WeDIV – An improved k-means clustering algorithm with a weighted distance and a novel internal validation index

Designing appropriate similarity metrics (distance) and estimating the optimal number of clusters have been two important issues in cluster analysis. This study proposed an improved k-means clustering algorithm involving a Weighted Distance and a novel Internal Validation index (WeDIV). The weighted...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Egyptian informatics journal Ročník 23; číslo 4; s. 133 - 144
Hlavní autoři: Ning, Zilan, Chen, Jin, Huang, Jianjun, Sabo, Umar Jlbrilla, Yuan, Zheming, Dai, Zhijun
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.12.2022
Elsevier
Témata:
ISSN:1110-8665, 2090-4754
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Designing appropriate similarity metrics (distance) and estimating the optimal number of clusters have been two important issues in cluster analysis. This study proposed an improved k-means clustering algorithm involving a Weighted Distance and a novel Internal Validation index (WeDIV). The weighted distance, EP_dis, was designed by considering the relative contribution between Euclidean and Pearson distances with a weighted strategy. This strategy can effectively capture information reflecting the globally spatial correlation and locally variable trend simultaneously in high-dimensional space. The new internal validation index,RCH, inspired by the Calinski-Harabasz (CH) index and the analysis of variance, was developed to automatically estimate the optimal number of clusters. The EP_dis was proved reliable in mathematics and was validated on two simulated datasets. Four simulated datasets representing different properties were used to validate the effectiveness of RCH. Furthermore, We compared the clustering performance of WeDIV with 12 prevailing clustering algorithms on 16 UCI datasets. The results demonstrated that WeDIV outperforms the others regardless of specifying the number of clusters or not.
AbstractList Designing appropriate similarity metrics (distance) and estimating the optimal number of clusters have been two important issues in cluster analysis. This study proposed an improved k-means clustering algorithm involving a Weighted Distance and a novel Internal Validation index (WeDIV). The weighted distance, EP_dis, was designed by considering the relative contribution between Euclidean and Pearson distances with a weighted strategy. This strategy can effectively capture information reflecting the globally spatial correlation and locally variable trend simultaneously in high-dimensional space. The new internal validation index,RCH, inspired by the Calinski-Harabasz (CH) index and the analysis of variance, was developed to automatically estimate the optimal number of clusters. The EP_dis was proved reliable in mathematics and was validated on two simulated datasets. Four simulated datasets representing different properties were used to validate the effectiveness of RCH. Furthermore, We compared the clustering performance of WeDIV with 12 prevailing clustering algorithms on 16 UCI datasets. The results demonstrated that WeDIV outperforms the others regardless of specifying the number of clusters or not.
Author Sabo, Umar Jlbrilla
Ning, Zilan
Chen, Jin
Huang, Jianjun
Yuan, Zheming
Dai, Zhijun
Author_xml – sequence: 1
  givenname: Zilan
  surname: Ning
  fullname: Ning, Zilan
  organization: Hunan Engineering & Technology Research Centre for Agricultural Big Data Analysis & Decision-making, Hunan Agricultural University, Changsha 410128, China
– sequence: 2
  givenname: Jin
  surname: Chen
  fullname: Chen, Jin
  organization: Hunan Engineering & Technology Research Centre for Agricultural Big Data Analysis & Decision-making, Hunan Agricultural University, Changsha 410128, China
– sequence: 3
  givenname: Jianjun
  surname: Huang
  fullname: Huang, Jianjun
  organization: Hunan Engineering & Technology Research Centre for Agricultural Big Data Analysis & Decision-making, Hunan Agricultural University, Changsha 410128, China
– sequence: 4
  givenname: Umar Jlbrilla
  surname: Sabo
  fullname: Sabo, Umar Jlbrilla
  organization: Hunan Engineering & Technology Research Centre for Agricultural Big Data Analysis & Decision-making, Hunan Agricultural University, Changsha 410128, China
– sequence: 5
  givenname: Zheming
  surname: Yuan
  fullname: Yuan, Zheming
  organization: Hunan Engineering & Technology Research Centre for Agricultural Big Data Analysis & Decision-making, Hunan Agricultural University, Changsha 410128, China
– sequence: 6
  givenname: Zhijun
  surname: Dai
  fullname: Dai, Zhijun
  email: daizhijun@hunau.edu.cn
  organization: Hunan Engineering & Technology Research Centre for Agricultural Big Data Analysis & Decision-making, Hunan Agricultural University, Changsha 410128, China
BookMark eNp9kUtuFDEQhi0UJIaQA7DzBbqxHT-6xSoKr5EiseGxtKrt8sRNjzvYZgI77sANOQlOBrFgES9sqezvU7n-p-QkrQkJec5ZzxnXL-Ye49wLJkTPxp4x8YhsBBtZJ42SJ2TDOWfdoLV6Qs5KmVlbmgup9IZ8_Yyvtp_o75-_6EWicX-T1wN6-qXbI6RC3fKtVMwx7SgsuzXHer2nt22nQG8x7q5re-xjqZAcUki-1VMzLDSmxiVY6AGW6KHGtemTx-_PyOMAS8Gzv-cp-fjm9YfLd93V-7fby4urzkmma4fGKa8nPTiBZhhGFkCJ4NzAUIPiQgQ5BqGDYaHdc3UuJqEmJyUH0b7tzk_J9uj1K8z2Jsc95B92hWjvC2veWcg1ugWtB82NAT0FzaQAnCYMftAKOZeGedNc_OhyeS0lY_jn48zeRWBn2yKwdxFYNtoWQWPMf4yL9X4ONUNcHiRfHkls4zlEzLa4iG3APmZ0tfUfH6D_AMdVpFQ
CitedBy_id crossref_primary_10_3390_agriculture14111915
crossref_primary_10_7717_peerj_14706
crossref_primary_10_1002_qre_3725
crossref_primary_10_52080_rvgluz_30_110_17
Cites_doi 10.1016/j.patcog.2018.05.028
10.1126/science.1242072
10.1016/j.eswa.2016.08.059
10.1016/j.compag.2019.104962
10.1111/j.2517-6161.1977.tb01600.x
10.1016/0098-3004(84)90020-7
10.1016/j.ins.2018.06.035
10.1016/j.asoc.2011.11.008
10.1109/TIT.1982.1056489
10.1016/j.spl.2013.09.026
10.1186/s12859-016-0893-0
10.1093/biomet/74.1.71
10.1039/D0RA00061B
10.1016/j.patcog.2011.08.012
10.1186/s12920-018-0433-z
10.1007/s10115-007-0114-2
10.1109/ICDM.2010.35
10.1016/0377-0427(87)90125-7
10.1016/j.eswa.2018.09.006
10.1263/jbb.105.273
10.14257/ijast.2014.62.04
10.1016/j.knosys.2018.10.022
10.1093/comjnl/16.1.30
10.1109/TPAMI.1979.4766909
10.1016/j.patcog.2019.04.014
10.1016/j.patrec.2018.09.003
10.1038/s41576-018-0088-9
10.1016/j.patcog.2018.05.011
10.1016/j.asoc.2016.01.040
10.1016/j.patrec.2017.09.025
10.1016/j.eswa.2019.05.030
10.1093/bib/bby076
10.1016/j.ins.2015.11.005
10.1016/j.ins.2017.05.024
10.1016/j.patcog.2012.04.031
10.1109/TETC.2014.2330519
10.1016/j.eswa.2016.09.025
10.1016/j.eswa.2008.01.039
10.1016/j.eswa.2012.07.021
10.1016/j.knosys.2018.03.009
10.1016/j.knosys.2016.06.031
10.4018/IJISMD.2019010103
10.1111/1467-9868.00293
10.1016/j.ins.2017.07.036
10.1016/j.patcog.2017.05.017
10.1016/j.patrec.2012.06.008
10.1016/j.measurement.2019.106952
10.1145/331499.331504
10.1155/2015/626975
10.1016/0304-3975(85)90224-5
10.1109/TAC.1974.1100705
10.1016/j.patrec.2009.09.011
10.1016/j.bdq.2017.07.001
10.1016/j.patcog.2017.09.045
10.1016/S0031-3203(01)00197-2
10.1007/s00357-010-9049-5
10.1016/j.knosys.2018.10.001
10.1007/BF02294245
10.1109/TIT.2014.2375327
10.2307/2348072
ContentType Journal Article
Copyright 2022
Copyright_xml – notice: 2022
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.eij.2022.09.002
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ : Directory of Open Access Journals [open access]
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2090-4754
EndPage 144
ExternalDocumentID oai_doaj_org_article_da6177a6bf6042aebbefd865e11470d7
10_1016_j_eij_2022_09_002
S1110866522000639
GroupedDBID --K
0R~
0SF
1B1
4.4
457
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
E3Z
EBS
EJD
FDB
GROUPED_DOAJ
HZ~
IPNFZ
IXB
KQ8
M41
NCXOZ
O-L
O9-
OK1
RIG
ROL
SES
SSZ
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
ID FETCH-LOGICAL-c406t-e7c5d6b68c2e78890fa52fcc80e6a5122f49f26f70fe781532b25bc441a2475c3
IEDL.DBID DOA
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000903536100012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1110-8665
IngestDate Fri Oct 03 12:50:25 EDT 2025
Wed Oct 29 21:26:25 EDT 2025
Tue Nov 18 22:16:04 EST 2025
Wed May 17 00:08:12 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords EP_dis
Internal validation index
Weighted distance
Clustering
RCH
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-e7c5d6b68c2e78890fa52fcc80e6a5122f49f26f70fe781532b25bc441a2475c3
OpenAccessLink https://doaj.org/article/da6177a6bf6042aebbefd865e11470d7
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_da6177a6bf6042aebbefd865e11470d7
crossref_primary_10_1016_j_eij_2022_09_002
crossref_citationtrail_10_1016_j_eij_2022_09_002
elsevier_sciencedirect_doi_10_1016_j_eij_2022_09_002
PublicationCentury 2000
PublicationDate December 2022
2022-12-00
2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: December 2022
PublicationDecade 2020
PublicationTitle Egyptian informatics journal
PublicationYear 2022
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Zhang, Yang, Li, Zhang, Wang, Fujita (b0080) 2020; 199
Pelleg, Moore (b0145) 2002
Gonzalez (b0240) 1985; 38
Mittal M, Sharma RK, Singh VP. Modified single pass clustering with variable threshold approach. Int J Innov Comput Inf Control 2015;11(1):375–386.
Fulekar (b0335) 2009
Kaufman L, Rousseeuw PJ. Finding Groups in Data: An Introduction to Cluster Analysis (DBLP); 2009.
Chiang, Mirkin (b0190) 2010; 27
Jiang, Liu, Du, Sui (b0260) 2016; 332
Park, Jun (b0130) 2009; 36
Qi, Ma, Ma, Zou (b0345) 2019; 4
Milligan, Cooper (b0185) 1985; 50
Bousidis, Zouzias, Mahoney, Drineas (b0210) 2015; 61
Janani, Vijayarani (b0045) 2019; 134
Hussain, Haris (b0195) 2019; 118
Arima, Hakamada, Okamoto, Hanai (b0305) 2008; 105
Amorim, Mirkin (b0290) 2012; 45
Fahad, Alshatri, Tari, Alamri, Bouras (b0015) 2014; 2
Fränti, Sieranoja (b0275) 2019; 93
Bicego, Figueiredo (b0225) 2018; 83
Chakraborty, Das (b0295) 2017; 100
Celebi, Kingravi, Vela (b0200) 2013; 40
Bezdek (b0135) 1981
Caliński, Harabasz (b0175) 1974; 3
Vladimir, Tallulash, Martin (b0350) 2019; 20
Meng, Liang, Cao, He (b0300) 2018; 463–464
Kumar, Sahoo (b0255) 2014; 62
Sibson (b0105) 1973; 16
Bezdek, Ehrlich, Full (b0140) 1984; 10
Taiyun, Chen, Lin, Wang, Yang, Yang (b0150) 2019; 20
Wang, Yang, Liu, Fujita (b0030) 2019; 163
Khanmohammadi, Adibeig, Shanehbandy (b0065) 2017; 67
Rousseeuw (b0170) 1987; 20
Zhang, Yang, Li, Fujita (b0025) 2019; 163
Kumar, Reddy (b0265) 2017; 418
Lam, Tsang (b0050) 2012; 12
Li, Dai, Cao, Luo, Chen, Yuan (b0355) 2020; 10
Nithya, Appathurai, Venkatadri, Ramji, Palagan (b0070) 2020; 149
Gupta, Datta, Das (b0320) 2018; 116
Liu, Li, Xiong, Gao, Wu (b0155) 2010
Jain, Murty, Flynn (b0010) 1999; 31
Mur, Dormido, Duro, Dormido-Canto, Vega (b0310) 2016; 65
Rodriguez, Laio (b0235) 2014; 344
Zhang, Cao, Zhang (b0340) 2014; 37
Sun C, Dai Z, Zhang H, Li L Yuan Z. Binary Matrix Shuffling Filter for Feature Selection in Neuronal Morphology Classification. Computational and Mathematical Methods in Medicine 2015;(2015-3-29):626975.
Yang, Lai, Lin (b0100) 2012; 45
Mclachlan GJ, Basford KE. Mixture models: inference and applications to clustering (M. Dekker); 1988.
Davies, Bouldin (b0165) 1979; PAMI-1
Chen, Wang, Li, Zhang, Yuan (b0360) 2016; 17
Zhou, Yang, Ding, Luo (b0160) 2014; 34
Tian, Li, Zeng, Evans, Zhang (b0035) 2019; 165
Lloyd (b0230) 1982; 28
Dempster, Laird, Rubin (b0095) 1977; 39
Akaike (b0330) 1974; 19
Yang, Nataliani (b0085) 2017; 71
Renato, Makarenkov, Mirkin (b0110) 2016; 370
Wu, Kumar, Quinlan, Ghosh, Yang, Motoda, Mclachlan, Ng, Liu, Yu, Zhou, Steinbach, Hand, Steinberg (b0115) 2008; 14
James, James (b0325) 1987; 74
Gan, Li, Zou, Xin, Guan (b0060) 2018; 11
Capo, Perez, Lozano (b0220) 2017; 117
Wu, Yang (b0280) 2002; 35
Tibshirani, Hastie (b0180) 2001; 63
Sarkar, Saha, Maulik (b0075) 2016; 46
MacQueen (b0125) 1967
Jain (b0205) 2010; 31
Mittal, Sharma, Singh, Kumar (b0270) 2019; 10
Melnykov, Melnykov (b0285) 2014; 84
Kakushadze, Yu (b0055) 2017; 13
Hatamlou (b0250) 2012; 33
Zhang, Wang, Huang, Zheng, Zhou (b0020) 2018; 150
Karmitsa, Bagirov, Taheri (b0215) 2018; 83
Jia, Carson, Wang, Yu (b0040) 2018; 76
Zhang, Mańdziuk, Quek, Goh (b0315) 2017; 415–416
Arthur D, Vassilvitskii S. K-Means++: The Advantages of Careful Seeding. Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms: 1027–1035; 2007.
Sibson (10.1016/j.eij.2022.09.002_b0105) 1973; 16
Chiang (10.1016/j.eij.2022.09.002_b0190) 2010; 27
Wu (10.1016/j.eij.2022.09.002_b0280) 2002; 35
Gonzalez (10.1016/j.eij.2022.09.002_b0240) 1985; 38
Kumar (10.1016/j.eij.2022.09.002_b0265) 2017; 418
Hussain (10.1016/j.eij.2022.09.002_b0195) 2019; 118
Wu (10.1016/j.eij.2022.09.002_b0115) 2008; 14
Lam (10.1016/j.eij.2022.09.002_b0050) 2012; 12
Kakushadze (10.1016/j.eij.2022.09.002_b0055) 2017; 13
Rousseeuw (10.1016/j.eij.2022.09.002_b0170) 1987; 20
Wang (10.1016/j.eij.2022.09.002_b0030) 2019; 163
Park (10.1016/j.eij.2022.09.002_b0130) 2009; 36
Kumar (10.1016/j.eij.2022.09.002_b0255) 2014; 62
Gan (10.1016/j.eij.2022.09.002_b0060) 2018; 11
Renato (10.1016/j.eij.2022.09.002_b0110) 2016; 370
Arima (10.1016/j.eij.2022.09.002_b0305) 2008; 105
Gupta (10.1016/j.eij.2022.09.002_b0320) 2018; 116
Yang (10.1016/j.eij.2022.09.002_b0085) 2017; 71
Fahad (10.1016/j.eij.2022.09.002_b0015) 2014; 2
Vladimir (10.1016/j.eij.2022.09.002_b0350) 2019; 20
Bicego (10.1016/j.eij.2022.09.002_b0225) 2018; 83
Karmitsa (10.1016/j.eij.2022.09.002_b0215) 2018; 83
Khanmohammadi (10.1016/j.eij.2022.09.002_b0065) 2017; 67
James (10.1016/j.eij.2022.09.002_b0325) 1987; 74
Pelleg (10.1016/j.eij.2022.09.002_b0145) 2002
MacQueen (10.1016/j.eij.2022.09.002_b0125) 1967
Sarkar (10.1016/j.eij.2022.09.002_b0075) 2016; 46
Tibshirani (10.1016/j.eij.2022.09.002_b0180) 2001; 63
Chen (10.1016/j.eij.2022.09.002_b0360) 2016; 17
Jiang (10.1016/j.eij.2022.09.002_b0260) 2016; 332
Amorim (10.1016/j.eij.2022.09.002_b0290) 2012; 45
Qi (10.1016/j.eij.2022.09.002_b0345) 2019; 4
Akaike (10.1016/j.eij.2022.09.002_b0330) 1974; 19
Davies (10.1016/j.eij.2022.09.002_b0165) 1979; PAMI-1
Capo (10.1016/j.eij.2022.09.002_b0220) 2017; 117
Nithya (10.1016/j.eij.2022.09.002_b0070) 2020; 149
Zhang (10.1016/j.eij.2022.09.002_b0020) 2018; 150
Caliński (10.1016/j.eij.2022.09.002_b0175) 1974; 3
Milligan (10.1016/j.eij.2022.09.002_b0185) 1985; 50
Bezdek (10.1016/j.eij.2022.09.002_b0140) 1984; 10
Zhang (10.1016/j.eij.2022.09.002_b0080) 2020; 199
Lloyd (10.1016/j.eij.2022.09.002_b0230) 1982; 28
10.1016/j.eij.2022.09.002_b0090
Janani (10.1016/j.eij.2022.09.002_b0045) 2019; 134
Fränti (10.1016/j.eij.2022.09.002_b0275) 2019; 93
Zhang (10.1016/j.eij.2022.09.002_b0025) 2019; 163
Liu (10.1016/j.eij.2022.09.002_b0155) 2010
Rodriguez (10.1016/j.eij.2022.09.002_b0235) 2014; 344
Melnykov (10.1016/j.eij.2022.09.002_b0285) 2014; 84
Meng (10.1016/j.eij.2022.09.002_b0300) 2018; 463–464
Mur (10.1016/j.eij.2022.09.002_b0310) 2016; 65
Zhang (10.1016/j.eij.2022.09.002_b0340) 2014; 37
Taiyun (10.1016/j.eij.2022.09.002_b0150) 2019; 20
Jain (10.1016/j.eij.2022.09.002_b0010) 1999; 31
Hatamlou (10.1016/j.eij.2022.09.002_b0250) 2012; 33
Chakraborty (10.1016/j.eij.2022.09.002_b0295) 2017; 100
Jia (10.1016/j.eij.2022.09.002_b0040) 2018; 76
Bezdek (10.1016/j.eij.2022.09.002_b0135) 1981
Dempster (10.1016/j.eij.2022.09.002_b0095) 1977; 39
Mittal (10.1016/j.eij.2022.09.002_b0270) 2019; 10
Li (10.1016/j.eij.2022.09.002_b0355) 2020; 10
10.1016/j.eij.2022.09.002_b0120
Jain (10.1016/j.eij.2022.09.002_b0205) 2010; 31
Celebi (10.1016/j.eij.2022.09.002_b0200) 2013; 40
Tian (10.1016/j.eij.2022.09.002_b0035) 2019; 165
10.1016/j.eij.2022.09.002_b0005
Zhang (10.1016/j.eij.2022.09.002_b0315) 2017; 415–416
Yang (10.1016/j.eij.2022.09.002_b0100) 2012; 45
10.1016/j.eij.2022.09.002_b0245
Bousidis (10.1016/j.eij.2022.09.002_b0210) 2015; 61
10.1016/j.eij.2022.09.002_b0365
Zhou (10.1016/j.eij.2022.09.002_b0160) 2014; 34
Fulekar (10.1016/j.eij.2022.09.002_b0335) 2009
References_xml – volume: 418
  start-page: 286
  year: 2017
  end-page: 301
  ident: b0265
  article-title: An Efficient k-Means Clustering Filtering Algorithm Using Density Based Initial Cluster Centers
  publication-title: Inf Sci
– reference: Mclachlan GJ, Basford KE. Mixture models: inference and applications to clustering (M. Dekker); 1988.
– volume: 150
  start-page: 127
  year: 2018
  end-page: 138
  ident: b0020
  article-title: TW-Co-k-means: Two-level weighted collaborative k-means for multi-view clustering
  publication-title: Knowl-Based Syst
– volume: 116
  start-page: 72
  year: 2018
  end-page: 79
  ident: b0320
  article-title: Fast automatic estimation of the number of clusters from the minimum inter-center distance for k-means clustering
  publication-title: Pattern Recogn Lett
– volume: 37
  start-page: 1
  year: 2014
  end-page: 6
  ident: b0340
  article-title: Comparison of cluster analysis methods for gene expression profile
  publication-title: J Nanjing Agric Univ
– volume: 67
  start-page: 12
  year: 2017
  end-page: 18
  ident: b0065
  article-title: An improved overlapping k-means clustering method for medical applications
  publication-title: Expert Syst Appl
– volume: 38
  start-page: 293
  year: 1985
  end-page: 306
  ident: b0240
  article-title: Clustering to minimize the maximum intercluster distance
  publication-title: Theor Comput Sci
– volume: 93
  start-page: 95
  year: 2019
  end-page: 112
  ident: b0275
  article-title: How much k-means can be improved by using better initialization and repeats?
  publication-title: Pattern Recogn
– volume: 163
  start-page: 1009
  year: 2019
  end-page: 1019
  ident: b0030
  article-title: A study of graph-based system for multi-view clustering
  publication-title: Knowl-Based Syst
– volume: 63
  start-page: 411
  year: 2001
  end-page: 423
  ident: b0180
  article-title: Estimating the Number of Clusters in a Data Set via the Gap Statistic
  publication-title: J R Stat Soc Ser B
– volume: 20
  start-page: 2316
  year: 2019
  end-page: 2326
  ident: b0150
  article-title: Impact of similarity metrics on single-cell rna-seq data clustering
  publication-title: Briefings Bioinformatics
– volume: 20
  start-page: 13
  year: 1987
  ident: b0170
  article-title: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis
  publication-title: J Comput Appl Math
– volume: 20
  start-page: 273
  year: 2019
  end-page: 282
  ident: b0350
  article-title: Challenges in unsupervised clustering of single-cell RNA-seq data
  publication-title: Nat Rev Genet
– volume: 31
  start-page: 651
  year: 2010
  end-page: 666
  ident: b0205
  article-title: Data clustering: 50 years beyond K-means
  publication-title: Pattern Recogn Lett
– volume: 83
  start-page: 52
  year: 2018
  end-page: 63
  ident: b0225
  article-title: Clustering via binary embedding
  publication-title: Pattern Recogn
– volume: 31
  start-page: 264
  year: 1999
  end-page: 323
  ident: b0010
  article-title: Data clustering: a review
  publication-title: ACM Comput Surveys
– volume: 163
  start-page: 776
  year: 2019
  end-page: 786
  ident: b0025
  article-title: A multitask multiview clustering algorithm in heterogeneous situations based on LLE and LE
  publication-title: Knowl-Based Syst
– volume: 13
  start-page: 7
  year: 2017
  end-page: 31
  ident: b0055
  article-title: K-means and cluster models for cancer signatures
  publication-title: Biomol Detection Quantification
– volume: 105
  start-page: 273
  year: 2008
  end-page: 281
  ident: b0305
  article-title: Modified Fuzzy Gap statistic for estimating preferable number of clusters in Fuzzy k-means clustering
  publication-title: J Biosci Bioeng
– volume: 76
  start-page: 691
  year: 2018
  end-page: 703
  ident: b0040
  article-title: Concept decompositions for short text clustering by identifying word communities
  publication-title: Pattern Recogn
– start-page: 911
  year: 2010
  end-page: 916
  ident: b0155
  article-title: Understanding of Internal Clustering Validation Measures
  publication-title: 2010 IEEE International Conference on Data Mining
– volume: 14
  start-page: 1
  year: 2008
  end-page: 37
  ident: b0115
  article-title: Top 10 algorithms in data mining
  publication-title: Knowl Inf Syst
– volume: 199
  year: 2020
  ident: b0080
  article-title: CMC: A Consensus Multi-view Clustering Model for Predicting Alzheimer’s Disease Progression
  publication-title: Comput Methods Programs Biomed
– volume: 45
  start-page: 3950
  year: 2012
  end-page: 3961
  ident: b0100
  article-title: A robust EM clustering algorithm for Gaussian mixture models
  publication-title: Pattern Recogn
– volume: 46
  start-page: 527
  year: 2016
  end-page: 536
  ident: b0075
  article-title: Rough Possibilistic Type-2 Fuzzy C-Means clustering for MR brain image segmentation
  publication-title: Appl Soft Comput
– volume: 40
  start-page: 200
  year: 2013
  end-page: 210
  ident: b0200
  article-title: A comparative study of efficient initialization methods for the k-means clustering algorithm
  publication-title: Expert Syst Appl
– volume: 35
  start-page: 2267
  year: 2002
  end-page: 2278
  ident: b0280
  article-title: Alternative c-means clustering algorithms
  publication-title: Pattern Recogn
– volume: 149
  year: 2020
  ident: b0070
  article-title: Kidney disease detection and segmentation using artificial neural network and multi-kernel k-means clustering for ultrasound images
  publication-title: Measurement
– volume: 370
  start-page: 343
  year: 2016
  end-page: 354
  ident: b0110
  article-title: A-Ward_p
  publication-title: Inf Sci
– volume: 65
  start-page: 304
  year: 2016
  end-page: 314
  ident: b0310
  article-title: Determination of the optimal number of clusters using a spectral clustering optimization
  publication-title: Expert Syst Appl
– volume: 100
  start-page: 67
  year: 2017
  end-page: 73
  ident: b0295
  article-title: k-Means clustering with a new divergence-based distance metric: Convergence and performance analysis
  publication-title: Pattern Recogn Lett
– volume: 11
  start-page: 65
  year: 2018
  end-page: 72
  ident: b0060
  article-title: Identification of cancer subtypes from single-cell RNA-seq data using a consensus clustering method
  publication-title: BMC Med Genomics
– volume: 10
  start-page: 42
  year: 2019
  end-page: 59
  ident: b0270
  article-title: Adaptive threshold based clustering: a deterministic partitioning approach
  publication-title: Int J Inf Syst Model Design
– volume: 45
  start-page: 1061
  year: 2012
  end-page: 1075
  ident: b0290
  article-title: Minkowski metric, feature weighting and anomalous cluster initializing in K-Means clustering
  publication-title: Pattern Recogn
– start-page: 727
  year: 2002
  end-page: 734
  ident: b0145
  article-title: X-means: Extending K-means with Efficient Estimation of the Number of Clusters
  publication-title: Mach Learn
– volume: 332
  start-page: 167
  year: 2016
  end-page: 183
  ident: b0260
  article-title: Initialization of K-modes Clustering Using Outlier Detection Techniques
  publication-title: Inf Sci
– volume: 463–464
  start-page: 166
  year: 2018
  end-page: 185
  ident: b0300
  article-title: A new distance with derivative information for functional k-means clustering algorithm
  publication-title: Inf Sci
– year: 2009
  ident: b0335
  article-title: Bioinformatics: Applications in Life and Environmental Sciences
– reference: Sun C, Dai Z, Zhang H, Li L Yuan Z. Binary Matrix Shuffling Filter for Feature Selection in Neuronal Morphology Classification. Computational and Mathematical Methods in Medicine 2015;(2015-3-29):626975.
– start-page: 17
  year: 1967
  ident: b0125
  article-title: Some methods for classification and analysis of multivariate observations
  publication-title: Proceedings of the 5th Berkeley Symposium on Mathematics Statistics and Probability
– volume: 3
  start-page: 1
  year: 1974
  end-page: 27
  ident: b0175
  article-title: A dendrite method for cluster analysis
  publication-title: Commun Stat
– volume: 117
  start-page: 56
  year: 2017
  end-page: 69
  ident: b0220
  article-title: An efficient approximation to the k-means clustering for massive data
  publication-title: Knowl-Based Syst
– volume: 12
  start-page: 1149
  year: 2012
  end-page: 1157
  ident: b0050
  article-title: eXploratory K-Means: A new simple and efficient algorithm for gene clustering
  publication-title: Appl Soft Comput
– volume: 165
  year: 2019
  ident: b0035
  article-title: Segmentation of tomato leaf images based on adaptive clustering number of K-means algorithm
  publication-title: Comput Electron Agric
– reference: Arthur D, Vassilvitskii S. K-Means++: The Advantages of Careful Seeding. Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms: 1027–1035; 2007.
– volume: 34
  start-page: 2417
  year: 2014
  end-page: 2431
  ident: b0160
  article-title: On cluster validation
  publication-title: Syst Eng-Theory Practice
– volume: 344
  start-page: 1492
  year: 2014
  ident: b0235
  article-title: Clustering by fast search and find of density peaks
  publication-title: Science
– volume: 36
  start-page: 3336
  year: 2009
  end-page: 3341
  ident: b0130
  article-title: A simple and fast algorithm for K-medoids clustering
  publication-title: Expert Syst Appl
– volume: 2
  start-page: 267
  year: 2014
  end-page: 279
  ident: b0015
  article-title: A survey of clustering algorithms for big data: taxonomy and empirical analysis
  publication-title: Emerg Top Comput IEEE Trans
– volume: 61
  start-page: 1045
  year: 2015
  end-page: 1062
  ident: b0210
  article-title: Randomized dimensionality reduction for k-means cluster
  publication-title: IEEE Trans Inf Theory
– volume: 10
  start-page: 19852
  year: 2020
  end-page: 19860
  ident: b0355
  article-title: Chi-mic-share: a new feature selection algorithm for quantitative structure-activity relationship models
  publication-title: RSC Adv
– volume: 19
  start-page: 716
  year: 1974
  end-page: 723
  ident: b0330
  article-title: A new look at the statistical model identification
  publication-title: Autom Control IEEE Trans
– volume: 16
  start-page: 30
  year: 1973
  end-page: 34
  ident: b0105
  article-title: SLINK: An optimally efficient algorithm for the single-link cluster method
  publication-title: Comput J
– volume: PAMI-1
  start-page: 224
  year: 1979
  end-page: 227
  ident: b0165
  article-title: A Cluster Separation Measure
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 50
  start-page: 159
  year: 1985
  end-page: 179
  ident: b0185
  article-title: An examination of procedures for determining the number of clusters in a data set
  publication-title: Psychometrika
– volume: 415–416
  start-page: 414
  year: 2017
  end-page: 428
  ident: b0315
  article-title: Curvature-based method for determining the number of clusters
  publication-title: Inf Sci
– volume: 39
  start-page: 1
  year: 1977
  end-page: 22
  ident: b0095
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J R Stat Soc
– volume: 28
  start-page: 129
  year: 1982
  end-page: 137
  ident: b0230
  article-title: Least squares quantization in PCM
  publication-title: IEEE Trans Inf Theory
– volume: 27
  start-page: 3
  year: 2010
  end-page: 40
  ident: b0190
  article-title: Intelligent Choice of the Number of Clusters in K-Means Clustering: An Experimental Study with Different Cluster Spreads
  publication-title: J Classification
– year: 1981
  ident: b0135
  article-title: Pattern Recognition With Fuzzy Objective Function Algorithms
– volume: 84
  start-page: 88
  year: 2014
  end-page: 95
  ident: b0285
  article-title: On K-means algorithm with the use of Mahalanobis distances
  publication-title: Stat Prob Lett
– volume: 74
  start-page: 71
  year: 1987
  end-page: 83
  ident: b0325
  article-title: Tests for a Changepoint
  publication-title: Biometrika
– volume: 17
  start-page: 1
  year: 2016
  end-page: 16
  ident: b0360
  article-title: Informative gene selection and the direct classification of tumors based on relative simplicity
  publication-title: BMC Bioinf
– volume: 62
  start-page: 43
  year: 2014
  end-page: 54
  ident: b0255
  article-title: A New Initialization Method to Originate Initial Cluster Centers for K-Means Algorithm
  publication-title: Int J Adv Sci Technol
– volume: 10
  start-page: 191
  year: 1984
  end-page: 203
  ident: b0140
  article-title: FCM: The fuzzy c-means clustering algorithm
  publication-title: Comput Geosci
– volume: 33
  start-page: 1756
  year: 2012
  end-page: 1760
  ident: b0250
  article-title: In search of optimal centroids on data clustering using a binary search algorithm
  publication-title: Pattern Recogn Lett
– reference: Kaufman L, Rousseeuw PJ. Finding Groups in Data: An Introduction to Cluster Analysis (DBLP); 2009.
– volume: 118
  start-page: 20
  year: 2019
  end-page: 34
  ident: b0195
  article-title: A k-means based co-clustering (kCC) algorithm for sparse, high dimensional data
  publication-title: Expert Syst Appl
– volume: 83
  start-page: 245
  year: 2018
  end-page: 259
  ident: b0215
  article-title: Clustering in large data sets with the limited memory bundle method
  publication-title: Pattern Recogn
– volume: 4
  start-page: 1
  year: 2019
  end-page: 13
  ident: b0345
  article-title: Clustering and classification methods for single-cell RNA-sequencing data
  publication-title: Briefings Bioinformatics
– volume: 71
  start-page: 45
  year: 2017
  end-page: 59
  ident: b0085
  article-title: Robust-learning fuzzy c-means clustering algorithm with unknown number of clusters
  publication-title: Pattern Recogn
– reference: Mittal M, Sharma RK, Singh VP. Modified single pass clustering with variable threshold approach. Int J Innov Comput Inf Control 2015;11(1):375–386.
– volume: 134
  start-page: 192
  year: 2019
  end-page: 200
  ident: b0045
  article-title: Text document clustering using Spectral Clustering algorithm with Particle Swarm Optimization
  publication-title: Expert Syst Appl
– volume: 83
  start-page: 245
  year: 2018
  ident: 10.1016/j.eij.2022.09.002_b0215
  article-title: Clustering in large data sets with the limited memory bundle method
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2018.05.028
– volume: 344
  start-page: 1492
  issue: 6191
  year: 2014
  ident: 10.1016/j.eij.2022.09.002_b0235
  article-title: Clustering by fast search and find of density peaks
  publication-title: Science
  doi: 10.1126/science.1242072
– volume: 65
  start-page: 304
  year: 2016
  ident: 10.1016/j.eij.2022.09.002_b0310
  article-title: Determination of the optimal number of clusters using a spectral clustering optimization
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2016.08.059
– volume: 165
  year: 2019
  ident: 10.1016/j.eij.2022.09.002_b0035
  article-title: Segmentation of tomato leaf images based on adaptive clustering number of K-means algorithm
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2019.104962
– volume: 39
  start-page: 1
  issue: 1
  year: 1977
  ident: 10.1016/j.eij.2022.09.002_b0095
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J R Stat Soc
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– volume: 10
  start-page: 191
  issue: 2
  year: 1984
  ident: 10.1016/j.eij.2022.09.002_b0140
  article-title: FCM: The fuzzy c-means clustering algorithm
  publication-title: Comput Geosci
  doi: 10.1016/0098-3004(84)90020-7
– volume: 463–464
  start-page: 166
  year: 2018
  ident: 10.1016/j.eij.2022.09.002_b0300
  article-title: A new distance with derivative information for functional k-means clustering algorithm
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2018.06.035
– volume: 12
  start-page: 1149
  issue: 3
  year: 2012
  ident: 10.1016/j.eij.2022.09.002_b0050
  article-title: eXploratory K-Means: A new simple and efficient algorithm for gene clustering
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2011.11.008
– volume: 28
  start-page: 129
  issue: 2
  year: 1982
  ident: 10.1016/j.eij.2022.09.002_b0230
  article-title: Least squares quantization in PCM
  publication-title: IEEE Trans Inf Theory
  doi: 10.1109/TIT.1982.1056489
– volume: 199
  year: 2020
  ident: 10.1016/j.eij.2022.09.002_b0080
  article-title: CMC: A Consensus Multi-view Clustering Model for Predicting Alzheimer’s Disease Progression
  publication-title: Comput Methods Programs Biomed
– volume: 370
  start-page: 343
  year: 2016
  ident: 10.1016/j.eij.2022.09.002_b0110
  article-title: A-Ward_pβ) Effective hierarchical clustering using the Minkowski metric and a fast k-means initialisation
  publication-title: Inf Sci
– volume: 84
  start-page: 88
  issue: 1
  year: 2014
  ident: 10.1016/j.eij.2022.09.002_b0285
  article-title: On K-means algorithm with the use of Mahalanobis distances
  publication-title: Stat Prob Lett
  doi: 10.1016/j.spl.2013.09.026
– volume: 17
  start-page: 1
  issue: 1
  year: 2016
  ident: 10.1016/j.eij.2022.09.002_b0360
  article-title: Informative gene selection and the direct classification of tumors based on relative simplicity
  publication-title: BMC Bioinf
  doi: 10.1186/s12859-016-0893-0
– volume: 74
  start-page: 71
  issue: 1
  year: 1987
  ident: 10.1016/j.eij.2022.09.002_b0325
  article-title: Tests for a Changepoint
  publication-title: Biometrika
  doi: 10.1093/biomet/74.1.71
– volume: 10
  start-page: 19852
  year: 2020
  ident: 10.1016/j.eij.2022.09.002_b0355
  article-title: Chi-mic-share: a new feature selection algorithm for quantitative structure-activity relationship models
  publication-title: RSC Adv
  doi: 10.1039/D0RA00061B
– volume: 3
  start-page: 1
  issue: 1
  year: 1974
  ident: 10.1016/j.eij.2022.09.002_b0175
  article-title: A dendrite method for cluster analysis
  publication-title: Commun Stat
– volume: 45
  start-page: 1061
  issue: 3
  year: 2012
  ident: 10.1016/j.eij.2022.09.002_b0290
  article-title: Minkowski metric, feature weighting and anomalous cluster initializing in K-Means clustering
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2011.08.012
– volume: 11
  start-page: 65
  year: 2018
  ident: 10.1016/j.eij.2022.09.002_b0060
  article-title: Identification of cancer subtypes from single-cell RNA-seq data using a consensus clustering method
  publication-title: BMC Med Genomics
  doi: 10.1186/s12920-018-0433-z
– volume: 14
  start-page: 1
  issue: 1
  year: 2008
  ident: 10.1016/j.eij.2022.09.002_b0115
  article-title: Top 10 algorithms in data mining
  publication-title: Knowl Inf Syst
  doi: 10.1007/s10115-007-0114-2
– start-page: 911
  year: 2010
  ident: 10.1016/j.eij.2022.09.002_b0155
  article-title: Understanding of Internal Clustering Validation Measures
  publication-title: 2010 IEEE International Conference on Data Mining
  doi: 10.1109/ICDM.2010.35
– volume: 20
  start-page: 13
  year: 1987
  ident: 10.1016/j.eij.2022.09.002_b0170
  article-title: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis
  publication-title: J Comput Appl Math
  doi: 10.1016/0377-0427(87)90125-7
– volume: 118
  start-page: 20
  issue: 15
  year: 2019
  ident: 10.1016/j.eij.2022.09.002_b0195
  article-title: A k-means based co-clustering (kCC) algorithm for sparse, high dimensional data
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2018.09.006
– volume: 105
  start-page: 273
  issue: 3
  year: 2008
  ident: 10.1016/j.eij.2022.09.002_b0305
  article-title: Modified Fuzzy Gap statistic for estimating preferable number of clusters in Fuzzy k-means clustering
  publication-title: J Biosci Bioeng
  doi: 10.1263/jbb.105.273
– volume: 62
  start-page: 43
  year: 2014
  ident: 10.1016/j.eij.2022.09.002_b0255
  article-title: A New Initialization Method to Originate Initial Cluster Centers for K-Means Algorithm
  publication-title: Int J Adv Sci Technol
  doi: 10.14257/ijast.2014.62.04
– volume: 163
  start-page: 1009
  year: 2019
  ident: 10.1016/j.eij.2022.09.002_b0030
  article-title: A study of graph-based system for multi-view clustering
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2018.10.022
– volume: 16
  start-page: 30
  issue: 1
  year: 1973
  ident: 10.1016/j.eij.2022.09.002_b0105
  article-title: SLINK: An optimally efficient algorithm for the single-link cluster method
  publication-title: Comput J
  doi: 10.1093/comjnl/16.1.30
– volume: 37
  start-page: 1
  issue: 6
  year: 2014
  ident: 10.1016/j.eij.2022.09.002_b0340
  article-title: Comparison of cluster analysis methods for gene expression profile
  publication-title: J Nanjing Agric Univ
– volume: PAMI-1
  start-page: 224
  issue: 2
  year: 1979
  ident: 10.1016/j.eij.2022.09.002_b0165
  article-title: A Cluster Separation Measure
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.1979.4766909
– volume: 93
  start-page: 95
  year: 2019
  ident: 10.1016/j.eij.2022.09.002_b0275
  article-title: How much k-means can be improved by using better initialization and repeats?
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2019.04.014
– volume: 116
  start-page: 72
  year: 2018
  ident: 10.1016/j.eij.2022.09.002_b0320
  article-title: Fast automatic estimation of the number of clusters from the minimum inter-center distance for k-means clustering
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2018.09.003
– volume: 20
  start-page: 273
  year: 2019
  ident: 10.1016/j.eij.2022.09.002_b0350
  article-title: Challenges in unsupervised clustering of single-cell RNA-seq data
  publication-title: Nat Rev Genet
  doi: 10.1038/s41576-018-0088-9
– volume: 83
  start-page: 52
  year: 2018
  ident: 10.1016/j.eij.2022.09.002_b0225
  article-title: Clustering via binary embedding
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2018.05.011
– volume: 46
  start-page: 527
  year: 2016
  ident: 10.1016/j.eij.2022.09.002_b0075
  article-title: Rough Possibilistic Type-2 Fuzzy C-Means clustering for MR brain image segmentation
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2016.01.040
– volume: 100
  start-page: 67
  year: 2017
  ident: 10.1016/j.eij.2022.09.002_b0295
  article-title: k-Means clustering with a new divergence-based distance metric: Convergence and performance analysis
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2017.09.025
– volume: 134
  start-page: 192
  year: 2019
  ident: 10.1016/j.eij.2022.09.002_b0045
  article-title: Text document clustering using Spectral Clustering algorithm with Particle Swarm Optimization
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2019.05.030
– volume: 20
  start-page: 2316
  issue: 6
  year: 2019
  ident: 10.1016/j.eij.2022.09.002_b0150
  article-title: Impact of similarity metrics on single-cell rna-seq data clustering
  publication-title: Briefings Bioinformatics
  doi: 10.1093/bib/bby076
– volume: 332
  start-page: 167
  year: 2016
  ident: 10.1016/j.eij.2022.09.002_b0260
  article-title: Initialization of K-modes Clustering Using Outlier Detection Techniques
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2015.11.005
– volume: 415–416
  start-page: 414
  year: 2017
  ident: 10.1016/j.eij.2022.09.002_b0315
  article-title: Curvature-based method for determining the number of clusters
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2017.05.024
– volume: 45
  start-page: 3950
  issue: 11
  year: 2012
  ident: 10.1016/j.eij.2022.09.002_b0100
  article-title: A robust EM clustering algorithm for Gaussian mixture models
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2012.04.031
– volume: 2
  start-page: 267
  issue: 3
  year: 2014
  ident: 10.1016/j.eij.2022.09.002_b0015
  article-title: A survey of clustering algorithms for big data: taxonomy and empirical analysis
  publication-title: Emerg Top Comput IEEE Trans
  doi: 10.1109/TETC.2014.2330519
– volume: 67
  start-page: 12
  year: 2017
  ident: 10.1016/j.eij.2022.09.002_b0065
  article-title: An improved overlapping k-means clustering method for medical applications
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2016.09.025
– volume: 36
  start-page: 3336
  issue: 2
  year: 2009
  ident: 10.1016/j.eij.2022.09.002_b0130
  article-title: A simple and fast algorithm for K-medoids clustering
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2008.01.039
– volume: 40
  start-page: 200
  year: 2013
  ident: 10.1016/j.eij.2022.09.002_b0200
  article-title: A comparative study of efficient initialization methods for the k-means clustering algorithm
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2012.07.021
– ident: 10.1016/j.eij.2022.09.002_b0120
– year: 1981
  ident: 10.1016/j.eij.2022.09.002_b0135
– volume: 150
  start-page: 127
  year: 2018
  ident: 10.1016/j.eij.2022.09.002_b0020
  article-title: TW-Co-k-means: Two-level weighted collaborative k-means for multi-view clustering
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2018.03.009
– volume: 117
  start-page: 56
  year: 2017
  ident: 10.1016/j.eij.2022.09.002_b0220
  article-title: An efficient approximation to the k-means clustering for massive data
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2016.06.031
– ident: 10.1016/j.eij.2022.09.002_b0005
– volume: 34
  start-page: 2417
  issue: 9
  year: 2014
  ident: 10.1016/j.eij.2022.09.002_b0160
  article-title: On cluster validation
  publication-title: Syst Eng-Theory Practice
– volume: 10
  start-page: 42
  issue: 1
  year: 2019
  ident: 10.1016/j.eij.2022.09.002_b0270
  article-title: Adaptive threshold based clustering: a deterministic partitioning approach
  publication-title: Int J Inf Syst Model Design
  doi: 10.4018/IJISMD.2019010103
– start-page: 17
  year: 1967
  ident: 10.1016/j.eij.2022.09.002_b0125
  article-title: Some methods for classification and analysis of multivariate observations
– start-page: 727
  year: 2002
  ident: 10.1016/j.eij.2022.09.002_b0145
  article-title: X-means: Extending K-means with Efficient Estimation of the Number of Clusters
  publication-title: Mach Learn
– volume: 63
  start-page: 411
  issue: 2
  year: 2001
  ident: 10.1016/j.eij.2022.09.002_b0180
  article-title: Estimating the Number of Clusters in a Data Set via the Gap Statistic
  publication-title: J R Stat Soc Ser B
  doi: 10.1111/1467-9868.00293
– volume: 418
  start-page: 286
  year: 2017
  ident: 10.1016/j.eij.2022.09.002_b0265
  article-title: An Efficient k-Means Clustering Filtering Algorithm Using Density Based Initial Cluster Centers
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2017.07.036
– volume: 71
  start-page: 45
  year: 2017
  ident: 10.1016/j.eij.2022.09.002_b0085
  article-title: Robust-learning fuzzy c-means clustering algorithm with unknown number of clusters
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2017.05.017
– volume: 33
  start-page: 1756
  issue: 13
  year: 2012
  ident: 10.1016/j.eij.2022.09.002_b0250
  article-title: In search of optimal centroids on data clustering using a binary search algorithm
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2012.06.008
– volume: 149
  year: 2020
  ident: 10.1016/j.eij.2022.09.002_b0070
  article-title: Kidney disease detection and segmentation using artificial neural network and multi-kernel k-means clustering for ultrasound images
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.106952
– volume: 31
  start-page: 264
  issue: 3
  year: 1999
  ident: 10.1016/j.eij.2022.09.002_b0010
  article-title: Data clustering: a review
  publication-title: ACM Comput Surveys
  doi: 10.1145/331499.331504
– ident: 10.1016/j.eij.2022.09.002_b0365
  doi: 10.1155/2015/626975
– volume: 38
  start-page: 293
  issue: 2–3
  year: 1985
  ident: 10.1016/j.eij.2022.09.002_b0240
  article-title: Clustering to minimize the maximum intercluster distance
  publication-title: Theor Comput Sci
  doi: 10.1016/0304-3975(85)90224-5
– ident: 10.1016/j.eij.2022.09.002_b0245
– volume: 19
  start-page: 716
  issue: 6
  year: 1974
  ident: 10.1016/j.eij.2022.09.002_b0330
  article-title: A new look at the statistical model identification
  publication-title: Autom Control IEEE Trans
  doi: 10.1109/TAC.1974.1100705
– volume: 4
  start-page: 1
  issue: 4
  year: 2019
  ident: 10.1016/j.eij.2022.09.002_b0345
  article-title: Clustering and classification methods for single-cell RNA-sequencing data
  publication-title: Briefings Bioinformatics
– volume: 31
  start-page: 651
  issue: 8
  year: 2010
  ident: 10.1016/j.eij.2022.09.002_b0205
  article-title: Data clustering: 50 years beyond K-means
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2009.09.011
– volume: 13
  start-page: 7
  year: 2017
  ident: 10.1016/j.eij.2022.09.002_b0055
  article-title: K-means and cluster models for cancer signatures
  publication-title: Biomol Detection Quantification
  doi: 10.1016/j.bdq.2017.07.001
– volume: 76
  start-page: 691
  year: 2018
  ident: 10.1016/j.eij.2022.09.002_b0040
  article-title: Concept decompositions for short text clustering by identifying word communities
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2017.09.045
– volume: 35
  start-page: 2267
  issue: 10
  year: 2002
  ident: 10.1016/j.eij.2022.09.002_b0280
  article-title: Alternative c-means clustering algorithms
  publication-title: Pattern Recogn
  doi: 10.1016/S0031-3203(01)00197-2
– volume: 27
  start-page: 3
  issue: 1
  year: 2010
  ident: 10.1016/j.eij.2022.09.002_b0190
  article-title: Intelligent Choice of the Number of Clusters in K-Means Clustering: An Experimental Study with Different Cluster Spreads
  publication-title: J Classification
  doi: 10.1007/s00357-010-9049-5
– year: 2009
  ident: 10.1016/j.eij.2022.09.002_b0335
– volume: 163
  start-page: 776
  year: 2019
  ident: 10.1016/j.eij.2022.09.002_b0025
  article-title: A multitask multiview clustering algorithm in heterogeneous situations based on LLE and LE
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2018.10.001
– volume: 50
  start-page: 159
  issue: 2
  year: 1985
  ident: 10.1016/j.eij.2022.09.002_b0185
  article-title: An examination of procedures for determining the number of clusters in a data set
  publication-title: Psychometrika
  doi: 10.1007/BF02294245
– volume: 61
  start-page: 1045
  year: 2015
  ident: 10.1016/j.eij.2022.09.002_b0210
  article-title: Randomized dimensionality reduction for k-means cluster
  publication-title: IEEE Trans Inf Theory
  doi: 10.1109/TIT.2014.2375327
– ident: 10.1016/j.eij.2022.09.002_b0090
  doi: 10.2307/2348072
SSID ssj0000612456
Score 2.2790334
Snippet Designing appropriate similarity metrics (distance) and estimating the optimal number of clusters have been two important issues in cluster analysis. This...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 133
SubjectTerms Clustering
EP_dis
formula omitted
Internal validation index
RCH
Weighted distance
Title WeDIV – An improved k-means clustering algorithm with a weighted distance and a novel internal validation index
URI https://dx.doi.org/10.1016/j.eij.2022.09.002
https://doaj.org/article/da6177a6bf6042aebbefd865e11470d7
Volume 23
WOSCitedRecordID wos000903536100012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2090-4754
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000612456
  issn: 1110-8665
  databaseCode: DOA
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV25TsQwELUQooACcYrlkgsqpIisiZNsybUCCSEKrs7yMYZANsCyCy3_wB_yJYztBKUBGlrHGUczo7k8eUPIlk26RnMFEeOQRknPmkhxyCJr5K6GHINof6N7dZqdneU3N73z1qgv1xMW4IED43aMRB-byVTZFPVLglJgTZ5ywEA-i43_jxyjnlYyFWxw193o-ckqaGgcqFtzpembu6C4x9yQMY9xWpdUGqfksftbvqnlb_pzZLYOFOle-MB5MgHVAplpwQcukudrODy5op_vH3SvooUvD4ChD9EA0AFRXY4dCgJupbK8fRwWo7sBdXVXKumbr4jiZuPiRxQ8lZXB9QoplLQIZcKSohoWYegS9bCKS-Syf3RxcBzVIxQijZ56FEGmuUlVmmsGmOz2Yis5s1rnMaQSfT2zKB6W2iy2-BytH1OMK40xkmRJxvXuMpmsHitYIRQTNUxNUKxdaRKQmTJoDpg1SIzHXaM6JG54KHSNL-7GXJSiaSS7F8h24dgu4p5AtnfI9vcrTwFc47fN-04w3xsdLrZfQG0RtbaIv7SlQ5JGrKIOMULogKSKn89e_Y-z18i0Ixl6YdbJ5Gg4hg0ypV9Hxctw0-vvFzvF9bQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=WeDIV%E2%80%94An+improved+k-means+clustering+algorithm+with+a+weighted+distance+and+a+novel+internal+validation+index&rft.jtitle=Egyptian+informatics+journal&rft.au=Ning%2C+Zilan&rft.au=Chen%2C+Jin&rft.au=Huang%2C+Jianjun&rft.au=Sabo%2C+Umar+Jlbrilla&rft.date=2022-12-01&rft.issn=1110-8665&rft.volume=23&rft.issue=4&rft.spage=133&rft.epage=144&rft_id=info:doi/10.1016%2Fj.eij.2022.09.002&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eij_2022_09_002
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1110-8665&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1110-8665&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1110-8665&client=summon