Analysis of the accuracy on PMV – PPD model using the ASHRAE Global Thermal Comfort Database II

The predicted mean vote (PMV) and predicted percentage of dissatisfied (PPD) are the most widely used thermal comfort indices. Yet, their performance remains a contested topic. The ASHRAE Global Thermal Comfort Database II, the largest of its kind, was used to evaluate the prediction accuracy of the...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Building and environment Ročník 153; s. 205 - 217
Hlavní autoři: Cheung, Toby, Schiavon, Stefano, Parkinson, Thomas, Li, Peixian, Brager, Gail
Médium: Journal Article
Jazyk:angličtina
Vydáno: Oxford Elsevier Ltd 15.04.2019
Elsevier BV
Témata:
ISSN:0360-1323, 1873-684X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The predicted mean vote (PMV) and predicted percentage of dissatisfied (PPD) are the most widely used thermal comfort indices. Yet, their performance remains a contested topic. The ASHRAE Global Thermal Comfort Database II, the largest of its kind, was used to evaluate the prediction accuracy of the PMV/PPD model. We focused on: (i) the accuracy of PMV in predicting both observed thermal sensation (OTS) or observed mean vote (OMV) and (ii) comparing the PMV-PPD relationship with binned OTS – observed percentage of unacceptability (OPU). The accuracy of PMV in predicting OTS was only 34%, meaning that the thermal sensation is incorrectly predicted two out of three times. PMV had a mean absolute error of one unit on the thermal sensation scale and its accuracy decreased towards the ends of the thermal sensation scale. The accuracy of PMV was similarly low for air-conditioned, naturally ventilated and mixed-mode buildings. In addition, the PPD was not able to predict the dissatisfaction rate. If the PMV model would perfectly predict thermal sensation, then PPD accuracy is higher close to neutrality but it would overestimate dissatisfaction by approximately 15–25% outside of it. Furthermore, PMV-PPD accuracy varied strongly between ventilation strategies, building types and climate groups. These findings demonstrate the low prediction accuracy of the PMV–PPD model, indicating the need to develop high prediction accuracy thermal comfort models. For demonstration, we developed a simple thermal prediction model just based on air temperature and its accuracy, for this database, was higher than PMV. [Display omitted] •Assessed PMV-PPD accuracy using the ASHRAE Global Thermal Comfort Database II.•PMV predicted thermal sensation correctly only one out of three times.•PMV had a mean absolute error of one unit on the thermal sensation scale.•PPD was not able to predict the dissatisfaction rate.•PMV-PPD accuracy varied strongly between ventilation, building types and climate.
AbstractList The predicted mean vote (PMV) and predicted percentage of dissatisfied (PPD) are the most widely used thermal comfort indices. Yet, their performance remains a contested topic. The ASHRAE Global Thermal Comfort Database II, the largest of its kind, was used to evaluate the prediction accuracy of the PMV/PPD model. We focused on: (i) the accuracy of PMV in predicting both observed thermal sensation (OTS) or observed mean vote (OMV) and (ii) comparing the PMV-PPD relationship with binned OTS – observed percentage of unacceptability (OPU). The accuracy of PMV in predicting OTS was only 34%, meaning that the thermal sensation is incorrectly predicted two out of three times. PMV had a mean absolute error of one unit on the thermal sensation scale and its accuracy decreased towards the ends of the thermal sensation scale. The accuracy of PMV was similarly low for air-conditioned, naturally ventilated and mixed-mode buildings. In addition, the PPD was not able to predict the dissatisfaction rate. If the PMV model would perfectly predict thermal sensation, then PPD accuracy is higher close to neutrality but it would overestimate dissatisfaction by approximately 15–25% outside of it. Furthermore, PMV-PPD accuracy varied strongly between ventilation strategies, building types and climate groups. These findings demonstrate the low prediction accuracy of the PMV–PPD model, indicating the need to develop high prediction accuracy thermal comfort models. For demonstration, we developed a simple thermal prediction model just based on air temperature and its accuracy, for this database, was higher than PMV. [Display omitted] •Assessed PMV-PPD accuracy using the ASHRAE Global Thermal Comfort Database II.•PMV predicted thermal sensation correctly only one out of three times.•PMV had a mean absolute error of one unit on the thermal sensation scale.•PPD was not able to predict the dissatisfaction rate.•PMV-PPD accuracy varied strongly between ventilation, building types and climate.
The predicted mean vote (PMV) and predicted percentage of dissatisfied (PPD) are the most widely used thermal comfort indices. Yet, their performance remains a contested topic. The ASHRAE Global Thermal Comfort Database II, the largest of its kind, was used to evaluate the prediction accuracy of the PMV/PPD model. We focused on: (i) the accuracy of PMV in predicting both observed thermal sensation (OTS) or observed mean vote (OMV) and (ii) comparing the PMV-PPD relationship with binned OTS – observed percentage of unacceptability (OPU). The accuracy of PMV in predicting OTS was only 34%, meaning that the thermal sensation is incorrectly predicted two out of three times. PMV had a mean absolute error of one unit on the thermal sensation scale and its accuracy decreased towards the ends of the thermal sensation scale. The accuracy of PMV was similarly low for air-conditioned, naturally ventilated and mixed-mode buildings. In addition, the PPD was not able to predict the dissatisfaction rate. If the PMV model would perfectly predict thermal sensation, then PPD accuracy is higher close to neutrality but it would overestimate dissatisfaction by approximately 15–25% outside of it. Furthermore, PMV-PPD accuracy varied strongly between ventilation strategies, building types and climate groups. These findings demonstrate the low prediction accuracy of the PMV–PPD model, indicating the need to develop high prediction accuracy thermal comfort models. For demonstration, we developed a simple thermal prediction model just based on air temperature and its accuracy, for this database, was higher than PMV.
Author Li, Peixian
Schiavon, Stefano
Parkinson, Thomas
Brager, Gail
Cheung, Toby
Author_xml – sequence: 1
  givenname: Toby
  surname: Cheung
  fullname: Cheung, Toby
  organization: Berkeley Education Alliance for Research in Singapore, Singapore
– sequence: 2
  givenname: Stefano
  orcidid: 0000-0003-1285-5682
  surname: Schiavon
  fullname: Schiavon, Stefano
  email: schiavon@berkeley.edu
  organization: Center for the Built Environment, University of California, Berkeley, CA, USA
– sequence: 3
  givenname: Thomas
  orcidid: 0000-0002-0088-8754
  surname: Parkinson
  fullname: Parkinson, Thomas
  organization: Center for the Built Environment, University of California, Berkeley, CA, USA
– sequence: 4
  givenname: Peixian
  surname: Li
  fullname: Li, Peixian
  organization: Center for the Built Environment, University of California, Berkeley, CA, USA
– sequence: 5
  givenname: Gail
  orcidid: 0000-0002-1100-8302
  surname: Brager
  fullname: Brager, Gail
  organization: Center for the Built Environment, University of California, Berkeley, CA, USA
BookMark eNqFkMtKAzEYhYNUsFVfQQKuZ0wmM2kKLiytl4Ji8Ya7kGQSTZlOapIRuvMdfEOfxGh148bV4YfzHfi_Aei1rtUAHGCUY4Tp0SKXnW1q3b7mBcKjHOEcVdUW6GM2JBll5WMP9BGhKMOkIDtgEMICJXBEyj4Q41Y062ADdAbGZw2FUp0Xag1dC-dXD_Dj7R3O51O4dLVuYBds-_TdG99e3IxP4XnjpGjg3bP2y5QTtzTORzgVUUgRNJzN9sC2EU3Q-z-5C-7PTu8mF9nl9flsMr7MVIlozDStGR5RikaGGSNryop0VoaV0hBKSaEKVJIhqxUZEjFkBiGpjJRMoooVlSa74HCzu_LupdMh8oXrfPou8KLAjCQ1jKQW3bSUdyF4bfjK26Xwa44R_9LJF_xXJ__SyRHmSWcCj_-AykYRrWujF7b5Hz_Z4DopeLXa86CsbpWurdcq8trZ_yY-AUpJlqE
CitedBy_id crossref_primary_10_1007_s12273_022_0911_2
crossref_primary_10_1016_j_enbenv_2021_05_003
crossref_primary_10_3389_fbuil_2022_971523
crossref_primary_10_1016_j_enbuild_2021_110920
crossref_primary_10_1016_j_enbenv_2025_05_006
crossref_primary_10_3390_ijerph17062092
crossref_primary_10_1016_j_enbenv_2025_05_007
crossref_primary_10_1016_j_buildenv_2023_110348
crossref_primary_10_1016_j_buildenv_2024_111958
crossref_primary_10_1007_s12273_023_1003_7
crossref_primary_10_1088_1755_1315_768_1_012080
crossref_primary_10_1007_s10668_024_04963_1
crossref_primary_10_1016_j_apacoust_2025_110642
crossref_primary_10_1016_j_buildenv_2019_106231
crossref_primary_10_1016_j_enbuild_2025_116228
crossref_primary_10_1016_j_rser_2022_112704
crossref_primary_10_1016_j_enbuild_2023_113632
crossref_primary_10_3390_su17188137
crossref_primary_10_1007_s12053_025_10371_9
crossref_primary_10_3390_en16031251
crossref_primary_10_1177_17442591231177428
crossref_primary_10_3390_su16219438
crossref_primary_10_1016_j_buildenv_2022_109090
crossref_primary_10_1016_j_enbuild_2021_111686
crossref_primary_10_1007_s44213_024_00038_z
crossref_primary_10_1016_j_buildenv_2020_107443
crossref_primary_10_1016_j_buildenv_2019_106223
crossref_primary_10_1016_j_buildenv_2025_112766
crossref_primary_10_1016_j_enbuild_2020_109780
crossref_primary_10_1016_j_buildenv_2023_110579
crossref_primary_10_1016_j_apenergy_2023_122430
crossref_primary_10_1088_1742_6596_1343_1_012141
crossref_primary_10_1016_j_enbuild_2025_116217
crossref_primary_10_1016_j_buildenv_2019_106588
crossref_primary_10_1088_1742_6596_1343_1_012145
crossref_primary_10_1088_1755_1315_352_1_012051
crossref_primary_10_1109_JIOT_2022_3152138
crossref_primary_10_1016_j_buildenv_2021_107618
crossref_primary_10_3390_app132011190
crossref_primary_10_3390_buildings14082398
crossref_primary_10_1016_j_enbuild_2020_110066
crossref_primary_10_1016_j_jobe_2023_105960
crossref_primary_10_3390_en18092280
crossref_primary_10_1016_j_culher_2024_12_009
crossref_primary_10_1016_j_rser_2024_114903
crossref_primary_10_1016_j_jobe_2020_102051
crossref_primary_10_1016_j_buildenv_2021_108370
crossref_primary_10_1038_s41597_022_01347_w
crossref_primary_10_1016_j_buildenv_2023_111104
crossref_primary_10_1088_1742_6596_2600_9_092004
crossref_primary_10_1016_j_enbuild_2024_114663
crossref_primary_10_1016_j_buildenv_2023_110137
crossref_primary_10_1080_23744731_2021_1916379
crossref_primary_10_3390_buildings12111788
crossref_primary_10_1016_j_indenv_2025_100098
crossref_primary_10_1088_1742_6596_2600_9_092005
crossref_primary_10_14718_RevArq_2025_27_5365
crossref_primary_10_3390_pr9020385
crossref_primary_10_1016_j_jclepro_2022_132033
crossref_primary_10_1016_j_solener_2020_07_058
crossref_primary_10_29105_contexto19_30_469
crossref_primary_10_1016_j_enbuild_2020_109761
crossref_primary_10_1016_j_enbuild_2021_111344
crossref_primary_10_1016_j_enbuild_2019_109729
crossref_primary_10_1016_j_buildenv_2020_107302
crossref_primary_10_1016_j_buildenv_2024_111988
crossref_primary_10_1016_j_cmpb_2022_107198
crossref_primary_10_1016_j_ijthermalsci_2025_109804
crossref_primary_10_1016_j_buildenv_2024_111751
crossref_primary_10_1016_j_rser_2025_116020
crossref_primary_10_1016_j_enbuild_2023_112873
crossref_primary_10_1016_j_buildenv_2022_109877
crossref_primary_10_3390_architecture5020021
crossref_primary_10_3233_SW_223254
crossref_primary_10_1016_j_jobe_2024_108834
crossref_primary_10_1016_j_scs_2021_102867
crossref_primary_10_1016_j_enbuild_2024_114808
crossref_primary_10_1051_e3sconf_202339601105
crossref_primary_10_1016_j_enbuild_2024_114809
crossref_primary_10_1007_s12273_024_1107_8
crossref_primary_10_1016_j_buildenv_2025_113541
crossref_primary_10_3390_su13169167
crossref_primary_10_1016_j_buildenv_2020_107412
crossref_primary_10_1017_eds_2023_43
crossref_primary_10_1038_s41598_025_92112_7
crossref_primary_10_1016_j_buildenv_2020_107531
crossref_primary_10_1016_j_enbuild_2019_109559
crossref_primary_10_1016_j_enbuild_2023_113438
crossref_primary_10_1016_j_enbuild_2023_112900
crossref_primary_10_1088_1755_1315_738_1_012008
crossref_primary_10_1109_TSG_2024_3400220
crossref_primary_10_3390_su11133582
crossref_primary_10_1016_j_buildenv_2025_113549
crossref_primary_10_1080_15567036_2021_2006369
crossref_primary_10_1016_j_buildenv_2019_106318
crossref_primary_10_1016_j_enbuild_2024_114487
crossref_primary_10_1016_j_enbuild_2024_115213
crossref_primary_10_1016_j_buildenv_2021_108232
crossref_primary_10_2478_rtuect_2022_0054
crossref_primary_10_1016_j_buildenv_2024_112450
crossref_primary_10_1016_j_enbuild_2021_111771
crossref_primary_10_1016_j_physbeh_2022_113724
crossref_primary_10_1016_j_apergo_2022_103856
crossref_primary_10_1177_1420326X211034563
crossref_primary_10_1016_j_rser_2024_115042
crossref_primary_10_1016_j_enbuild_2023_113666
crossref_primary_10_1016_j_buildenv_2025_113415
crossref_primary_10_1016_j_jobe_2025_113613
crossref_primary_10_1016_j_totert_2023_100083
crossref_primary_10_1016_j_buildenv_2022_108880
crossref_primary_10_1016_j_buildenv_2023_110787
crossref_primary_10_1016_j_buildenv_2023_110423
crossref_primary_10_3390_buildings15101584
crossref_primary_10_1088_1742_6596_2042_1_012070
crossref_primary_10_1016_j_solener_2022_09_034
crossref_primary_10_3390_en16041634
crossref_primary_10_1177_1420326X241268085
crossref_primary_10_1016_j_applthermaleng_2025_127553
crossref_primary_10_1016_j_buildenv_2023_111075
crossref_primary_10_1016_j_applthermaleng_2023_120339
crossref_primary_10_2478_otmcj_2020_0017
crossref_primary_10_1016_j_buildenv_2020_106665
crossref_primary_10_1016_j_enbuild_2021_111431
crossref_primary_10_3390_en15155429
crossref_primary_10_1111_ina_13018
crossref_primary_10_3390_su14074065
crossref_primary_10_1016_j_buildenv_2022_109020
crossref_primary_10_1016_j_mtphys_2021_100465
crossref_primary_10_1016_j_buildenv_2024_112118
crossref_primary_10_1016_j_buildenv_2023_110578
crossref_primary_10_1016_j_tsep_2022_101295
crossref_primary_10_3390_buildings15122038
crossref_primary_10_3390_buildings11110551
crossref_primary_10_1016_j_buildenv_2021_108215
crossref_primary_10_3390_en17246354
crossref_primary_10_3390_en12091792
crossref_primary_10_3390_su132011511
crossref_primary_10_1016_j_buildenv_2021_107905
crossref_primary_10_1155_ina_2258335
crossref_primary_10_1016_j_jtherbio_2023_103540
crossref_primary_10_1016_j_renene_2020_05_127
crossref_primary_10_1186_s40101_022_00289_x
crossref_primary_10_1016_j_foar_2022_04_008
crossref_primary_10_1109_ACCESS_2022_3140951
crossref_primary_10_3390_app13084860
crossref_primary_10_1016_j_enbenv_2020_03_004
crossref_primary_10_1016_j_buildenv_2025_112542
crossref_primary_10_1080_01430750_2022_2116597
crossref_primary_10_1016_j_enbuild_2024_114917
crossref_primary_10_1177_1420326X211035550
crossref_primary_10_1111_ina_12855
crossref_primary_10_1016_j_buildenv_2023_110201
crossref_primary_10_1016_j_jobe_2020_101961
crossref_primary_10_3390_su16177869
crossref_primary_10_1016_j_buildenv_2024_112480
crossref_primary_10_1016_j_jobe_2024_108877
crossref_primary_10_1038_s41598_025_92600_w
crossref_primary_10_1002_admt_201901155
crossref_primary_10_1007_s12273_022_0902_3
crossref_primary_10_1016_j_enbuild_2020_110392
crossref_primary_10_1016_j_scs_2023_104735
crossref_primary_10_1007_s40430_023_04482_6
crossref_primary_10_1016_j_enbuild_2021_110887
crossref_primary_10_3390_en17143445
crossref_primary_10_1016_j_rser_2023_114209
crossref_primary_10_1111_ina_12984
crossref_primary_10_3390_buildings12020101
crossref_primary_10_1016_j_buildenv_2025_113227
crossref_primary_10_3390_buildings13081953
crossref_primary_10_1016_j_buildenv_2023_110745
crossref_primary_10_1016_j_buildenv_2023_110502
crossref_primary_10_1016_j_buildenv_2025_113108
crossref_primary_10_1016_j_buildenv_2023_110873
crossref_primary_10_1016_j_buildenv_2023_110198
crossref_primary_10_1016_j_enbuild_2024_115019
crossref_primary_10_3390_buildings10090157
crossref_primary_10_3389_fbuil_2020_00113
crossref_primary_10_1016_j_jtherbio_2023_103484
crossref_primary_10_3390_en16010151
crossref_primary_10_1016_j_buildenv_2024_111682
crossref_primary_10_1016_j_buildenv_2023_111043
crossref_primary_10_1111_ina_13160
crossref_primary_10_1016_j_enbuild_2021_111055
crossref_primary_10_3390_buildings12091418
crossref_primary_10_3390_su17041702
crossref_primary_10_1016_j_jobe_2023_108167
crossref_primary_10_1016_j_jobe_2024_109435
crossref_primary_10_1080_15502724_2022_2077753
crossref_primary_10_1016_j_buildenv_2025_113694
crossref_primary_10_1016_j_enbuild_2020_110017
crossref_primary_10_3390_pr13051538
crossref_primary_10_1038_s41598_021_03121_1
crossref_primary_10_3390_su16083388
crossref_primary_10_1016_j_buildenv_2019_106504
crossref_primary_10_1016_j_aei_2023_101895
crossref_primary_10_1016_j_jobe_2022_105627
crossref_primary_10_3846_jcem_2022_17566
crossref_primary_10_1016_j_buildenv_2025_112916
crossref_primary_10_1016_j_jobe_2025_114074
crossref_primary_10_1016_j_scitotenv_2025_178652
crossref_primary_10_1016_j_scs_2025_106488
crossref_primary_10_1016_j_buildenv_2023_111033
crossref_primary_10_1109_TAI_2024_3376319
crossref_primary_10_1016_j_enbuild_2023_113345
crossref_primary_10_1057_s41271_023_00431_8
crossref_primary_10_1080_17512549_2024_2340449
crossref_primary_10_1371_journal_pone_0249235
crossref_primary_10_1088_1755_1315_571_1_012093
crossref_primary_10_3390_su16229629
crossref_primary_10_1016_j_applthermaleng_2025_126266
crossref_primary_10_1016_j_enbuild_2021_111286
crossref_primary_10_3390_buildings12122149
crossref_primary_10_3390_en18061484
crossref_primary_10_1016_j_buildenv_2020_106867
crossref_primary_10_1016_j_enbuild_2025_116090
crossref_primary_10_3390_buildings15030325
crossref_primary_10_1016_j_jobe_2024_108677
crossref_primary_10_1016_j_enbuild_2021_110782
crossref_primary_10_1080_15567036_2025_2462274
crossref_primary_10_1016_j_enbuild_2025_116409
crossref_primary_10_1016_j_buildenv_2024_111469
crossref_primary_10_1016_j_buildenv_2022_109462
crossref_primary_10_1016_j_buildenv_2022_109343
crossref_primary_10_1016_j_buildenv_2024_111586
crossref_primary_10_1016_j_buildenv_2021_108532
crossref_primary_10_1016_j_buildenv_2024_111463
crossref_primary_10_1073_pnas_2001678117
crossref_primary_10_1186_s41601_023_00331_9
crossref_primary_10_3390_su13020678
crossref_primary_10_1016_j_buildenv_2023_110097
crossref_primary_10_3390_buildings15060865
crossref_primary_10_1088_1755_1315_1078_1_012034
crossref_primary_10_5334_bc_274
crossref_primary_10_3390_buildings12101522
crossref_primary_10_1002_hfm_20950
crossref_primary_10_1016_j_jobe_2023_107610
crossref_primary_10_1016_j_enbuild_2022_112334
crossref_primary_10_1016_j_measurement_2023_113047
crossref_primary_10_1080_09613218_2022_2121908
crossref_primary_10_1016_j_buildenv_2020_107266
crossref_primary_10_1016_j_enbuild_2023_113325
crossref_primary_10_1016_j_buildenv_2025_113677
crossref_primary_10_1016_j_enbenv_2023_11_004
crossref_primary_10_3390_buildings10100174
crossref_primary_10_1371_journal_pone_0258888
crossref_primary_10_1016_j_enbuild_2024_114033
crossref_primary_10_1016_j_scitotenv_2022_157694
crossref_primary_10_1007_s10973_022_11543_w
crossref_primary_10_1016_j_buildenv_2024_112321
crossref_primary_10_1016_j_enbuild_2025_115666
crossref_primary_10_1016_j_buildenv_2023_111053
crossref_primary_10_1016_j_jobe_2021_103727
crossref_primary_10_1016_j_enbuild_2020_109807
crossref_primary_10_1016_j_enbuild_2021_111181
crossref_primary_10_1016_j_enbuild_2024_115000
crossref_primary_10_1080_19401493_2023_2245796
crossref_primary_10_1371_journal_pone_0266672
crossref_primary_10_3390_su17135879
crossref_primary_10_1016_j_buildenv_2025_113144
crossref_primary_10_1038_s44359_025_00041_5
crossref_primary_10_3390_buildings13010036
crossref_primary_10_1016_j_buildenv_2025_113388
crossref_primary_10_1061_JAEIED_AEENG_1468
crossref_primary_10_3390_app122211700
crossref_primary_10_1016_j_buildenv_2023_110949
crossref_primary_10_1016_j_buildenv_2020_107133
crossref_primary_10_1016_j_heliyon_2024_e25801
crossref_primary_10_1007_s00484_023_02580_7
crossref_primary_10_1016_j_enbuild_2021_110846
crossref_primary_10_3390_en16135091
crossref_primary_10_1016_j_buildenv_2023_110944
crossref_primary_10_4103_ijehe_ijehe_18_24
crossref_primary_10_1016_j_procir_2022_02_121
crossref_primary_10_1016_j_jtherbio_2023_103722
crossref_primary_10_1016_j_buildenv_2022_109685
crossref_primary_10_4271_2022_01_0194
crossref_primary_10_1016_j_applthermaleng_2025_126857
crossref_primary_10_1016_j_buildenv_2023_110155
crossref_primary_10_1109_ACCESS_2024_3443392
crossref_primary_10_1007_s12273_022_0970_4
crossref_primary_10_1016_j_enbuild_2022_112068
crossref_primary_10_1016_j_buildenv_2024_112296
crossref_primary_10_1016_j_jobe_2023_108404
crossref_primary_10_1080_01457632_2023_2227808
crossref_primary_10_1177_1420326X221148728
crossref_primary_10_1051_e3sconf_202339601070
crossref_primary_10_1080_10407790_2024_2312947
crossref_primary_10_3390_buildings12010075
crossref_primary_10_1111_ina_12792
crossref_primary_10_1007_s11709_020_0668_6
crossref_primary_10_1016_j_scs_2024_105450
crossref_primary_10_1016_j_enbuild_2024_114771
crossref_primary_10_1016_j_enbuild_2025_115449
crossref_primary_10_1016_j_enbuild_2025_116410
crossref_primary_10_1016_j_buildenv_2024_111530
crossref_primary_10_3390_su152316459
crossref_primary_10_1051_e3sconf_202339601086
crossref_primary_10_3390_su151713210
crossref_primary_10_1016_j_buildenv_2019_02_020
crossref_primary_10_1016_j_buildenv_2020_106949
crossref_primary_10_1016_j_buildenv_2024_112182
crossref_primary_10_37155_2811_0730_0302_15
crossref_primary_10_1016_j_enbuild_2020_109795
crossref_primary_10_1016_j_buildenv_2020_107239
crossref_primary_10_1016_j_jobe_2025_111925
crossref_primary_10_1016_j_buildenv_2020_107354
crossref_primary_10_1002_eng2_12029
crossref_primary_10_1016_j_buildenv_2023_110725
crossref_primary_10_1016_j_enbuild_2023_113494
crossref_primary_10_1016_j_buildenv_2022_109663
crossref_primary_10_1016_j_jobe_2020_102087
crossref_primary_10_1016_j_rineng_2024_103660
crossref_primary_10_1016_j_buildenv_2024_111301
crossref_primary_10_1016_j_enbuild_2025_116444
crossref_primary_10_1108_IJBPA_03_2024_0059
crossref_primary_10_1016_j_apenergy_2022_119742
crossref_primary_10_1016_j_foar_2022_02_006
crossref_primary_10_1016_j_ijthermalsci_2023_108542
crossref_primary_10_1080_09613218_2020_1775065
crossref_primary_10_1016_j_enbuild_2024_115153
crossref_primary_10_1038_s44172_025_00366_w
crossref_primary_10_1177_01436244241296756
crossref_primary_10_3390_buildings12101572
crossref_primary_10_1061__ASCE_AE_1943_5568_0000521
crossref_primary_10_1016_j_buildenv_2019_106281
crossref_primary_10_3390_su17104347
crossref_primary_10_1016_j_jobe_2025_111814
crossref_primary_10_3390_buildings14061820
crossref_primary_10_1177_01436244231191244
crossref_primary_10_3390_buildings12040483
crossref_primary_10_1016_j_egyr_2024_12_073
crossref_primary_10_1016_j_enbuild_2023_112830
crossref_primary_10_1016_j_buildenv_2025_112701
crossref_primary_10_1016_j_jobe_2023_108183
crossref_primary_10_1016_j_buildenv_2019_106286
crossref_primary_10_1088_1755_1315_1533_1_012024
crossref_primary_10_1016_j_buildenv_2024_111799
crossref_primary_10_1016_j_buildenv_2025_112814
crossref_primary_10_1016_j_enbuild_2024_115168
crossref_primary_10_1016_j_enbuild_2023_113483
crossref_primary_10_1016_j_buildenv_2022_109795
crossref_primary_10_1016_j_enbenv_2024_03_002
crossref_primary_10_1016_j_scs_2019_101870
crossref_primary_10_1016_j_buildenv_2022_109310
crossref_primary_10_1016_j_buildenv_2021_108169
crossref_primary_10_1016_j_buildenv_2023_110041
crossref_primary_10_1016_j_buildenv_2020_106926
crossref_primary_10_3390_su151411094
crossref_primary_10_1080_09613218_2020_1836950
Cites_doi 10.1016/S0378-7788(02)00109-3
10.1016/j.scs.2016.11.013
10.1016/S0360-1323(96)00036-4
10.1016/S0378-7788(02)00003-8
10.1016/S0378-7788(97)00053-4
10.1127/0941-2948/2006/0130
10.1016/j.buildenv.2018.01.023
10.1016/j.applthermaleng.2014.11.004
10.1016/j.buildenv.2013.05.013
10.1016/0378-7788(95)00934-5
10.2741/3645
10.1016/j.buildenv.2010.05.024
10.1016/j.buildenv.2017.12.011
10.1016/j.buildenv.2017.10.031
10.1016/j.ergon.2014.01.005
10.1016/j.enbuild.2008.05.001
10.1080/09613217308550237
10.1016/j.buildenv.2008.08.001
10.1016/j.buildenv.2013.02.015
10.1016/j.enbuild.2017.11.047
10.1016/j.buildenv.2015.04.030
10.1016/j.enbuild.2017.11.028
10.1016/j.physbeh.2012.07.008
10.1016/j.enbuild.2015.07.047
10.1016/j.enbuild.2004.01.011
10.1111/j.1600-0668.2007.00516.x
10.1016/j.buildenv.2017.02.023
10.1016/j.enbuild.2012.06.022
10.1080/17512549.2007.9687269
10.1016/j.buildenv.2008.06.011
10.1016/j.buildenv.2014.08.018
10.1016/j.buildenv.2018.06.022
10.1016/S0378-7788(02)00018-X
10.1111/j.1600-0668.2004.00268.x
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright Elsevier BV Apr 15, 2019
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright Elsevier BV Apr 15, 2019
DBID AAYXX
CITATION
7ST
8FD
C1K
F28
FR3
KR7
SOI
DOI 10.1016/j.buildenv.2019.01.055
DatabaseName CrossRef
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Civil Engineering Abstracts
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Environment Abstracts
ANTE: Abstracts in New Technology & Engineering
Environmental Sciences and Pollution Management
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-684X
EndPage 217
ExternalDocumentID 10_1016_j_buildenv_2019_01_055
S0360132319300915
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KCYFY
KOM
LY6
LY7
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SEN
SES
SPC
SPCBC
SSJ
SSR
SST
SSZ
T5K
~G-
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
R2-
SAC
SET
SEW
VH1
WUQ
ZMT
~HD
7ST
8FD
AGCQF
C1K
F28
FR3
KR7
SOI
ID FETCH-LOGICAL-c406t-e6d8196609f8ffbd6821965f84bf36632c204378dc373a78f00bcfbb8b05825e3
ISICitedReferencesCount 360
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000461457500018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0360-1323
IngestDate Wed Aug 13 05:45:18 EDT 2025
Tue Nov 18 22:33:51 EST 2025
Sat Nov 29 07:21:30 EST 2025
Fri Feb 23 02:49:36 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords PMV–PPD model
Accuracy
Thermal comfort
ASHRAE Global Thermal Comfort Database II
Prediction
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c406t-e6d8196609f8ffbd6821965f84bf36632c204378dc373a78f00bcfbb8b05825e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1285-5682
0000-0002-1100-8302
0000-0002-0088-8754
PQID 2218301983
PQPubID 2045275
PageCount 13
ParticipantIDs proquest_journals_2218301983
crossref_primary_10_1016_j_buildenv_2019_01_055
crossref_citationtrail_10_1016_j_buildenv_2019_01_055
elsevier_sciencedirect_doi_10_1016_j_buildenv_2019_01_055
PublicationCentury 2000
PublicationDate 2019-04-15
PublicationDateYYYYMMDD 2019-04-15
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-15
  day: 15
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Building and environment
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Kottek, Grieser, Beck, Rudolf, Rubel (bib36) 2006
Humphreys, Nicol, Raja (bib17) 2007; 1
(bib5) 2005
Humphreys, Nicol (bib29) 2000; 106
Andreasi, Lamberts, Cândido (bib23) 2010; 45
Becker, Paciuk (bib42) 2009; 44
Schellen, Loomans, de Wit, Olesen, Lichtenbelt (bib10) 2012; 107
Kim, Schiavon, Brager (bib44) 2018; 132
Humphreys, Nicol (bib6) 2002; 34
Wong, Mui, Cheung (bib14) 2014; 82
Oseland (bib39) 1995; 23
van Hoof (bib2) 2008; 18
Maiti (bib9) 2014; 44
Doherty, Arens (bib8) 1988; 94
Kim, de Dear (bib16) 2018; 127
Teli, Jentsch, James (bib32) 2012; 53
Földváry Ličina, Cheung, Zhang, de Dear, Parkinson, Arens, Chun, Schiavon, Luo, Brager, Li, Kaam, Adebamowo, Andamon, Babich, Bouden, Bukovianska, Candido, Cao, Carlucci, Cheong, Choi, Cook, Cropper, Deuble, Heidari, Indraganti, Jin, Kim, Kim, Konis, Singh, Kwok, Lamberts, Loveday, Langevin, Manu, Moosmann, Nicol, Ooka, Oseland, Pagliano, Petráš, Rawal, Romero, Rijal, Sekhar, Schweiker, Tartarini, Tanabe, Tham, Teli, Toftum, Toledo, Tsuzuki, De Vecchi, Wagner, Wang, Wallbaum, Webb, Yang, Zhu, Zhai, Zhang, Zhou (bib35) 2018; 142
Mishra, Ramgopal (bib20) 2013; 64
Lehmann (bib37) 2006
Gao, Wang, Wargocki (bib31) 2015; 92
Malama, Sharples (bib22) 1997; 32
Wong, Khoo (bib18) 2003; 35
de Dear, Brager, Cooper (bib12) 1997
Nicol, Humphreys (bib21) 1973; 1
Rupp, Vásquez, Lamberts (bib34) 2015; 105
Kim, Zhou, Schiavon, Raftery, Brager (bib45) 2018; 129
d'Ambrosio Alfano, Ianniello, Palella (bib30) 2013; 67
Takasu, Ooka, Rijal, Indraganti, Singh (bib13) 2017; 118
de Dear, Kim, Parkinson (bib43) 2018; 158
Rupp, de Dear, Ghisi (bib25) 2018; 158
Humphreys (bib28) 1978; 6
CEN-15251 (bib4) 2007
Fanger, Toftum (bib24) 2002; 34
Schiavon, Melikov (bib38) 2008; 40
Hwang, Cheng, Lin, Ho (bib41) 2009; 44
Feriadi, Wong (bib27) 2004; 36
Yang, Li, Liu, Tan, Yao (bib7) 2015; 76
de Dear, Brager (bib40) 1998; 104
Calis, Kuru (bib11) 2017; 29
Zhang, Wang, Chen, Zhang, Meng (bib33) 2010; 45
Fanger (bib1) 1970
Brager, de Dear (bib19) 1998; 27
van Hoof, Mazej, Hensen (bib15) 2010; 15
(bib3) 2017
Olesen (bib26) 2004; 14
van Hoof (10.1016/j.buildenv.2019.01.055_bib2) 2008; 18
de Dear (10.1016/j.buildenv.2019.01.055_bib40) 1998; 104
(10.1016/j.buildenv.2019.01.055_bib5) 2005
Humphreys (10.1016/j.buildenv.2019.01.055_bib17) 2007; 1
Rupp (10.1016/j.buildenv.2019.01.055_bib34) 2015; 105
Schiavon (10.1016/j.buildenv.2019.01.055_bib38) 2008; 40
Humphreys (10.1016/j.buildenv.2019.01.055_bib29) 2000; 106
Calis (10.1016/j.buildenv.2019.01.055_bib11) 2017; 29
Rupp (10.1016/j.buildenv.2019.01.055_bib25) 2018; 158
Andreasi (10.1016/j.buildenv.2019.01.055_bib23) 2010; 45
Kim (10.1016/j.buildenv.2019.01.055_bib45) 2018; 129
Takasu (10.1016/j.buildenv.2019.01.055_bib13) 2017; 118
Kim (10.1016/j.buildenv.2019.01.055_bib16) 2018; 127
Brager (10.1016/j.buildenv.2019.01.055_bib19) 1998; 27
Humphreys (10.1016/j.buildenv.2019.01.055_bib6) 2002; 34
Oseland (10.1016/j.buildenv.2019.01.055_bib39) 1995; 23
Kim (10.1016/j.buildenv.2019.01.055_bib44) 2018; 132
Mishra (10.1016/j.buildenv.2019.01.055_bib20) 2013; 64
Fanger (10.1016/j.buildenv.2019.01.055_bib24) 2002; 34
Fanger (10.1016/j.buildenv.2019.01.055_bib1) 1970
CEN-15251 (10.1016/j.buildenv.2019.01.055_bib4) 2007
Malama (10.1016/j.buildenv.2019.01.055_bib22) 1997; 32
de Dear (10.1016/j.buildenv.2019.01.055_bib43) 2018; 158
Wong (10.1016/j.buildenv.2019.01.055_bib14) 2014; 82
Olesen (10.1016/j.buildenv.2019.01.055_bib26) 2004; 14
Feriadi (10.1016/j.buildenv.2019.01.055_bib27) 2004; 36
Humphreys (10.1016/j.buildenv.2019.01.055_bib28) 1978; 6
Gao (10.1016/j.buildenv.2019.01.055_bib31) 2015; 92
Teli (10.1016/j.buildenv.2019.01.055_bib32) 2012; 53
Becker (10.1016/j.buildenv.2019.01.055_bib42) 2009; 44
Wong (10.1016/j.buildenv.2019.01.055_bib18) 2003; 35
(10.1016/j.buildenv.2019.01.055_bib3) 2017
Kottek (10.1016/j.buildenv.2019.01.055_bib36) 2006
Hwang (10.1016/j.buildenv.2019.01.055_bib41) 2009; 44
Doherty (10.1016/j.buildenv.2019.01.055_bib8) 1988; 94
van Hoof (10.1016/j.buildenv.2019.01.055_bib15) 2010; 15
Maiti (10.1016/j.buildenv.2019.01.055_bib9) 2014; 44
de Dear (10.1016/j.buildenv.2019.01.055_bib12) 1997
Yang (10.1016/j.buildenv.2019.01.055_bib7) 2015; 76
Földváry Ličina (10.1016/j.buildenv.2019.01.055_bib35) 2018; 142
d'Ambrosio Alfano (10.1016/j.buildenv.2019.01.055_bib30) 2013; 67
Schellen (10.1016/j.buildenv.2019.01.055_bib10) 2012; 107
Lehmann (10.1016/j.buildenv.2019.01.055_bib37) 2006
Nicol (10.1016/j.buildenv.2019.01.055_bib21) 1973; 1
Zhang (10.1016/j.buildenv.2019.01.055_bib33) 2010; 45
References_xml – volume: 64
  start-page: 94
  year: 2013
  end-page: 106
  ident: bib20
  article-title: Field studies on human thermal comfort — an overview
  publication-title: Build. Environ.
– volume: 106
  start-page: 485
  year: 2000
  ident: bib29
  article-title: Outdoor temperature and indoor thermal comfort: raising the precision of the relationship for the 1998 ASHRAE database of field studies
  publication-title: ASHRAE Trans. Atlanta.
– volume: 105
  start-page: 178
  year: 2015
  end-page: 205
  ident: bib34
  article-title: A review of human thermal comfort in the built environment
  publication-title: Energy Build.
– volume: 23
  start-page: 105
  year: 1995
  end-page: 115
  ident: bib39
  article-title: Predicted and reported thermal sensation in climate chambers, offices and homes
  publication-title: Energy Build.
– volume: 104
  start-page: 145
  year: 1998
  end-page: 167
  ident: bib40
  article-title: Developing an adaptive model of thermal comfort and preference
  publication-title: ASHRAE Transact.
– volume: 34
  start-page: 667
  year: 2002
  end-page: 684
  ident: bib6
  article-title: The validity of ISO-PMV for predicting comfort votes in every-day thermal environments
  publication-title: Energy Build.
– volume: 44
  start-page: 948
  year: 2009
  end-page: 960
  ident: bib42
  article-title: Thermal comfort in residential buildings – failure to predict by Standard model
  publication-title: Build. Environ.
– year: 1997
  ident: bib12
  article-title: Develop an Adaptive Model of Thermal Comfort and Preference
– volume: 15
  start-page: 765
  year: 2010
  end-page: 788
  ident: bib15
  article-title: Thermal comfort research and practice
  publication-title: Front. Biosci.
– volume: 158
  start-page: 1296
  year: 2018
  end-page: 1305
  ident: bib43
  article-title: Residential adaptive comfort in a humid subtropical climate—sydney Australia
  publication-title: Energy Build.
– year: 2006
  ident: bib37
  article-title: Nonparametrics: Statistical Methods Based on Ranks
– volume: 92
  start-page: 200
  year: 2015
  end-page: 208
  ident: bib31
  article-title: Comparative analysis of modified PMV models and SET models to predict human thermal sensation in naturally ventilated building
  publication-title: Build. Environ.
– volume: 76
  start-page: 283
  year: 2015
  end-page: 291
  ident: bib7
  article-title: A study of adaptive thermal comfort in a well-controlled climate chamber
  publication-title: Appl. Therm. Eng.
– volume: 14
  start-page: 18
  year: 2004
  end-page: 26
  ident: bib26
  article-title: International standards for the indoor environment
  publication-title: Indoor Air
– volume: 129
  start-page: 96
  year: 2018
  end-page: 106
  ident: bib45
  article-title: Personal comfort models: predicting individuals' thermal preference using occupant heating and cooling behavior and machine learning
  publication-title: Build. Environ.
– volume: 6
  year: 1978
  ident: bib28
  article-title: Outdoor temperatures and comfort indoors
  publication-title: Batiment Int. Build. Res. Pract.
– volume: 45
  start-page: 2562
  year: 2010
  end-page: 2570
  ident: bib33
  article-title: Thermal comfort in naturally ventilated buildings in hot-humid area of China
  publication-title: Build. Environ.
– volume: 36
  start-page: 614
  year: 2004
  end-page: 626
  ident: bib27
  article-title: Thermal comfort for naturally ventilated houses in Indonesia
  publication-title: Energy Build.
– volume: 44
  start-page: 1128
  year: 2009
  end-page: 1134
  ident: bib41
  article-title: Thermal perceptions, general adaptation methods and occupant's idea about the trade-off between thermal comfort and energy saving in hot–humid regions
  publication-title: Build. Environ.
– volume: 53
  start-page: 166
  year: 2012
  end-page: 182
  ident: bib32
  article-title: Naturally ventilated classrooms: an assessment of existing comfort models for predicting the thermal sensation and preference of primary school children
  publication-title: Energy Build.
– year: 2017
  ident: bib3
  publication-title: ASHRAE 55, Thermal Environmental Conditions for Human Occupancy. ASHRAE Standard 55-2017
– volume: 107
  start-page: 252
  year: 2012
  end-page: 261
  ident: bib10
  article-title: The influence of local effects on thermal sensation under non-uniform environmental conditions — gender differences in thermophysiology, thermal comfort and productivity during convective and radiant cooling
  publication-title: Physiol. Behav.
– year: 1970
  ident: bib1
  article-title: Thermal Comfort: Analysis and Application in Environmental Engineering
– volume: 1
  start-page: 55
  year: 2007
  end-page: 88
  ident: bib17
  article-title: Field studies of indoor thermal comfort and the progress of the adaptive approach
  publication-title: Adv. Build. Energy Res.
– volume: 35
  start-page: 337
  year: 2003
  end-page: 351
  ident: bib18
  article-title: Thermal comfort in classrooms in the tropics
  publication-title: Energy Build.
– year: 2005
  ident: bib5
  publication-title: ISO 7730, Ergonomics of the Thermal Environment - Analytical Determination and Interpretation of Thermal Comfort Using Calculation of the PMV and PPD Indices and Local Thermal Comfort Criteria
– volume: 132
  start-page: 114
  year: 2018
  end-page: 124
  ident: bib44
  article-title: Personal comfort models – a new paradigm in thermal comfort for occupant-centric environmental control
  publication-title: Build. Environ.
– volume: 18
  start-page: 182
  year: 2008
  end-page: 201
  ident: bib2
  article-title: Forty years of Fanger's model of thermal comfort: comfort for all?
  publication-title: Indoor Air
– volume: 142
  start-page: 502
  year: 2018
  end-page: 512
  ident: bib35
  article-title: Development of the ASHRAE global thermal comfort database II
  publication-title: Build. Environ.
– volume: 32
  start-page: 69
  year: 1997
  end-page: 78
  ident: bib22
  article-title: Thermal performance of traditional and contemporary housing in the cool season of Zambia
  publication-title: Build. Environ.
– volume: 29
  start-page: 77
  year: 2017
  end-page: 85
  ident: bib11
  article-title: Assessing user thermal sensation in the Aegean region against standards
  publication-title: Sustain. Cities Soc.
– volume: 40
  start-page: 1954
  year: 2008
  end-page: 1960
  ident: bib38
  article-title: Energy saving and improved comfort by increased air movement
  publication-title: Energy Build.
– volume: 127
  start-page: 13
  year: 2018
  end-page: 22
  ident: bib16
  article-title: Thermal comfort expectations and adaptive behavioural characteristics of primary and secondary school students
  publication-title: Build. Environ.
– volume: 27
  start-page: 83
  year: 1998
  end-page: 96
  ident: bib19
  article-title: Thermal adaptation in the built environment: a literature review
  publication-title: Energy Build.
– volume: 45
  start-page: 1225
  year: 2010
  end-page: 1232
  ident: bib23
  article-title: Thermal acceptability assessment in buildings located in hot and humid regions in Brazil, Build
  publication-title: Environ. Times
– volume: 1
  start-page: 174
  year: 1973
  end-page: 179
  ident: bib21
  article-title: Thermal comfort as part of a self-regulating system
  publication-title: Build. Res. Pract.
– volume: 82
  start-page: 171
  year: 2014
  end-page: 179
  ident: bib14
  article-title: Bayesian thermal comfort model
  publication-title: Build. Environ.
– start-page: 259
  year: 2006
  end-page: 263
  ident: bib36
  article-title: World Map of the Köppen-Geiger climate classification updated
  publication-title: Meteorol. Z.
– volume: 34
  start-page: 533
  year: 2002
  end-page: 536
  ident: bib24
  article-title: Extension of the PMV model to non-air-conditioned buildings in warm climates
  publication-title: Energy Build.
– volume: 118
  start-page: 273
  year: 2017
  end-page: 288
  ident: bib13
  article-title: Study on adaptive thermal comfort in Japanese offices under various operation modes
  publication-title: Build. Environ.
– volume: 158
  start-page: 1475
  year: 2018
  end-page: 1486
  ident: bib25
  article-title: Field study of mixed-mode office buildings in Southern Brazil using an adaptive thermal comfort framework
  publication-title: Energy Build.
– volume: 94
  start-page: 1371
  year: 1988
  end-page: 1385
  ident: bib8
  article-title: Evaluation of the physiological bases of thermal comfort models
  publication-title: ASHRAE Transact.
– volume: 44
  start-page: 349
  year: 2014
  end-page: 361
  ident: bib9
  article-title: PMV model is insufficient to capture subjective thermal response from Indians
  publication-title: Int. J. Ind. Ergon.
– volume: 67
  start-page: 129
  year: 2013
  end-page: 137
  ident: bib30
  article-title: PMV–PPD and acceptability in naturally ventilated schools
  publication-title: Build. Environ.
– year: 2007
  ident: bib4
  article-title: Indoor Environmental Input Parameters for Design and Assessment of Energy Performance of Buildings- Addressing Indoor Air Quality, Thermal. EN-15251
– year: 2005
  ident: 10.1016/j.buildenv.2019.01.055_bib5
– volume: 35
  start-page: 337
  year: 2003
  ident: 10.1016/j.buildenv.2019.01.055_bib18
  article-title: Thermal comfort in classrooms in the tropics
  publication-title: Energy Build.
  doi: 10.1016/S0378-7788(02)00109-3
– volume: 29
  start-page: 77
  year: 2017
  ident: 10.1016/j.buildenv.2019.01.055_bib11
  article-title: Assessing user thermal sensation in the Aegean region against standards
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2016.11.013
– volume: 32
  start-page: 69
  year: 1997
  ident: 10.1016/j.buildenv.2019.01.055_bib22
  article-title: Thermal performance of traditional and contemporary housing in the cool season of Zambia
  publication-title: Build. Environ.
  doi: 10.1016/S0360-1323(96)00036-4
– volume: 34
  start-page: 533
  year: 2002
  ident: 10.1016/j.buildenv.2019.01.055_bib24
  article-title: Extension of the PMV model to non-air-conditioned buildings in warm climates
  publication-title: Energy Build.
  doi: 10.1016/S0378-7788(02)00003-8
– volume: 27
  start-page: 83
  year: 1998
  ident: 10.1016/j.buildenv.2019.01.055_bib19
  article-title: Thermal adaptation in the built environment: a literature review
  publication-title: Energy Build.
  doi: 10.1016/S0378-7788(97)00053-4
– start-page: 259
  year: 2006
  ident: 10.1016/j.buildenv.2019.01.055_bib36
  article-title: World Map of the Köppen-Geiger climate classification updated
  publication-title: Meteorol. Z.
  doi: 10.1127/0941-2948/2006/0130
– volume: 132
  start-page: 114
  year: 2018
  ident: 10.1016/j.buildenv.2019.01.055_bib44
  article-title: Personal comfort models – a new paradigm in thermal comfort for occupant-centric environmental control
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2018.01.023
– volume: 76
  start-page: 283
  year: 2015
  ident: 10.1016/j.buildenv.2019.01.055_bib7
  article-title: A study of adaptive thermal comfort in a well-controlled climate chamber
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2014.11.004
– volume: 67
  start-page: 129
  year: 2013
  ident: 10.1016/j.buildenv.2019.01.055_bib30
  article-title: PMV–PPD and acceptability in naturally ventilated schools
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2013.05.013
– volume: 23
  start-page: 105
  year: 1995
  ident: 10.1016/j.buildenv.2019.01.055_bib39
  article-title: Predicted and reported thermal sensation in climate chambers, offices and homes
  publication-title: Energy Build.
  doi: 10.1016/0378-7788(95)00934-5
– volume: 15
  start-page: 765
  year: 2010
  ident: 10.1016/j.buildenv.2019.01.055_bib15
  article-title: Thermal comfort research and practice
  publication-title: Front. Biosci.
  doi: 10.2741/3645
– volume: 45
  start-page: 2562
  year: 2010
  ident: 10.1016/j.buildenv.2019.01.055_bib33
  article-title: Thermal comfort in naturally ventilated buildings in hot-humid area of China
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2010.05.024
– volume: 129
  start-page: 96
  year: 2018
  ident: 10.1016/j.buildenv.2019.01.055_bib45
  article-title: Personal comfort models: predicting individuals' thermal preference using occupant heating and cooling behavior and machine learning
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2017.12.011
– volume: 127
  start-page: 13
  year: 2018
  ident: 10.1016/j.buildenv.2019.01.055_bib16
  article-title: Thermal comfort expectations and adaptive behavioural characteristics of primary and secondary school students
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2017.10.031
– year: 1970
  ident: 10.1016/j.buildenv.2019.01.055_bib1
– volume: 44
  start-page: 349
  year: 2014
  ident: 10.1016/j.buildenv.2019.01.055_bib9
  article-title: PMV model is insufficient to capture subjective thermal response from Indians
  publication-title: Int. J. Ind. Ergon.
  doi: 10.1016/j.ergon.2014.01.005
– volume: 45
  start-page: 1225
  year: 2010
  ident: 10.1016/j.buildenv.2019.01.055_bib23
  article-title: Thermal acceptability assessment in buildings located in hot and humid regions in Brazil, Build
  publication-title: Environ. Times
– volume: 40
  start-page: 1954
  year: 2008
  ident: 10.1016/j.buildenv.2019.01.055_bib38
  article-title: Energy saving and improved comfort by increased air movement
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2008.05.001
– year: 2007
  ident: 10.1016/j.buildenv.2019.01.055_bib4
– volume: 1
  start-page: 174
  year: 1973
  ident: 10.1016/j.buildenv.2019.01.055_bib21
  article-title: Thermal comfort as part of a self-regulating system
  publication-title: Build. Res. Pract.
  doi: 10.1080/09613217308550237
– volume: 44
  start-page: 1128
  year: 2009
  ident: 10.1016/j.buildenv.2019.01.055_bib41
  article-title: Thermal perceptions, general adaptation methods and occupant's idea about the trade-off between thermal comfort and energy saving in hot–humid regions
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2008.08.001
– volume: 106
  start-page: 485
  year: 2000
  ident: 10.1016/j.buildenv.2019.01.055_bib29
  article-title: Outdoor temperature and indoor thermal comfort: raising the precision of the relationship for the 1998 ASHRAE database of field studies
  publication-title: ASHRAE Trans. Atlanta.
– volume: 64
  start-page: 94
  year: 2013
  ident: 10.1016/j.buildenv.2019.01.055_bib20
  article-title: Field studies on human thermal comfort — an overview
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2013.02.015
– volume: 158
  start-page: 1475
  year: 2018
  ident: 10.1016/j.buildenv.2019.01.055_bib25
  article-title: Field study of mixed-mode office buildings in Southern Brazil using an adaptive thermal comfort framework
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2017.11.047
– volume: 6
  year: 1978
  ident: 10.1016/j.buildenv.2019.01.055_bib28
  article-title: Outdoor temperatures and comfort indoors
  publication-title: Batiment Int. Build. Res. Pract.
– volume: 92
  start-page: 200
  year: 2015
  ident: 10.1016/j.buildenv.2019.01.055_bib31
  article-title: Comparative analysis of modified PMV models and SET models to predict human thermal sensation in naturally ventilated building
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2015.04.030
– volume: 158
  start-page: 1296
  year: 2018
  ident: 10.1016/j.buildenv.2019.01.055_bib43
  article-title: Residential adaptive comfort in a humid subtropical climate—sydney Australia
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2017.11.028
– volume: 107
  start-page: 252
  year: 2012
  ident: 10.1016/j.buildenv.2019.01.055_bib10
  article-title: The influence of local effects on thermal sensation under non-uniform environmental conditions — gender differences in thermophysiology, thermal comfort and productivity during convective and radiant cooling
  publication-title: Physiol. Behav.
  doi: 10.1016/j.physbeh.2012.07.008
– volume: 105
  start-page: 178
  year: 2015
  ident: 10.1016/j.buildenv.2019.01.055_bib34
  article-title: A review of human thermal comfort in the built environment
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2015.07.047
– volume: 36
  start-page: 614
  year: 2004
  ident: 10.1016/j.buildenv.2019.01.055_bib27
  article-title: Thermal comfort for naturally ventilated houses in Indonesia
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2004.01.011
– year: 2017
  ident: 10.1016/j.buildenv.2019.01.055_bib3
– volume: 94
  start-page: 1371
  issue: Part 1
  year: 1988
  ident: 10.1016/j.buildenv.2019.01.055_bib8
  article-title: Evaluation of the physiological bases of thermal comfort models
  publication-title: ASHRAE Transact.
– volume: 104
  start-page: 145
  year: 1998
  ident: 10.1016/j.buildenv.2019.01.055_bib40
  article-title: Developing an adaptive model of thermal comfort and preference
  publication-title: ASHRAE Transact.
– volume: 18
  start-page: 182
  year: 2008
  ident: 10.1016/j.buildenv.2019.01.055_bib2
  article-title: Forty years of Fanger's model of thermal comfort: comfort for all?
  publication-title: Indoor Air
  doi: 10.1111/j.1600-0668.2007.00516.x
– volume: 118
  start-page: 273
  year: 2017
  ident: 10.1016/j.buildenv.2019.01.055_bib13
  article-title: Study on adaptive thermal comfort in Japanese offices under various operation modes
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2017.02.023
– volume: 53
  start-page: 166
  year: 2012
  ident: 10.1016/j.buildenv.2019.01.055_bib32
  article-title: Naturally ventilated classrooms: an assessment of existing comfort models for predicting the thermal sensation and preference of primary school children
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2012.06.022
– year: 2006
  ident: 10.1016/j.buildenv.2019.01.055_bib37
– volume: 1
  start-page: 55
  year: 2007
  ident: 10.1016/j.buildenv.2019.01.055_bib17
  article-title: Field studies of indoor thermal comfort and the progress of the adaptive approach
  publication-title: Adv. Build. Energy Res.
  doi: 10.1080/17512549.2007.9687269
– volume: 44
  start-page: 948
  year: 2009
  ident: 10.1016/j.buildenv.2019.01.055_bib42
  article-title: Thermal comfort in residential buildings – failure to predict by Standard model
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2008.06.011
– volume: 82
  start-page: 171
  year: 2014
  ident: 10.1016/j.buildenv.2019.01.055_bib14
  article-title: Bayesian thermal comfort model
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2014.08.018
– year: 1997
  ident: 10.1016/j.buildenv.2019.01.055_bib12
– volume: 142
  start-page: 502
  year: 2018
  ident: 10.1016/j.buildenv.2019.01.055_bib35
  article-title: Development of the ASHRAE global thermal comfort database II
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2018.06.022
– volume: 34
  start-page: 667
  year: 2002
  ident: 10.1016/j.buildenv.2019.01.055_bib6
  article-title: The validity of ISO-PMV for predicting comfort votes in every-day thermal environments
  publication-title: Energy Build.
  doi: 10.1016/S0378-7788(02)00018-X
– volume: 14
  start-page: 18
  year: 2004
  ident: 10.1016/j.buildenv.2019.01.055_bib26
  article-title: International standards for the indoor environment
  publication-title: Indoor Air
  doi: 10.1111/j.1600-0668.2004.00268.x
SSID ssj0016934
Score 2.677991
Snippet The predicted mean vote (PMV) and predicted percentage of dissatisfied (PPD) are the most widely used thermal comfort indices. Yet, their performance remains a...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 205
SubjectTerms Accuracy
Air conditioners
Air temperature
ASHRAE Global Thermal Comfort Database II
Error detection
Mathematical models
Model accuracy
PMV–PPD model
Prediction
Prediction models
Thermal comfort
Ventilation
Title Analysis of the accuracy on PMV – PPD model using the ASHRAE Global Thermal Comfort Database II
URI https://dx.doi.org/10.1016/j.buildenv.2019.01.055
https://www.proquest.com/docview/2218301983
Volume 153
WOSCitedRecordID wos000461457500018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-684X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016934
  issn: 0360-1323
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LjtMwFLWqGRawQDzFwIC8YFcFUrtJ7GUFRRMEo4qWUXdW7MRSRzPJqE2rLvkHfoBv40u4ju0kvDQgxCaKoji17j29PvZ9IfQ8AZKaE5YFmZRJMM4p3CWMBxLAQkc0GZGmWPXZu-T0lC2XfDYYfPG5MLuLpCzZfs-v_quq4Rko26TO_oW624_CA7gHpcMV1A7XP1J8v8yIYZWZUtu1aeoOep69Pxv68AY6nM1e2044w-3GZ01N5icfJtOhbQVg4jHAcJvjhUsgtzVgpM7MujdM0--8wa63duOJ6KXOdbEDhbMpi0q2Z_hzE2a9s17_eV3orKw6h5Y5wnfJYL0YJhM5tLJhxau9B7Y7sxg17hebtWkP0nwyTRe5ZBO4wgA2x9beFdYes4QGMbNBnK3Bjmjf5IZRb_UmNhP0p4XBnlGcv5BGICAIE9THm4KtUdQthW2A4txMxswF-C2wUFPF4JAArsFuHk7S6fJt66mKOXUlyuzke1nov_613xGgH6hAw28Wd9BttzHBEwuou2hQlPfQrV65yvso89DClcYAFuyhhasSA7Tw10-fMYAKN6DCDaia9yyosAUVdqDCDlTYgwqn6QP08c108eokcC06AgVMsA6KOAdKGcch10xrmceMmBKVmo2lpkBmiTK51wnLFU0oGAEdhlJpKZkMI0aigj5EB2VVFo8QjjnJ9FhxzcchrN45YzwjoYLtPAGarPURirzchHL1600blQvhAxXPhZe3MPIW4UiAvI_Qy3bcla3gcu0I7tUiHA-1_FIAmq4de-z1KJxR2Ahi9iHwDqOP_-HTT9DN7r90jA7q9bZ4im6oXb3arJ85XH4DPCq2zg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+the+accuracy+on+PMV+%E2%80%93+PPD+model+using+the+ASHRAE+Global+Thermal+Comfort+Database+II&rft.jtitle=Building+and+environment&rft.au=Cheung%2C+Toby&rft.au=Schiavon%2C+Stefano&rft.au=Parkinson%2C+Thomas&rft.au=Li%2C+Peixian&rft.date=2019-04-15&rft.pub=Elsevier+Ltd&rft.issn=0360-1323&rft.eissn=1873-684X&rft.volume=153&rft.spage=205&rft.epage=217&rft_id=info:doi/10.1016%2Fj.buildenv.2019.01.055&rft.externalDocID=S0360132319300915
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-1323&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-1323&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-1323&client=summon