci – volume: 463–464 start-page: 166 year: 2018 end-page: 185 ident: b0300 article-title: A new distance with derivative information for functional k-means clustering algorithm publication-title: Inf Sci – year: 2009 ident: b0335 article-title: Bioinformatics: Applications in Life and Environmental Sciences – reference: Sun C, Dai Z, Zhang H, Li L Yuan Z. Binary Matrix Shuffling Filter for Feature Selection in Neuronal Morphology Classification. Computational and Mathematical Methods in Medicine 2015;(2015-3-29):626975. – start-page: 17 year: 1967 ident: b0125 article-title: Some methods for classification and analysis of multivariate observations publication-title: Proceedings of the 5th Berkeley Symposium on Mathematics Statistics and Probability – volume: 3 start-page: 1 year: 1974 end-page: 27 ident: b0175 article-title: A dendrite method for cluster analysis publication-title: Commun Stat – volume: 117 start-page: 56 year: 2017 end-page: 69 ident: b0220 article-title: An efficient approximation to the k-means clustering for massive data publication-title: Knowl-Based Syst – volume: 12 start-page: 1149 year: 2012 end-page: 1157 ident: b0050 article-title: eXploratory K-Means: A new simple and efficient algorithm for gene clustering publication-title: Appl Soft Comput – volume: 165 year: 2019 ident: b0035 article-title: Segmentation of tomato leaf images based on adaptive clustering number of K-means algorithm publication-title: Comput Electron Agric – reference: Arthur D, Vassilvitskii S. K-Means++: The Advantages of Careful Seeding. Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms: 1027–1035; 2007. – volume: 34 start-page: 2417 year: 2014 end-page: 2431 ident: b0160 article-title: On cluster validation publication-title: Syst Eng-Theory Practice – volume: 344 start-page: 1492 year: 2014 ident: b0235 article-title: Clustering by fast search and find of density peaks publication-title: Science – volume: 36 start-page: 3336 year: 2009 end-page: 3341 ident: b0130 article-title: A simple and fast algorithm for K-medoids clustering publication-title: Expert Syst Appl – volume: 2 start-page: 267 year: 2014 end-page: 279 ident: b0015 article-title: A survey of clustering algorithms for big data: taxonomy and empirical analysis publication-title: Emerg Top Comput IEEE Trans – volume: 61 start-page: 1045 year: 2015 end-page: 1062 ident: b0210 article-title: Randomized dimensionality reduction for k-means cluster publication-title: IEEE Trans Inf Theory – volume: 10 start-page: 19852 year: 2020 end-page: 19860 ident: b0355 article-title: Chi-mic-share: a new feature selection algorithm for quantitative structure-activity relationship models publication-title: RSC Adv – volume: 19 start-page: 716 year: 1974 end-page: 723 ident: b0330 article-title: A new look at the statistical model identification publication-title: Autom Control IEEE Trans – volume: 16 start-page: 30 year: 1973 end-page: 34 ident: b0105 article-title: SLINK: An optimally efficient algorithm for the single-link cluster method publication-title: Comput J – volume: PAMI-1 start-page: 224 year: 1979 end-page: 227 ident: b0165 article-title: A Cluster Separation Measure publication-title: IEEE Trans Pattern Anal Mach Intell – volume: 50 start-page: 159 year: 1985 end-page: 179 ident: b0185 article-title: An examination of procedures for determining the number of clusters in a data set publication-title: Psychometrika – volume: 415–416 start-page: 414 year: 2017 end-page: 428 ident: b0315 article-title: Curvature-based method for determining the number of clusters publication-title: Inf Sci – volume: 39 start-page: 1 year: 1977 end-page: 22 ident: b0095 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: J R Stat Soc – volume: 28 start-page: 129 year: 1982 end-page: 137 ident: b0230 article-title: Least squares quantization in PCM publication-title: IEEE Trans Inf Theory – volume: 27 start-page: 3 year: 2010 end-page: 40 ident: b0190 article-title: Intelligent Choice of the Number of Clusters in K-Means Clustering: An Experimental Study with Different Cluster Spreads publication-title: J Classification – year: 1981 ident: b0135 article-title: Pattern Recognition With Fuzzy Objective Function Algorithms – volume: 84 start-page: 88 year: 2014 end-page: 95 ident: b0285 article-title: On K-means algorithm with the use of Mahalanobis distances publication-title: Stat Prob Lett – volume: 74 start-page: 71 year: 1987 end-page: 83 ident: b0325 article-title: Tests for a Changepoint publication-title: Biometrika – volume: 17 start-page: 1 year: 2016 end-page: 16 ident: b0360 article-title: Informative gene selection and the direct classification of tumors based on relative simplicity publication-title: BMC Bioinf – volume: 62 start-page: 43 year: 2014 end-page: 54 ident: b0255 article-title: A New Initialization Method to Originate Initial Cluster Centers for K-Means Algorithm publication-title: Int J Adv Sci Technol – volume: 10 start-page: 191 year: 1984 end-page: 203 ident: b0140 article-title: FCM: The fuzzy c-means clustering algorithm publication-title: Comput Geosci – volume: 33 start-page: 1756 year: 2012 end-page: 1760 ident: b0250 article-title: In search of optimal centroids on data clustering using a binary search algorithm publication-title: Pattern Recogn Lett – reference: Kaufman L, Rousseeuw PJ. Finding Groups in Data: An Introduction to Cluster Analysis (DBLP); 2009. – volume: 118 start-page: 20 year: 2019 end-page: 34 ident: b0195 article-title: A k-means based co-clustering (kCC) algorithm for sparse, high dimensional data publication-title: Expert Syst Appl – volume: 83 start-page: 245 year: 2018 end-page: 259 ident: b0215 article-title: Clustering in large data sets with the limited memory bundle method publication-title: Pattern Recogn – volume: 4 start-page: 1 year: 2019 end-page: 13 ident: b0345 article-title: Clustering and classification methods for single-cell RNA-sequencing data publication-title: Briefings Bioinformatics – volume: 71 start-page: 45 year: 2017 end-page: 59 ident: b0085 article-title: Robust-learning fuzzy c-means clustering algorithm with unknown number of clusters publication-title: Pattern Recogn – reference: Mittal M, Sharma RK, Singh VP. Modified single pass clustering with variable threshold approach. Int J Innov Comput Inf Control 2015;11(1):375–386. – volume: 134 start-page: 192 year: 2019 end-page: 200 ident: b0045 article-title: Text document clustering using Spectral Clustering algorithm with Particle Swarm Optimization publication-title: Expert Syst Appl – volume: 83 start-page: 245 year: 2018 ident: 10.1016/j.eij.2022.09.002_b0215 article-title: Clustering in large data sets with the limited memory bundle method publication-title: Pattern Recogn doi: 10.1016/j.patcog.2018.05.028 – volume: 344 start-page: 1492 issue: 6191 year: 2014 ident: 10.1016/j.eij.2022.09.002_b0235 article-title: Clustering by fast search and find of density peaks publication-title: Science doi: 10.1126/science.1242072 – volume: 65 start-page: 304 year: 2016 ident: 10.1016/j.eij.2022.09.002_b0310 article-title: Determination of the optimal number of clusters using a spectral clustering optimization publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2016.08.059 – volume: 165 year: 2019 ident: 10.1016/j.eij.2022.09.002_b0035 article-title: Segmentation of tomato leaf images based on adaptive clustering number of K-means algorithm publication-title: Comput Electron Agric doi: 10.1016/j.compag.2019.104962 – volume: 39 start-page: 1 issue: 1 year: 1977 ident: 10.1016/j.eij.2022.09.002_b0095 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: J R Stat Soc doi: 10.1111/j.2517-6161.1977.tb01600.x – volume: 10 start-page: 191 issue: 2 year: 1984 ident: 10.1016/j.eij.2022.09.002_b0140 article-title: FCM: The fuzzy c-means clustering algorithm publication-title: Comput Geosci doi: 10.1016/0098-3004(84)90020-7 – volume: 463–464 start-page: 166 year: 2018 ident: 10.1016/j.eij.2022.09.002_b0300 article-title: A new distance with derivative information for functional k-means clustering algorithm publication-title: Inf Sci doi: 10.1016/j.ins.2018.06.035 – volume: 12 start-page: 1149 issue: 3 year: 2012 ident: 10.1016/j.eij.2022.09.002_b0050 article-title: eXploratory K-Means: A new simple and efficient algorithm for gene clustering publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2011.11.008 – volume: 28 start-page: 129 issue: 2 year: 1982 ident: 10.1016/j.eij.2022.09.002_b0230 article-title: Least squares quantization in PCM publication-title: IEEE Trans Inf Theory doi: 10.1109/TIT.1982.1056489 – volume: 199 year: 2020 ident: 10.1016/j.eij.2022.09.002_b0080 article-title: CMC: A Consensus Multi-view Clustering Model for Predicting Alzheimer’s Disease Progression publication-title: Comput Methods Programs Biomed – volume: 370 start-page: 343 year: 2016 ident: 10.1016/j.eij.2022.09.002_b0110 article-title: A-Ward_pβ) Effective hierarchical clustering using the Minkowski metric and a fast k-means initialisation publication-title: Inf Sci – volume: 84 start-page: 88 issue: 1 year: 2014 ident: 10.1016/j.eij.2022.09.002_b0285 article-title: On K-means algorithm with the use of Mahalanobis distances publication-title: Stat Prob Lett doi: 10.1016/j.spl.2013.09.026 – volume: 17 start-page: 1 issue: 1 year: 2016 ident: 10.1016/j.eij.2022.09.002_b0360 article-title: Informative gene selection and the direct classification of tumors based on relative simplicity publication-title: BMC Bioinf doi: 10.1186/s12859-016-0893-0 – volume: 74 start-page: 71 issue: 1 year: 1987 ident: 10.1016/j.eij.2022.09.002_b0325 article-title: Tests for a Changepoint publication-title: Biometrika doi: 10.1093/biomet/74.1.71 – volume: 10 start-page: 19852 year: 2020 ident: 10.1016/j.eij.2022.09.002_b0355 article-title: Chi-mic-share: a new feature selection algorithm for quantitative structure-activity relationship models publication-title: RSC Adv doi: 10.1039/D0RA00061B – volume: 3 start-page: 1 issue: 1 year: 1974 ident: 10.1016/j.eij.2022.09.002_b0175 article-title: A dendrite method for cluster analysis publication-title: Commun Stat – volume: 45 start-page: 1061 issue: 3 year: 2012 ident: 10.1016/j.eij.2022.09.002_b0290 article-title: Minkowski metric, feature weighting and anomalous cluster initializing in K-Means clustering publication-title: Pattern Recogn doi: 10.1016/j.patcog.2011.08.012 – volume: 11 start-page: 65 year: 2018 ident: 10.1016/j.eij.2022.09.002_b0060 article-title: Identification of cancer subtypes from single-cell RNA-seq data using a consensus clustering method publication-title: BMC Med Genomics doi: 10.1186/s12920-018-0433-z – volume: 14 start-page: 1 issue: 1 year: 2008 ident: 10.1016/j.eij.2022.09.002_b0115 article-title: Top 10 algorithms in data mining publication-title: Knowl Inf Syst doi: 10.1007/s10115-007-0114-2 – start-page: 911 year: 2010 ident: 10.1016/j.eij.2022.09.002_b0155 article-title: Understanding of Internal Clustering Validation Measures publication-title: 2010 IEEE International Conference on Data Mining doi: 10.1109/ICDM.2010.35 – volume: 20 start-page: 13 year: 1987 ident: 10.1016/j.eij.2022.09.002_b0170 article-title: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis publication-title: J Comput Appl Math doi: 10.1016/0377-0427(87)90125-7 – volume: 118 start-page: 20 issue: 15 year: 2019 ident: 10.1016/j.eij.2022.09.002_b0195 article-title: A k-means based co-clustering (kCC) algorithm for sparse, high dimensional data publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2018.09.006 – volume: 105 start-page: 273 issue: 3 year: 2008 ident: 10.1016/j.eij.2022.09.002_b0305 article-title: Modified Fuzzy Gap statistic for estimating preferable number of clusters in Fuzzy k-means clustering publication-title: J Biosci Bioeng doi: 10.1263/jbb.105.273 – volume: 62 start-page: 43 year: 2014 ident: 10.1016/j.eij.2022.09.002_b0255 article-title: A New Initialization Method to Originate Initial Cluster Centers for K-Means Algorithm publication-title: Int J Adv Sci Technol doi: 10.14257/ijast.2014.62.04 – volume: 163 start-page: 1009 year: 2019 ident: 10.1016/j.eij.2022.09.002_b0030 article-title: A study of graph-based system for multi-view clustering publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2018.10.022 – volume: 16 start-page: 30 issue: 1 year: 1973 ident: 10.1016/j.eij.2022.09.002_b0105 article-title: SLINK: An optimally efficient algorithm for the single-link cluster method publication-title: Comput J doi: 10.1093/comjnl/16.1.30 – volume: 37 start-page: 1 issue: 6 year: 2014 ident: 10.1016/j.eij.2022.09.002_b0340 article-title: Comparison of cluster analysis methods for gene expression profile publication-title: J Nanjing Agric Univ – volume: PAMI-1 start-page: 224 issue: 2 year: 1979 ident: 10.1016/j.eij.2022.09.002_b0165 article-title: A Cluster Separation Measure publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.1979.4766909 – volume: 93 start-page: 95 year: 2019 ident: 10.1016/j.eij.2022.09.002_b0275 article-title: How much k-means can be improved by using better initialization and repeats? publication-title: Pattern Recogn doi: 10.1016/j.patcog.2019.04.014 – volume: 116 start-page: 72 year: 2018 ident: 10.1016/j.eij.2022.09.002_b0320 article-title: Fast automatic estimation of the number of clusters from the minimum inter-center distance for k-means clustering publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2018.09.003 – volume: 20 start-page: 273 year: 2019 ident: 10.1016/j.eij.2022.09.002_b0350 article-title: Challenges in unsupervised clustering of single-cell RNA-seq data publication-title: Nat Rev Genet doi: 10.1038/s41576-018-0088-9 – volume: 83 start-page: 52 year: 2018 ident: 10.1016/j.eij.2022.09.002_b0225 article-title: Clustering via binary embedding publication-title: Pattern Recogn doi: 10.1016/j.patcog.2018.05.011 – volume: 46 start-page: 527 year: 2016 ident: 10.1016/j.eij.2022.09.002_b0075 article-title: Rough Possibilistic Type-2 Fuzzy C-Means clustering for MR brain image segmentation publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2016.01.040 – volume: 100 start-page: 67 year: 2017 ident: 10.1016/j.eij.2022.09.002_b0295 article-title: k-Means clustering with a new divergence-based distance metric: Convergence and performance analysis publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2017.09.025 – volume: 134 start-page: 192 year: 2019 ident: 10.1016/j.eij.2022.09.002_b0045 article-title: Text document clustering using Spectral Clustering algorithm with Particle Swarm Optimization publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2019.05.030 – volume: 20 start-page: 2316 issue: 6 year: 2019 ident: 10.1016/j.eij.2022.09.002_b0150 article-title: Impact of similarity metrics on single-cell rna-seq data clustering publication-title: Briefings Bioinformatics doi: 10.1093/bib/bby076 – volume: 332 start-page: 167 year: 2016 ident: 10.1016/j.eij.2022.09.002_b0260 article-title: Initialization of K-modes Clustering Using Outlier Detection Techniques publication-title: Inf Sci doi: 10.1016/j.ins.2015.11.005 – volume: 415–416 start-page: 414 year: 2017 ident: 10.1016/j.eij.2022.09.002_b0315 article-title: Curvature-based method for determining the number of clusters publication-title: Inf Sci doi: 10.1016/j.ins.2017.05.024 – volume: 45 start-page: 3950 issue: 11 year: 2012 ident: 10.1016/j.eij.2022.09.002_b0100 article-title: A robust EM clustering algorithm for Gaussian mixture models publication-title: Pattern Recogn doi: 10.1016/j.patcog.2012.04.031 – volume: 2 start-page: 267 issue: 3 year: 2014 ident: 10.1016/j.eij.2022.09.002_b0015 article-title: A survey of clustering algorithms for big data: taxonomy and empirical analysis publication-title: Emerg Top Comput IEEE Trans doi: 10.1109/TETC.2014.2330519 – volume: 67 start-page: 12 year: 2017 ident: 10.1016/j.eij.2022.09.002_b0065 article-title: An improved overlapping k-means clustering method for medical applications publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2016.09.025 – volume: 36 start-page: 3336 issue: 2 year: 2009 ident: 10.1016/j.eij.2022.09.002_b0130 article-title: A simple and fast algorithm for K-medoids clustering publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2008.01.039 – volume: 40 start-page: 200 year: 2013 ident: 10.1016/j.eij.2022.09.002_b0200 article-title: A comparative study of efficient initialization methods for the k-means clustering algorithm publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2012.07.021 – ident: 10.1016/j.eij.2022.09.002_b0120 – year: 1981 ident: 10.1016/j.eij.2022.09.002_b0135 – volume: 150 start-page: 127 year: 2018 ident: 10.1016/j.eij.2022.09.002_b0020 article-title: TW-Co-k-means: Two-level weighted collaborative k-means for multi-view clustering publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2018.03.009 – volume: 117 start-page: 56 year: 2017 ident: 10.1016/j.eij.2022.09.002_b0220 article-title: An efficient approximation to the k-means clustering for massive data publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2016.06.031 – ident: 10.1016/j.eij.2022.09.002_b0005 – volume: 34 start-page: 2417 issue: 9 year: 2014 ident: 10.1016/j.eij.2022.09.002_b0160 article-title: On cluster validation publication-title: Syst Eng-Theory Practice – volume: 10 start-page: 42 issue: 1 year: 2019 ident: 10.1016/j.eij.2022.09.002_b0270 article-title: Adaptive threshold based clustering: a deterministic partitioning approach publication-title: Int J Inf Syst Model Design doi: 10.4018/IJISMD.2019010103 – start-page: 17 year: 1967 ident: 10.1016/j.eij.2022.09.002_b0125 article-title: Some methods for classification and analysis of multivariate observations – start-page: 727 year: 2002 ident: 10.1016/j.eij.2022.09.002_b0145 article-title: X-means: Extending K-means with Efficient Estimation of the Number of Clusters publication-title: Mach Learn – volume: 63 start-page: 411 issue: 2 year: 2001 ident: 10.1016/j.eij.2022.09.002_b0180 article-title: Estimating the Number of Clusters in a Data Set via the Gap Statistic publication-title: J R Stat Soc Ser B doi: 10.1111/1467-9868.00293 – volume: 418 start-page: 286 year: 2017 ident: 10.1016/j.eij.2022.09.002_b0265 article-title: An Efficient k-Means Clustering Filtering Algorithm Using Density Based Initial Cluster Centers publication-title: Inf Sci doi: 10.1016/j.ins.2017.07.036 – volume: 71 start-page: 45 year: 2017 ident: 10.1016/j.eij.2022.09.002_b0085 article-title: Robust-learning fuzzy c-means clustering algorithm with unknown number of clusters publication-title: Pattern Recogn doi: 10.1016/j.patcog.2017.05.017 – volume: 33 start-page: 1756 issue: 13 year: 2012 ident: 10.1016/j.eij.2022.09.002_b0250 article-title: In search of optimal centroids on data clustering using a binary search algorithm publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2012.06.008 – volume: 149 year: 2020 ident: 10.1016/j.eij.2022.09.002_b0070 article-title: Kidney disease detection and segmentation using artificial neural network and multi-kernel k-means clustering for ultrasound images publication-title: Measurement doi: 10.1016/j.measurement.2019.106952 – volume: 31 start-page: 264 issue: 3 year: 1999 ident: 10.1016/j.eij.2022.09.002_b0010 article-title: Data clustering: a review publication-title: ACM Comput Surveys doi: 10.1145/331499.331504 – ident: 10.1016/j.eij.2022.09.002_b0365 doi: 10.1155/2015/626975 – volume: 38 start-page: 293 issue: 2–3 year: 1985 ident: 10.1016/j.eij.2022.09.002_b0240 article-title: Clustering to minimize the maximum intercluster distance publication-title: Theor Comput Sci doi: 10.1016/0304-3975(85)90224-5 – ident: 10.1016/j.eij.2022.09.002_b0245 – volume: 19 start-page: 716 issue: 6 year: 1974 ident: 10.1016/j.eij.2022.09.002_b0330 article-title: A new look at the statistical model identification publication-title: Autom Control IEEE Trans doi: 10.1109/TAC.1974.1100705 – volume: 4 start-page: 1 issue: 4 year: 2019 ident: 10.1016/j.eij.2022.09.002_b0345 article-title: Clustering and classification methods for single-cell RNA-sequencing data publication-title: Briefings Bioinformatics – volume: 31 start-page: 651 issue: 8 year: 2010 ident: 10.1016/j.eij.2022.09.002_b0205 article-title: Data clustering: 50 years beyond K-means publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2009.09.011 – volume: 13 start-page: 7 year: 2017 ident: 10.1016/j.eij.2022.09.002_b0055 article-title: K-means and cluster models for cancer signatures publication-title: Biomol Detection Quantification doi: 10.1016/j.bdq.2017.07.001 – volume: 76 start-page: 691 year: 2018 ident: 10.1016/j.eij.2022.09.002_b0040 article-title: Concept decompositions for short text clustering by identifying word communities publication-title: Pattern Recogn doi: 10.1016/j.patcog.2017.09.045 – volume: 35 start-page: 2267 issue: 10 year: 2002 ident: 10.1016/j.eij.2022.09.002_b0280 article-title: Alternative c-means clustering algorithms publication-title: Pattern Recogn doi: 10.1016/S0031-3203(01)00197-2 – volume: 27 start-page: 3 issue: 1 year: 2010 ident: 10.1016/j.eij.2022.09.002_b0190 article-title: Intelligent Choice of the Number of Clusters in K-Means Clustering: An Experimental Study with Different Cluster Spreads publication-title: J Classification doi: 10.1007/s00357-010-9049-5 – year: 2009 ident: 10.1016/j.eij.2022.09.002_b0335 – volume: 163 start-page: 776 year: 2019 ident: 10.1016/j.eij.2022.09.002_b0025 article-title: A multitask multiview clustering algorithm in heterogeneous situations based on LLE and LE publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2018.10.001 – volume: 50 start-page: 159 issue: 2 year: 1985 ident: 10.1016/j.eij.2022.09.002_b0185 article-title: An examination of procedures for determining the number of clusters in a data set publication-title: Psychometrika doi: 10.1007/BF02294245 – volume: 61 start-page: 1045 year: 2015 ident: 10.1016/j.eij.2022.09.002_b0210 article-title: Randomized dimensionality reduction for k-means cluster publication-title: IEEE Trans Inf Theory doi: 10.1109/TIT.2014.2375327 – ident: 10.1016/j.eij.2022.09.002_b0090 doi: 10.2307/2348072 |
| SSID | ssj0000612456 |
| Score | 2.2790334 |
| Snippet | Designing appropriate similarity metrics (distance) and estimating the optimal number of clusters have been two important issues in cluster analysis. This... |
| SourceID | doaj crossref elsevier |
| SourceType | Open Website Enrichment Source Index Database Publisher |
| StartPage | 133 |
| SubjectTerms | Clustering EP_dis formula omitted Internal validation index RCH Weighted distance |
| Title | WeDIV – An improved k-means clustering algorithm with a weighted distance and a novel internal validation index |
| URI | https://dx.doi.org/10.1016/j.eij.2022.09.002 https://doaj.org/article/da6177a6bf6042aebbefd865e11470d7 |
| Volume | 23 |
| WOSCitedRecordID | wos000903536100012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2090-4754 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000612456 issn: 1110-8665 databaseCode: DOA dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8QgECZm40EPxmdcX-HgyaSxy7ZQjr42mpiNB183AhS0Wquuq179D_5Df4kDtJte1ItXOoVmmPDNDNNvENpmEOoQrmlkU6ujRBMdKRCMGKGGKs6N9amLy1M2HGbX1_ys1erL1YQFeuCguN1cAsYySZWlYF_SKGVsntHUgCPP4tz_Rw5eTyuYCmdwz93o-c4qcNA4UrfmStMXd5niDmJDQjzHaZ1SaUDJc_e3sKmFN4N5NFc7ingvfOACmjLVIppt0Qcuoecrc3hyib8-PvFehQufHjA5vo8eDAAQ1uWrY0EAUSzLm8dRMb59wC7viiV-9xlREM6d_wgbj2WVw3gFM5S4CGnCEoMZFqHpEva0isvoYnB0fnAc1S0UIg1IPY4M02lOFc00MRDs8tjKlFits9hQCVhPbMItoZbFFp7D6UcUSZUGH0mShKW6v4I61WNlVhEmNjYwymSiQPOc8izP0jRzhIR9xlmvi-JGh0LX_OKuzUUpmkKyOwFqF07tIuYC1N5FO5NXngK5xm_C-25jJoKOF9sPgLWI2lrEX9bSRUmzraJ2MYLrAFMVP6-99h9rr6MZN2WohdlAnfHo1Wyiaf02Ll5GW95-vwHq2_Qt |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=WeDIV+%E2%80%93+An+improved+k-means+clustering+algorithm+with+a+weighted+distance+and+a+novel+internal+validation+index&rft.jtitle=Egyptian+informatics+journal&rft.au=Zilan+Ning&rft.au=Jin+Chen&rft.au=Jianjun+Huang&rft.au=Umar+Jlbrilla+Sabo&rft.date=2022-12-01&rft.pub=Elsevier&rft.issn=1110-8665&rft.volume=23&rft.issue=4&rft.spage=133&rft.epage=144&rft_id=info:doi/10.1016%2Fj.eij.2022.09.002&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_da6177a6bf6042aebbefd865e11470d7 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1110-8665&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1110-8665&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1110-8665&client=summon |