Analysis of the accuracy on PMV – PPD model using the ASHRAE Global Thermal Comfort Database II
The predicted mean vote (PMV) and predicted percentage of dissatisfied (PPD) are the most widely used thermal comfort indices. Yet, their performance remains a contested topic. The ASHRAE Global Thermal Comfort Database II, the largest of its kind, was used to evaluate the prediction accuracy of the...
Uloženo v:
| Vydáno v: | Building and environment Ročník 153; s. 205 - 217 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Oxford
Elsevier Ltd
15.04.2019
Elsevier BV |
| Témata: | |
| ISSN: | 0360-1323, 1873-684X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The predicted mean vote (PMV) and predicted percentage of dissatisfied (PPD) are the most widely used thermal comfort indices. Yet, their performance remains a contested topic. The ASHRAE Global Thermal Comfort Database II, the largest of its kind, was used to evaluate the prediction accuracy of the PMV/PPD model. We focused on: (i) the accuracy of PMV in predicting both observed thermal sensation (OTS) or observed mean vote (OMV) and (ii) comparing the PMV-PPD relationship with binned OTS – observed percentage of unacceptability (OPU). The accuracy of PMV in predicting OTS was only 34%, meaning that the thermal sensation is incorrectly predicted two out of three times. PMV had a mean absolute error of one unit on the thermal sensation scale and its accuracy decreased towards the ends of the thermal sensation scale. The accuracy of PMV was similarly low for air-conditioned, naturally ventilated and mixed-mode buildings. In addition, the PPD was not able to predict the dissatisfaction rate. If the PMV model would perfectly predict thermal sensation, then PPD accuracy is higher close to neutrality but it would overestimate dissatisfaction by approximately 15–25% outside of it. Furthermore, PMV-PPD accuracy varied strongly between ventilation strategies, building types and climate groups. These findings demonstrate the low prediction accuracy of the PMV–PPD model, indicating the need to develop high prediction accuracy thermal comfort models. For demonstration, we developed a simple thermal prediction model just based on air temperature and its accuracy, for this database, was higher than PMV.
[Display omitted]
•Assessed PMV-PPD accuracy using the ASHRAE Global Thermal Comfort Database II.•PMV predicted thermal sensation correctly only one out of three times.•PMV had a mean absolute error of one unit on the thermal sensation scale.•PPD was not able to predict the dissatisfaction rate.•PMV-PPD accuracy varied strongly between ventilation, building types and climate. |
|---|---|
| AbstractList | The predicted mean vote (PMV) and predicted percentage of dissatisfied (PPD) are the most widely used thermal comfort indices. Yet, their performance remains a contested topic. The ASHRAE Global Thermal Comfort Database II, the largest of its kind, was used to evaluate the prediction accuracy of the PMV/PPD model. We focused on: (i) the accuracy of PMV in predicting both observed thermal sensation (OTS) or observed mean vote (OMV) and (ii) comparing the PMV-PPD relationship with binned OTS – observed percentage of unacceptability (OPU). The accuracy of PMV in predicting OTS was only 34%, meaning that the thermal sensation is incorrectly predicted two out of three times. PMV had a mean absolute error of one unit on the thermal sensation scale and its accuracy decreased towards the ends of the thermal sensation scale. The accuracy of PMV was similarly low for air-conditioned, naturally ventilated and mixed-mode buildings. In addition, the PPD was not able to predict the dissatisfaction rate. If the PMV model would perfectly predict thermal sensation, then PPD accuracy is higher close to neutrality but it would overestimate dissatisfaction by approximately 15–25% outside of it. Furthermore, PMV-PPD accuracy varied strongly between ventilation strategies, building types and climate groups. These findings demonstrate the low prediction accuracy of the PMV–PPD model, indicating the need to develop high prediction accuracy thermal comfort models. For demonstration, we developed a simple thermal prediction model just based on air temperature and its accuracy, for this database, was higher than PMV.
[Display omitted]
•Assessed PMV-PPD accuracy using the ASHRAE Global Thermal Comfort Database II.•PMV predicted thermal sensation correctly only one out of three times.•PMV had a mean absolute error of one unit on the thermal sensation scale.•PPD was not able to predict the dissatisfaction rate.•PMV-PPD accuracy varied strongly between ventilation, building types and climate. The predicted mean vote (PMV) and predicted percentage of dissatisfied (PPD) are the most widely used thermal comfort indices. Yet, their performance remains a contested topic. The ASHRAE Global Thermal Comfort Database II, the largest of its kind, was used to evaluate the prediction accuracy of the PMV/PPD model. We focused on: (i) the accuracy of PMV in predicting both observed thermal sensation (OTS) or observed mean vote (OMV) and (ii) comparing the PMV-PPD relationship with binned OTS – observed percentage of unacceptability (OPU). The accuracy of PMV in predicting OTS was only 34%, meaning that the thermal sensation is incorrectly predicted two out of three times. PMV had a mean absolute error of one unit on the thermal sensation scale and its accuracy decreased towards the ends of the thermal sensation scale. The accuracy of PMV was similarly low for air-conditioned, naturally ventilated and mixed-mode buildings. In addition, the PPD was not able to predict the dissatisfaction rate. If the PMV model would perfectly predict thermal sensation, then PPD accuracy is higher close to neutrality but it would overestimate dissatisfaction by approximately 15–25% outside of it. Furthermore, PMV-PPD accuracy varied strongly between ventilation strategies, building types and climate groups. These findings demonstrate the low prediction accuracy of the PMV–PPD model, indicating the need to develop high prediction accuracy thermal comfort models. For demonstration, we developed a simple thermal prediction model just based on air temperature and its accuracy, for this database, was higher than PMV. |
| Author | Li, Peixian Schiavon, Stefano Parkinson, Thomas Brager, Gail Cheung, Toby |
| Author_xml | – sequence: 1 givenname: Toby surname: Cheung fullname: Cheung, Toby organization: Berkeley Education Alliance for Research in Singapore, Singapore – sequence: 2 givenname: Stefano orcidid: 0000-0003-1285-5682 surname: Schiavon fullname: Schiavon, Stefano email: schiavon@berkeley.edu organization: Center for the Built Environment, University of California, Berkeley, CA, USA – sequence: 3 givenname: Thomas orcidid: 0000-0002-0088-8754 surname: Parkinson fullname: Parkinson, Thomas organization: Center for the Built Environment, University of California, Berkeley, CA, USA – sequence: 4 givenname: Peixian surname: Li fullname: Li, Peixian organization: Center for the Built Environment, University of California, Berkeley, CA, USA – sequence: 5 givenname: Gail orcidid: 0000-0002-1100-8302 surname: Brager fullname: Brager, Gail organization: Center for the Built Environment, University of California, Berkeley, CA, USA |
| BookMark | eNqFkMtKAzEYhYNUsFVfQQKuZ0wmM2kKLiytl4Ji8Ya7kGQSTZlOapIRuvMdfEOfxGh148bV4YfzHfi_Aei1rtUAHGCUY4Tp0SKXnW1q3b7mBcKjHOEcVdUW6GM2JBll5WMP9BGhKMOkIDtgEMICJXBEyj4Q41Y062ADdAbGZw2FUp0Xag1dC-dXD_Dj7R3O51O4dLVuYBds-_TdG99e3IxP4XnjpGjg3bP2y5QTtzTORzgVUUgRNJzN9sC2EU3Q-z-5C-7PTu8mF9nl9flsMr7MVIlozDStGR5RikaGGSNryop0VoaV0hBKSaEKVJIhqxUZEjFkBiGpjJRMoooVlSa74HCzu_LupdMh8oXrfPou8KLAjCQ1jKQW3bSUdyF4bfjK26Xwa44R_9LJF_xXJ__SyRHmSWcCj_-AykYRrWujF7b5Hz_Z4DopeLXa86CsbpWurdcq8trZ_yY-AUpJlqE |
| CitedBy_id | crossref_primary_10_1007_s12273_022_0911_2 crossref_primary_10_1016_j_enbenv_2021_05_003 crossref_primary_10_3389_fbuil_2022_971523 crossref_primary_10_1016_j_enbuild_2021_110920 crossref_primary_10_1016_j_enbenv_2025_05_006 crossref_primary_10_3390_ijerph17062092 crossref_primary_10_1016_j_enbenv_2025_05_007 crossref_primary_10_1016_j_buildenv_2023_110348 crossref_primary_10_1016_j_buildenv_2024_111958 crossref_primary_10_1007_s12273_023_1003_7 crossref_primary_10_1088_1755_1315_768_1_012080 crossref_primary_10_1007_s10668_024_04963_1 crossref_primary_10_1016_j_apacoust_2025_110642 crossref_primary_10_1016_j_buildenv_2019_106231 crossref_primary_10_1016_j_enbuild_2025_116228 crossref_primary_10_1016_j_rser_2022_112704 crossref_primary_10_1016_j_enbuild_2023_113632 crossref_primary_10_3390_su17188137 crossref_primary_10_1007_s12053_025_10371_9 crossref_primary_10_3390_en16031251 crossref_primary_10_1177_17442591231177428 crossref_primary_10_3390_su16219438 crossref_primary_10_1016_j_buildenv_2022_109090 crossref_primary_10_1016_j_enbuild_2021_111686 crossref_primary_10_1007_s44213_024_00038_z crossref_primary_10_1016_j_buildenv_2020_107443 crossref_primary_10_1016_j_buildenv_2019_106223 crossref_primary_10_1016_j_buildenv_2025_112766 crossref_primary_10_1016_j_enbuild_2020_109780 crossref_primary_10_1016_j_buildenv_2023_110579 crossref_primary_10_1016_j_apenergy_2023_122430 crossref_primary_10_1088_1742_6596_1343_1_012141 crossref_primary_10_1016_j_enbuild_2025_116217 crossref_primary_10_1016_j_buildenv_2019_106588 crossref_primary_10_1088_1742_6596_1343_1_012145 crossref_primary_10_1088_1755_1315_352_1_012051 crossref_primary_10_1109_JIOT_2022_3152138 crossref_primary_10_1016_j_buildenv_2021_107618 crossref_primary_10_3390_app132011190 crossref_primary_10_3390_buildings14082398 crossref_primary_10_1016_j_enbuild_2020_110066 crossref_primary_10_1016_j_jobe_2023_105960 crossref_primary_10_3390_en18092280 crossref_primary_10_1016_j_culher_2024_12_009 crossref_primary_10_1016_j_rser_2024_114903 crossref_primary_10_1016_j_jobe_2020_102051 crossref_primary_10_1016_j_buildenv_2021_108370 crossref_primary_10_1038_s41597_022_01347_w crossref_primary_10_1016_j_buildenv_2023_111104 crossref_primary_10_1088_1742_6596_2600_9_092004 crossref_primary_10_1016_j_enbuild_2024_114663 crossref_primary_10_1016_j_buildenv_2023_110137 crossref_primary_10_1080_23744731_2021_1916379 crossref_primary_10_3390_buildings12111788 crossref_primary_10_1016_j_indenv_2025_100098 crossref_primary_10_1088_1742_6596_2600_9_092005 crossref_primary_10_14718_RevArq_2025_27_5365 crossref_primary_10_3390_pr9020385 crossref_primary_10_1016_j_jclepro_2022_132033 crossref_primary_10_1016_j_solener_2020_07_058 crossref_primary_10_29105_contexto19_30_469 crossref_primary_10_1016_j_enbuild_2020_109761 crossref_primary_10_1016_j_enbuild_2021_111344 crossref_primary_10_1016_j_enbuild_2019_109729 crossref_primary_10_1016_j_buildenv_2020_107302 crossref_primary_10_1016_j_buildenv_2024_111988 crossref_primary_10_1016_j_cmpb_2022_107198 crossref_primary_10_1016_j_ijthermalsci_2025_109804 crossref_primary_10_1016_j_buildenv_2024_111751 crossref_primary_10_1016_j_rser_2025_116020 crossref_primary_10_1016_j_enbuild_2023_112873 crossref_primary_10_1016_j_buildenv_2022_109877 crossref_primary_10_3390_architecture5020021 crossref_primary_10_3233_SW_223254 crossref_primary_10_1016_j_jobe_2024_108834 crossref_primary_10_1016_j_scs_2021_102867 crossref_primary_10_1016_j_enbuild_2024_114808 crossref_primary_10_1051_e3sconf_202339601105 crossref_primary_10_1016_j_enbuild_2024_114809 crossref_primary_10_1007_s12273_024_1107_8 crossref_primary_10_1016_j_buildenv_2025_113541 crossref_primary_10_3390_su13169167 crossref_primary_10_1016_j_buildenv_2020_107412 crossref_primary_10_1017_eds_2023_43 crossref_primary_10_1038_s41598_025_92112_7 crossref_primary_10_1016_j_buildenv_2020_107531 crossref_primary_10_1016_j_enbuild_2019_109559 crossref_primary_10_1016_j_enbuild_2023_113438 crossref_primary_10_1016_j_enbuild_2023_112900 crossref_primary_10_1088_1755_1315_738_1_012008 crossref_primary_10_1109_TSG_2024_3400220 crossref_primary_10_3390_su11133582 crossref_primary_10_1016_j_buildenv_2025_113549 crossref_primary_10_1080_15567036_2021_2006369 crossref_primary_10_1016_j_buildenv_2019_106318 crossref_primary_10_1016_j_enbuild_2024_114487 crossref_primary_10_1016_j_enbuild_2024_115213 crossref_primary_10_1016_j_buildenv_2021_108232 crossref_primary_10_2478_rtuect_2022_0054 crossref_primary_10_1016_j_buildenv_2024_112450 crossref_primary_10_1016_j_enbuild_2021_111771 crossref_primary_10_1016_j_physbeh_2022_113724 crossref_primary_10_1016_j_apergo_2022_103856 crossref_primary_10_1177_1420326X211034563 crossref_primary_10_1016_j_rser_2024_115042 crossref_primary_10_1016_j_enbuild_2023_113666 crossref_primary_10_1016_j_buildenv_2025_113415 crossref_primary_10_1016_j_jobe_2025_113613 crossref_primary_10_1016_j_totert_2023_100083 crossref_primary_10_1016_j_buildenv_2022_108880 crossref_primary_10_1016_j_buildenv_2023_110787 crossref_primary_10_1016_j_buildenv_2023_110423 crossref_primary_10_3390_buildings15101584 crossref_primary_10_1088_1742_6596_2042_1_012070 crossref_primary_10_1016_j_solener_2022_09_034 crossref_primary_10_3390_en16041634 crossref_primary_10_1177_1420326X241268085 crossref_primary_10_1016_j_applthermaleng_2025_127553 crossref_primary_10_1016_j_buildenv_2023_111075 crossref_primary_10_1016_j_applthermaleng_2023_120339 crossref_primary_10_2478_otmcj_2020_0017 crossref_primary_10_1016_j_buildenv_2020_106665 crossref_primary_10_1016_j_enbuild_2021_111431 crossref_primary_10_3390_en15155429 crossref_primary_10_1111_ina_13018 crossref_primary_10_3390_su14074065 crossref_primary_10_1016_j_buildenv_2022_109020 crossref_primary_10_1016_j_mtphys_2021_100465 crossref_primary_10_1016_j_buildenv_2024_112118 crossref_primary_10_1016_j_buildenv_2023_110578 crossref_primary_10_1016_j_tsep_2022_101295 crossref_primary_10_3390_buildings15122038 crossref_primary_10_3390_buildings11110551 crossref_primary_10_1016_j_buildenv_2021_108215 crossref_primary_10_3390_en17246354 crossref_primary_10_3390_en12091792 crossref_primary_10_3390_su132011511 crossref_primary_10_1016_j_buildenv_2021_107905 crossref_primary_10_1155_ina_2258335 crossref_primary_10_1016_j_jtherbio_2023_103540 crossref_primary_10_1016_j_renene_2020_05_127 crossref_primary_10_1186_s40101_022_00289_x crossref_primary_10_1016_j_foar_2022_04_008 crossref_primary_10_1109_ACCESS_2022_3140951 crossref_primary_10_3390_app13084860 crossref_primary_10_1016_j_enbenv_2020_03_004 crossref_primary_10_1016_j_buildenv_2025_112542 crossref_primary_10_1080_01430750_2022_2116597 crossref_primary_10_1016_j_enbuild_2024_114917 crossref_primary_10_1177_1420326X211035550 crossref_primary_10_1111_ina_12855 crossref_primary_10_1016_j_buildenv_2023_110201 crossref_primary_10_1016_j_jobe_2020_101961 crossref_primary_10_3390_su16177869 crossref_primary_10_1016_j_buildenv_2024_112480 crossref_primary_10_1016_j_jobe_2024_108877 crossref_primary_10_1038_s41598_025_92600_w crossref_primary_10_1002_admt_201901155 crossref_primary_10_1007_s12273_022_0902_3 crossref_primary_10_1016_j_enbuild_2020_110392 crossref_primary_10_1016_j_scs_2023_104735 crossref_primary_10_1007_s40430_023_04482_6 crossref_primary_10_1016_j_enbuild_2021_110887 crossref_primary_10_3390_en17143445 crossref_primary_10_1016_j_rser_2023_114209 crossref_primary_10_1111_ina_12984 crossref_primary_10_3390_buildings12020101 crossref_primary_10_1016_j_buildenv_2025_113227 crossref_primary_10_3390_buildings13081953 crossref_primary_10_1016_j_buildenv_2023_110745 crossref_primary_10_1016_j_buildenv_2023_110502 crossref_primary_10_1016_j_buildenv_2025_113108 crossref_primary_10_1016_j_buildenv_2023_110873 crossref_primary_10_1016_j_buildenv_2023_110198 crossref_primary_10_1016_j_enbuild_2024_115019 crossref_primary_10_3390_buildings10090157 crossref_primary_10_3389_fbuil_2020_00113 crossref_primary_10_1016_j_jtherbio_2023_103484 crossref_primary_10_3390_en16010151 crossref_primary_10_1016_j_buildenv_2024_111682 crossref_primary_10_1016_j_buildenv_2023_111043 crossref_primary_10_1111_ina_13160 crossref_primary_10_1016_j_enbuild_2021_111055 crossref_primary_10_3390_buildings12091418 crossref_primary_10_3390_su17041702 crossref_primary_10_1016_j_jobe_2023_108167 crossref_primary_10_1016_j_jobe_2024_109435 crossref_primary_10_1080_15502724_2022_2077753 crossref_primary_10_1016_j_buildenv_2025_113694 crossref_primary_10_1016_j_enbuild_2020_110017 crossref_primary_10_3390_pr13051538 crossref_primary_10_1038_s41598_021_03121_1 crossref_primary_10_3390_su16083388 crossref_primary_10_1016_j_buildenv_2019_106504 crossref_primary_10_1016_j_aei_2023_101895 crossref_primary_10_1016_j_jobe_2022_105627 crossref_primary_10_3846_jcem_2022_17566 crossref_primary_10_1016_j_buildenv_2025_112916 crossref_primary_10_1016_j_jobe_2025_114074 crossref_primary_10_1016_j_scitotenv_2025_178652 crossref_primary_10_1016_j_scs_2025_106488 crossref_primary_10_1016_j_buildenv_2023_111033 crossref_primary_10_1109_TAI_2024_3376319 crossref_primary_10_1016_j_enbuild_2023_113345 crossref_primary_10_1057_s41271_023_00431_8 crossref_primary_10_1080_17512549_2024_2340449 crossref_primary_10_1371_journal_pone_0249235 crossref_primary_10_1088_1755_1315_571_1_012093 crossref_primary_10_3390_su16229629 crossref_primary_10_1016_j_applthermaleng_2025_126266 crossref_primary_10_1016_j_enbuild_2021_111286 crossref_primary_10_3390_buildings12122149 crossref_primary_10_3390_en18061484 crossref_primary_10_1016_j_buildenv_2020_106867 crossref_primary_10_1016_j_enbuild_2025_116090 crossref_primary_10_3390_buildings15030325 crossref_primary_10_1016_j_jobe_2024_108677 crossref_primary_10_1016_j_enbuild_2021_110782 crossref_primary_10_1080_15567036_2025_2462274 crossref_primary_10_1016_j_enbuild_2025_116409 crossref_primary_10_1016_j_buildenv_2024_111469 crossref_primary_10_1016_j_buildenv_2022_109462 crossref_primary_10_1016_j_buildenv_2022_109343 crossref_primary_10_1016_j_buildenv_2024_111586 crossref_primary_10_1016_j_buildenv_2021_108532 crossref_primary_10_1016_j_buildenv_2024_111463 crossref_primary_10_1073_pnas_2001678117 crossref_primary_10_1186_s41601_023_00331_9 crossref_primary_10_3390_su13020678 crossref_primary_10_1016_j_buildenv_2023_110097 crossref_primary_10_3390_buildings15060865 crossref_primary_10_1088_1755_1315_1078_1_012034 crossref_primary_10_5334_bc_274 crossref_primary_10_3390_buildings12101522 crossref_primary_10_1002_hfm_20950 crossref_primary_10_1016_j_jobe_2023_107610 crossref_primary_10_1016_j_enbuild_2022_112334 crossref_primary_10_1016_j_measurement_2023_113047 crossref_primary_10_1080_09613218_2022_2121908 crossref_primary_10_1016_j_buildenv_2020_107266 crossref_primary_10_1016_j_enbuild_2023_113325 crossref_primary_10_1016_j_buildenv_2025_113677 crossref_primary_10_1016_j_enbenv_2023_11_004 crossref_primary_10_3390_buildings10100174 crossref_primary_10_1371_journal_pone_0258888 crossref_primary_10_1016_j_enbuild_2024_114033 crossref_primary_10_1016_j_scitotenv_2022_157694 crossref_primary_10_1007_s10973_022_11543_w crossref_primary_10_1016_j_buildenv_2024_112321 crossref_primary_10_1016_j_enbuild_2025_115666 crossref_primary_10_1016_j_buildenv_2023_111053 crossref_primary_10_1016_j_jobe_2021_103727 crossref_primary_10_1016_j_enbuild_2020_109807 crossref_primary_10_1016_j_enbuild_2021_111181 crossref_primary_10_1016_j_enbuild_2024_115000 crossref_primary_10_1080_19401493_2023_2245796 crossref_primary_10_1371_journal_pone_0266672 crossref_primary_10_3390_su17135879 crossref_primary_10_1016_j_buildenv_2025_113144 crossref_primary_10_1038_s44359_025_00041_5 crossref_primary_10_3390_buildings13010036 crossref_primary_10_1016_j_buildenv_2025_113388 crossref_primary_10_1061_JAEIED_AEENG_1468 crossref_primary_10_3390_app122211700 crossref_primary_10_1016_j_buildenv_2023_110949 crossref_primary_10_1016_j_buildenv_2020_107133 crossref_primary_10_1016_j_heliyon_2024_e25801 crossref_primary_10_1007_s00484_023_02580_7 crossref_primary_10_1016_j_enbuild_2021_110846 crossref_primary_10_3390_en16135091 crossref_primary_10_1016_j_buildenv_2023_110944 crossref_primary_10_4103_ijehe_ijehe_18_24 crossref_primary_10_1016_j_procir_2022_02_121 crossref_primary_10_1016_j_jtherbio_2023_103722 crossref_primary_10_1016_j_buildenv_2022_109685 crossref_primary_10_4271_2022_01_0194 crossref_primary_10_1016_j_applthermaleng_2025_126857 crossref_primary_10_1016_j_buildenv_2023_110155 crossref_primary_10_1109_ACCESS_2024_3443392 crossref_primary_10_1007_s12273_022_0970_4 crossref_primary_10_1016_j_enbuild_2022_112068 crossref_primary_10_1016_j_buildenv_2024_112296 crossref_primary_10_1016_j_jobe_2023_108404 crossref_primary_10_1080_01457632_2023_2227808 crossref_primary_10_1177_1420326X221148728 crossref_primary_10_1051_e3sconf_202339601070 crossref_primary_10_1080_10407790_2024_2312947 crossref_primary_10_3390_buildings12010075 crossref_primary_10_1111_ina_12792 crossref_primary_10_1007_s11709_020_0668_6 crossref_primary_10_1016_j_scs_2024_105450 crossref_primary_10_1016_j_enbuild_2024_114771 crossref_primary_10_1016_j_enbuild_2025_115449 crossref_primary_10_1016_j_enbuild_2025_116410 crossref_primary_10_1016_j_buildenv_2024_111530 crossref_primary_10_3390_su152316459 crossref_primary_10_1051_e3sconf_202339601086 crossref_primary_10_3390_su151713210 crossref_primary_10_1016_j_buildenv_2019_02_020 crossref_primary_10_1016_j_buildenv_2020_106949 crossref_primary_10_1016_j_buildenv_2024_112182 crossref_primary_10_37155_2811_0730_0302_15 crossref_primary_10_1016_j_enbuild_2020_109795 crossref_primary_10_1016_j_buildenv_2020_107239 crossref_primary_10_1016_j_jobe_2025_111925 crossref_primary_10_1016_j_buildenv_2020_107354 crossref_primary_10_1002_eng2_12029 crossref_primary_10_1016_j_buildenv_2023_110725 crossref_primary_10_1016_j_enbuild_2023_113494 crossref_primary_10_1016_j_buildenv_2022_109663 crossref_primary_10_1016_j_jobe_2020_102087 crossref_primary_10_1016_j_rineng_2024_103660 crossref_primary_10_1016_j_buildenv_2024_111301 crossref_primary_10_1016_j_enbuild_2025_116444 crossref_primary_10_1108_IJBPA_03_2024_0059 crossref_primary_10_1016_j_apenergy_2022_119742 crossref_primary_10_1016_j_foar_2022_02_006 crossref_primary_10_1016_j_ijthermalsci_2023_108542 crossref_primary_10_1080_09613218_2020_1775065 crossref_primary_10_1016_j_enbuild_2024_115153 crossref_primary_10_1038_s44172_025_00366_w crossref_primary_10_1177_01436244241296756 crossref_primary_10_3390_buildings12101572 crossref_primary_10_1061__ASCE_AE_1943_5568_0000521 crossref_primary_10_1016_j_buildenv_2019_106281 crossref_primary_10_3390_su17104347 crossref_primary_10_1016_j_jobe_2025_111814 crossref_primary_10_3390_buildings14061820 crossref_primary_10_1177_01436244231191244 crossref_primary_10_3390_buildings12040483 crossref_primary_10_1016_j_egyr_2024_12_073 crossref_primary_10_1016_j_enbuild_2023_112830 crossref_primary_10_1016_j_buildenv_2025_112701 crossref_primary_10_1016_j_jobe_2023_108183 crossref_primary_10_1016_j_buildenv_2019_106286 crossref_primary_10_1088_1755_1315_1533_1_012024 crossref_primary_10_1016_j_buildenv_2024_111799 crossref_primary_10_1016_j_buildenv_2025_112814 crossref_primary_10_1016_j_enbuild_2024_115168 crossref_primary_10_1016_j_enbuild_2023_113483 crossref_primary_10_1016_j_buildenv_2022_109795 crossref_primary_10_1016_j_enbenv_2024_03_002 crossref_primary_10_1016_j_scs_2019_101870 crossref_primary_10_1016_j_buildenv_2022_109310 crossref_primary_10_1016_j_buildenv_2021_108169 crossref_primary_10_1016_j_buildenv_2023_110041 crossref_primary_10_1016_j_buildenv_2020_106926 crossref_primary_10_3390_su151411094 crossref_primary_10_1080_09613218_2020_1836950 |
| Cites_doi | 10.1016/S0378-7788(02)00109-3 10.1016/j.scs.2016.11.013 10.1016/S0360-1323(96)00036-4 10.1016/S0378-7788(02)00003-8 10.1016/S0378-7788(97)00053-4 10.1127/0941-2948/2006/0130 10.1016/j.buildenv.2018.01.023 10.1016/j.applthermaleng.2014.11.004 10.1016/j.buildenv.2013.05.013 10.1016/0378-7788(95)00934-5 10.2741/3645 10.1016/j.buildenv.2010.05.024 10.1016/j.buildenv.2017.12.011 10.1016/j.buildenv.2017.10.031 10.1016/j.ergon.2014.01.005 10.1016/j.enbuild.2008.05.001 10.1080/09613217308550237 10.1016/j.buildenv.2008.08.001 10.1016/j.buildenv.2013.02.015 10.1016/j.enbuild.2017.11.047 10.1016/j.buildenv.2015.04.030 10.1016/j.enbuild.2017.11.028 10.1016/j.physbeh.2012.07.008 10.1016/j.enbuild.2015.07.047 10.1016/j.enbuild.2004.01.011 10.1111/j.1600-0668.2007.00516.x 10.1016/j.buildenv.2017.02.023 10.1016/j.enbuild.2012.06.022 10.1080/17512549.2007.9687269 10.1016/j.buildenv.2008.06.011 10.1016/j.buildenv.2014.08.018 10.1016/j.buildenv.2018.06.022 10.1016/S0378-7788(02)00018-X 10.1111/j.1600-0668.2004.00268.x |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier Ltd Copyright Elsevier BV Apr 15, 2019 |
| Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright Elsevier BV Apr 15, 2019 |
| DBID | AAYXX CITATION 7ST 8FD C1K F28 FR3 KR7 SOI |
| DOI | 10.1016/j.buildenv.2019.01.055 |
| DatabaseName | CrossRef Environment Abstracts Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Civil Engineering Abstracts Environment Abstracts |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Environment Abstracts ANTE: Abstracts in New Technology & Engineering Environmental Sciences and Pollution Management |
| DatabaseTitleList | Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1873-684X |
| EndPage | 217 |
| ExternalDocumentID | 10_1016_j_buildenv_2019_01_055 S0360132319300915 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KCYFY KOM LY6 LY7 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SEN SES SPC SPCBC SSJ SSR SST SSZ T5K ~G- 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HMC HVGLF HZ~ R2- SAC SET SEW VH1 WUQ ZMT ~HD 7ST 8FD AGCQF C1K F28 FR3 KR7 SOI |
| ID | FETCH-LOGICAL-c406t-e6d8196609f8ffbd6821965f84bf36632c204378dc373a78f00bcfbb8b05825e3 |
| ISICitedReferencesCount | 360 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000461457500018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0360-1323 |
| IngestDate | Wed Aug 13 05:45:18 EDT 2025 Tue Nov 18 22:33:51 EST 2025 Sat Nov 29 07:21:30 EST 2025 Fri Feb 23 02:49:36 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | PMV–PPD model Accuracy Thermal comfort ASHRAE Global Thermal Comfort Database II Prediction |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c406t-e6d8196609f8ffbd6821965f84bf36632c204378dc373a78f00bcfbb8b05825e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-1285-5682 0000-0002-1100-8302 0000-0002-0088-8754 |
| PQID | 2218301983 |
| PQPubID | 2045275 |
| PageCount | 13 |
| ParticipantIDs | proquest_journals_2218301983 crossref_primary_10_1016_j_buildenv_2019_01_055 crossref_citationtrail_10_1016_j_buildenv_2019_01_055 elsevier_sciencedirect_doi_10_1016_j_buildenv_2019_01_055 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-04-15 |
| PublicationDateYYYYMMDD | 2019-04-15 |
| PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Building and environment |
| PublicationYear | 2019 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Kottek, Grieser, Beck, Rudolf, Rubel (bib36) 2006 Humphreys, Nicol, Raja (bib17) 2007; 1 (bib5) 2005 Humphreys, Nicol (bib29) 2000; 106 Andreasi, Lamberts, Cândido (bib23) 2010; 45 Becker, Paciuk (bib42) 2009; 44 Schellen, Loomans, de Wit, Olesen, Lichtenbelt (bib10) 2012; 107 Kim, Schiavon, Brager (bib44) 2018; 132 Humphreys, Nicol (bib6) 2002; 34 Wong, Mui, Cheung (bib14) 2014; 82 Oseland (bib39) 1995; 23 van Hoof (bib2) 2008; 18 Maiti (bib9) 2014; 44 Doherty, Arens (bib8) 1988; 94 Kim, de Dear (bib16) 2018; 127 Teli, Jentsch, James (bib32) 2012; 53 Földváry Ličina, Cheung, Zhang, de Dear, Parkinson, Arens, Chun, Schiavon, Luo, Brager, Li, Kaam, Adebamowo, Andamon, Babich, Bouden, Bukovianska, Candido, Cao, Carlucci, Cheong, Choi, Cook, Cropper, Deuble, Heidari, Indraganti, Jin, Kim, Kim, Konis, Singh, Kwok, Lamberts, Loveday, Langevin, Manu, Moosmann, Nicol, Ooka, Oseland, Pagliano, Petráš, Rawal, Romero, Rijal, Sekhar, Schweiker, Tartarini, Tanabe, Tham, Teli, Toftum, Toledo, Tsuzuki, De Vecchi, Wagner, Wang, Wallbaum, Webb, Yang, Zhu, Zhai, Zhang, Zhou (bib35) 2018; 142 Mishra, Ramgopal (bib20) 2013; 64 Lehmann (bib37) 2006 Gao, Wang, Wargocki (bib31) 2015; 92 Malama, Sharples (bib22) 1997; 32 Wong, Khoo (bib18) 2003; 35 de Dear, Brager, Cooper (bib12) 1997 Nicol, Humphreys (bib21) 1973; 1 Rupp, Vásquez, Lamberts (bib34) 2015; 105 Kim, Zhou, Schiavon, Raftery, Brager (bib45) 2018; 129 d'Ambrosio Alfano, Ianniello, Palella (bib30) 2013; 67 Takasu, Ooka, Rijal, Indraganti, Singh (bib13) 2017; 118 de Dear, Kim, Parkinson (bib43) 2018; 158 Rupp, de Dear, Ghisi (bib25) 2018; 158 Humphreys (bib28) 1978; 6 CEN-15251 (bib4) 2007 Fanger, Toftum (bib24) 2002; 34 Schiavon, Melikov (bib38) 2008; 40 Hwang, Cheng, Lin, Ho (bib41) 2009; 44 Feriadi, Wong (bib27) 2004; 36 Yang, Li, Liu, Tan, Yao (bib7) 2015; 76 de Dear, Brager (bib40) 1998; 104 Calis, Kuru (bib11) 2017; 29 Zhang, Wang, Chen, Zhang, Meng (bib33) 2010; 45 Fanger (bib1) 1970 Brager, de Dear (bib19) 1998; 27 van Hoof, Mazej, Hensen (bib15) 2010; 15 (bib3) 2017 Olesen (bib26) 2004; 14 van Hoof (10.1016/j.buildenv.2019.01.055_bib2) 2008; 18 de Dear (10.1016/j.buildenv.2019.01.055_bib40) 1998; 104 (10.1016/j.buildenv.2019.01.055_bib5) 2005 Humphreys (10.1016/j.buildenv.2019.01.055_bib17) 2007; 1 Rupp (10.1016/j.buildenv.2019.01.055_bib34) 2015; 105 Schiavon (10.1016/j.buildenv.2019.01.055_bib38) 2008; 40 Humphreys (10.1016/j.buildenv.2019.01.055_bib29) 2000; 106 Calis (10.1016/j.buildenv.2019.01.055_bib11) 2017; 29 Rupp (10.1016/j.buildenv.2019.01.055_bib25) 2018; 158 Andreasi (10.1016/j.buildenv.2019.01.055_bib23) 2010; 45 Kim (10.1016/j.buildenv.2019.01.055_bib45) 2018; 129 Takasu (10.1016/j.buildenv.2019.01.055_bib13) 2017; 118 Kim (10.1016/j.buildenv.2019.01.055_bib16) 2018; 127 Brager (10.1016/j.buildenv.2019.01.055_bib19) 1998; 27 Humphreys (10.1016/j.buildenv.2019.01.055_bib6) 2002; 34 Oseland (10.1016/j.buildenv.2019.01.055_bib39) 1995; 23 Kim (10.1016/j.buildenv.2019.01.055_bib44) 2018; 132 Mishra (10.1016/j.buildenv.2019.01.055_bib20) 2013; 64 Fanger (10.1016/j.buildenv.2019.01.055_bib24) 2002; 34 Fanger (10.1016/j.buildenv.2019.01.055_bib1) 1970 CEN-15251 (10.1016/j.buildenv.2019.01.055_bib4) 2007 Malama (10.1016/j.buildenv.2019.01.055_bib22) 1997; 32 de Dear (10.1016/j.buildenv.2019.01.055_bib43) 2018; 158 Wong (10.1016/j.buildenv.2019.01.055_bib14) 2014; 82 Olesen (10.1016/j.buildenv.2019.01.055_bib26) 2004; 14 Feriadi (10.1016/j.buildenv.2019.01.055_bib27) 2004; 36 Humphreys (10.1016/j.buildenv.2019.01.055_bib28) 1978; 6 Gao (10.1016/j.buildenv.2019.01.055_bib31) 2015; 92 Teli (10.1016/j.buildenv.2019.01.055_bib32) 2012; 53 Becker (10.1016/j.buildenv.2019.01.055_bib42) 2009; 44 Wong (10.1016/j.buildenv.2019.01.055_bib18) 2003; 35 (10.1016/j.buildenv.2019.01.055_bib3) 2017 Kottek (10.1016/j.buildenv.2019.01.055_bib36) 2006 Hwang (10.1016/j.buildenv.2019.01.055_bib41) 2009; 44 Doherty (10.1016/j.buildenv.2019.01.055_bib8) 1988; 94 van Hoof (10.1016/j.buildenv.2019.01.055_bib15) 2010; 15 Maiti (10.1016/j.buildenv.2019.01.055_bib9) 2014; 44 de Dear (10.1016/j.buildenv.2019.01.055_bib12) 1997 Yang (10.1016/j.buildenv.2019.01.055_bib7) 2015; 76 Földváry Ličina (10.1016/j.buildenv.2019.01.055_bib35) 2018; 142 d'Ambrosio Alfano (10.1016/j.buildenv.2019.01.055_bib30) 2013; 67 Schellen (10.1016/j.buildenv.2019.01.055_bib10) 2012; 107 Lehmann (10.1016/j.buildenv.2019.01.055_bib37) 2006 Nicol (10.1016/j.buildenv.2019.01.055_bib21) 1973; 1 Zhang (10.1016/j.buildenv.2019.01.055_bib33) 2010; 45 |
| References_xml | – volume: 64 start-page: 94 year: 2013 end-page: 106 ident: bib20 article-title: Field studies on human thermal comfort — an overview publication-title: Build. Environ. – volume: 106 start-page: 485 year: 2000 ident: bib29 article-title: Outdoor temperature and indoor thermal comfort: raising the precision of the relationship for the 1998 ASHRAE database of field studies publication-title: ASHRAE Trans. Atlanta. – volume: 105 start-page: 178 year: 2015 end-page: 205 ident: bib34 article-title: A review of human thermal comfort in the built environment publication-title: Energy Build. – volume: 23 start-page: 105 year: 1995 end-page: 115 ident: bib39 article-title: Predicted and reported thermal sensation in climate chambers, offices and homes publication-title: Energy Build. – volume: 104 start-page: 145 year: 1998 end-page: 167 ident: bib40 article-title: Developing an adaptive model of thermal comfort and preference publication-title: ASHRAE Transact. – volume: 34 start-page: 667 year: 2002 end-page: 684 ident: bib6 article-title: The validity of ISO-PMV for predicting comfort votes in every-day thermal environments publication-title: Energy Build. – volume: 44 start-page: 948 year: 2009 end-page: 960 ident: bib42 article-title: Thermal comfort in residential buildings – failure to predict by Standard model publication-title: Build. Environ. – year: 1997 ident: bib12 article-title: Develop an Adaptive Model of Thermal Comfort and Preference – volume: 15 start-page: 765 year: 2010 end-page: 788 ident: bib15 article-title: Thermal comfort research and practice publication-title: Front. Biosci. – volume: 158 start-page: 1296 year: 2018 end-page: 1305 ident: bib43 article-title: Residential adaptive comfort in a humid subtropical climate—sydney Australia publication-title: Energy Build. – year: 2006 ident: bib37 article-title: Nonparametrics: Statistical Methods Based on Ranks – volume: 92 start-page: 200 year: 2015 end-page: 208 ident: bib31 article-title: Comparative analysis of modified PMV models and SET models to predict human thermal sensation in naturally ventilated building publication-title: Build. Environ. – volume: 76 start-page: 283 year: 2015 end-page: 291 ident: bib7 article-title: A study of adaptive thermal comfort in a well-controlled climate chamber publication-title: Appl. Therm. Eng. – volume: 14 start-page: 18 year: 2004 end-page: 26 ident: bib26 article-title: International standards for the indoor environment publication-title: Indoor Air – volume: 129 start-page: 96 year: 2018 end-page: 106 ident: bib45 article-title: Personal comfort models: predicting individuals' thermal preference using occupant heating and cooling behavior and machine learning publication-title: Build. Environ. – volume: 6 year: 1978 ident: bib28 article-title: Outdoor temperatures and comfort indoors publication-title: Batiment Int. Build. Res. Pract. – volume: 45 start-page: 2562 year: 2010 end-page: 2570 ident: bib33 article-title: Thermal comfort in naturally ventilated buildings in hot-humid area of China publication-title: Build. Environ. – volume: 36 start-page: 614 year: 2004 end-page: 626 ident: bib27 article-title: Thermal comfort for naturally ventilated houses in Indonesia publication-title: Energy Build. – volume: 44 start-page: 1128 year: 2009 end-page: 1134 ident: bib41 article-title: Thermal perceptions, general adaptation methods and occupant's idea about the trade-off between thermal comfort and energy saving in hot–humid regions publication-title: Build. Environ. – volume: 53 start-page: 166 year: 2012 end-page: 182 ident: bib32 article-title: Naturally ventilated classrooms: an assessment of existing comfort models for predicting the thermal sensation and preference of primary school children publication-title: Energy Build. – year: 2017 ident: bib3 publication-title: ASHRAE 55, Thermal Environmental Conditions for Human Occupancy. ASHRAE Standard 55-2017 – volume: 107 start-page: 252 year: 2012 end-page: 261 ident: bib10 article-title: The influence of local effects on thermal sensation under non-uniform environmental conditions — gender differences in thermophysiology, thermal comfort and productivity during convective and radiant cooling publication-title: Physiol. Behav. – year: 1970 ident: bib1 article-title: Thermal Comfort: Analysis and Application in Environmental Engineering – volume: 1 start-page: 55 year: 2007 end-page: 88 ident: bib17 article-title: Field studies of indoor thermal comfort and the progress of the adaptive approach publication-title: Adv. Build. Energy Res. – volume: 35 start-page: 337 year: 2003 end-page: 351 ident: bib18 article-title: Thermal comfort in classrooms in the tropics publication-title: Energy Build. – year: 2005 ident: bib5 publication-title: ISO 7730, Ergonomics of the Thermal Environment - Analytical Determination and Interpretation of Thermal Comfort Using Calculation of the PMV and PPD Indices and Local Thermal Comfort Criteria – volume: 132 start-page: 114 year: 2018 end-page: 124 ident: bib44 article-title: Personal comfort models – a new paradigm in thermal comfort for occupant-centric environmental control publication-title: Build. Environ. – volume: 18 start-page: 182 year: 2008 end-page: 201 ident: bib2 article-title: Forty years of Fanger's model of thermal comfort: comfort for all? publication-title: Indoor Air – volume: 142 start-page: 502 year: 2018 end-page: 512 ident: bib35 article-title: Development of the ASHRAE global thermal comfort database II publication-title: Build. Environ. – volume: 32 start-page: 69 year: 1997 end-page: 78 ident: bib22 article-title: Thermal performance of traditional and contemporary housing in the cool season of Zambia publication-title: Build. Environ. – volume: 29 start-page: 77 year: 2017 end-page: 85 ident: bib11 article-title: Assessing user thermal sensation in the Aegean region against standards publication-title: Sustain. Cities Soc. – volume: 40 start-page: 1954 year: 2008 end-page: 1960 ident: bib38 article-title: Energy saving and improved comfort by increased air movement publication-title: Energy Build. – volume: 127 start-page: 13 year: 2018 end-page: 22 ident: bib16 article-title: Thermal comfort expectations and adaptive behavioural characteristics of primary and secondary school students publication-title: Build. Environ. – volume: 27 start-page: 83 year: 1998 end-page: 96 ident: bib19 article-title: Thermal adaptation in the built environment: a literature review publication-title: Energy Build. – volume: 45 start-page: 1225 year: 2010 end-page: 1232 ident: bib23 article-title: Thermal acceptability assessment in buildings located in hot and humid regions in Brazil, Build publication-title: Environ. Times – volume: 1 start-page: 174 year: 1973 end-page: 179 ident: bib21 article-title: Thermal comfort as part of a self-regulating system publication-title: Build. Res. Pract. – volume: 82 start-page: 171 year: 2014 end-page: 179 ident: bib14 article-title: Bayesian thermal comfort model publication-title: Build. Environ. – start-page: 259 year: 2006 end-page: 263 ident: bib36 article-title: World Map of the Köppen-Geiger climate classification updated publication-title: Meteorol. Z. – volume: 34 start-page: 533 year: 2002 end-page: 536 ident: bib24 article-title: Extension of the PMV model to non-air-conditioned buildings in warm climates publication-title: Energy Build. – volume: 118 start-page: 273 year: 2017 end-page: 288 ident: bib13 article-title: Study on adaptive thermal comfort in Japanese offices under various operation modes publication-title: Build. Environ. – volume: 158 start-page: 1475 year: 2018 end-page: 1486 ident: bib25 article-title: Field study of mixed-mode office buildings in Southern Brazil using an adaptive thermal comfort framework publication-title: Energy Build. – volume: 94 start-page: 1371 year: 1988 end-page: 1385 ident: bib8 article-title: Evaluation of the physiological bases of thermal comfort models publication-title: ASHRAE Transact. – volume: 44 start-page: 349 year: 2014 end-page: 361 ident: bib9 article-title: PMV model is insufficient to capture subjective thermal response from Indians publication-title: Int. J. Ind. Ergon. – volume: 67 start-page: 129 year: 2013 end-page: 137 ident: bib30 article-title: PMV–PPD and acceptability in naturally ventilated schools publication-title: Build. Environ. – year: 2007 ident: bib4 article-title: Indoor Environmental Input Parameters for Design and Assessment of Energy Performance of Buildings- Addressing Indoor Air Quality, Thermal. EN-15251 – year: 2005 ident: 10.1016/j.buildenv.2019.01.055_bib5 – volume: 35 start-page: 337 year: 2003 ident: 10.1016/j.buildenv.2019.01.055_bib18 article-title: Thermal comfort in classrooms in the tropics publication-title: Energy Build. doi: 10.1016/S0378-7788(02)00109-3 – volume: 29 start-page: 77 year: 2017 ident: 10.1016/j.buildenv.2019.01.055_bib11 article-title: Assessing user thermal sensation in the Aegean region against standards publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2016.11.013 – volume: 32 start-page: 69 year: 1997 ident: 10.1016/j.buildenv.2019.01.055_bib22 article-title: Thermal performance of traditional and contemporary housing in the cool season of Zambia publication-title: Build. Environ. doi: 10.1016/S0360-1323(96)00036-4 – volume: 34 start-page: 533 year: 2002 ident: 10.1016/j.buildenv.2019.01.055_bib24 article-title: Extension of the PMV model to non-air-conditioned buildings in warm climates publication-title: Energy Build. doi: 10.1016/S0378-7788(02)00003-8 – volume: 27 start-page: 83 year: 1998 ident: 10.1016/j.buildenv.2019.01.055_bib19 article-title: Thermal adaptation in the built environment: a literature review publication-title: Energy Build. doi: 10.1016/S0378-7788(97)00053-4 – start-page: 259 year: 2006 ident: 10.1016/j.buildenv.2019.01.055_bib36 article-title: World Map of the Köppen-Geiger climate classification updated publication-title: Meteorol. Z. doi: 10.1127/0941-2948/2006/0130 – volume: 132 start-page: 114 year: 2018 ident: 10.1016/j.buildenv.2019.01.055_bib44 article-title: Personal comfort models – a new paradigm in thermal comfort for occupant-centric environmental control publication-title: Build. Environ. doi: 10.1016/j.buildenv.2018.01.023 – volume: 76 start-page: 283 year: 2015 ident: 10.1016/j.buildenv.2019.01.055_bib7 article-title: A study of adaptive thermal comfort in a well-controlled climate chamber publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2014.11.004 – volume: 67 start-page: 129 year: 2013 ident: 10.1016/j.buildenv.2019.01.055_bib30 article-title: PMV–PPD and acceptability in naturally ventilated schools publication-title: Build. Environ. doi: 10.1016/j.buildenv.2013.05.013 – volume: 23 start-page: 105 year: 1995 ident: 10.1016/j.buildenv.2019.01.055_bib39 article-title: Predicted and reported thermal sensation in climate chambers, offices and homes publication-title: Energy Build. doi: 10.1016/0378-7788(95)00934-5 – volume: 15 start-page: 765 year: 2010 ident: 10.1016/j.buildenv.2019.01.055_bib15 article-title: Thermal comfort research and practice publication-title: Front. Biosci. doi: 10.2741/3645 – volume: 45 start-page: 2562 year: 2010 ident: 10.1016/j.buildenv.2019.01.055_bib33 article-title: Thermal comfort in naturally ventilated buildings in hot-humid area of China publication-title: Build. Environ. doi: 10.1016/j.buildenv.2010.05.024 – volume: 129 start-page: 96 year: 2018 ident: 10.1016/j.buildenv.2019.01.055_bib45 article-title: Personal comfort models: predicting individuals' thermal preference using occupant heating and cooling behavior and machine learning publication-title: Build. Environ. doi: 10.1016/j.buildenv.2017.12.011 – volume: 127 start-page: 13 year: 2018 ident: 10.1016/j.buildenv.2019.01.055_bib16 article-title: Thermal comfort expectations and adaptive behavioural characteristics of primary and secondary school students publication-title: Build. Environ. doi: 10.1016/j.buildenv.2017.10.031 – year: 1970 ident: 10.1016/j.buildenv.2019.01.055_bib1 – volume: 44 start-page: 349 year: 2014 ident: 10.1016/j.buildenv.2019.01.055_bib9 article-title: PMV model is insufficient to capture subjective thermal response from Indians publication-title: Int. J. Ind. Ergon. doi: 10.1016/j.ergon.2014.01.005 – volume: 45 start-page: 1225 year: 2010 ident: 10.1016/j.buildenv.2019.01.055_bib23 article-title: Thermal acceptability assessment in buildings located in hot and humid regions in Brazil, Build publication-title: Environ. Times – volume: 40 start-page: 1954 year: 2008 ident: 10.1016/j.buildenv.2019.01.055_bib38 article-title: Energy saving and improved comfort by increased air movement publication-title: Energy Build. doi: 10.1016/j.enbuild.2008.05.001 – year: 2007 ident: 10.1016/j.buildenv.2019.01.055_bib4 – volume: 1 start-page: 174 year: 1973 ident: 10.1016/j.buildenv.2019.01.055_bib21 article-title: Thermal comfort as part of a self-regulating system publication-title: Build. Res. Pract. doi: 10.1080/09613217308550237 – volume: 44 start-page: 1128 year: 2009 ident: 10.1016/j.buildenv.2019.01.055_bib41 article-title: Thermal perceptions, general adaptation methods and occupant's idea about the trade-off between thermal comfort and energy saving in hot–humid regions publication-title: Build. Environ. doi: 10.1016/j.buildenv.2008.08.001 – volume: 106 start-page: 485 year: 2000 ident: 10.1016/j.buildenv.2019.01.055_bib29 article-title: Outdoor temperature and indoor thermal comfort: raising the precision of the relationship for the 1998 ASHRAE database of field studies publication-title: ASHRAE Trans. Atlanta. – volume: 64 start-page: 94 year: 2013 ident: 10.1016/j.buildenv.2019.01.055_bib20 article-title: Field studies on human thermal comfort — an overview publication-title: Build. Environ. doi: 10.1016/j.buildenv.2013.02.015 – volume: 158 start-page: 1475 year: 2018 ident: 10.1016/j.buildenv.2019.01.055_bib25 article-title: Field study of mixed-mode office buildings in Southern Brazil using an adaptive thermal comfort framework publication-title: Energy Build. doi: 10.1016/j.enbuild.2017.11.047 – volume: 6 year: 1978 ident: 10.1016/j.buildenv.2019.01.055_bib28 article-title: Outdoor temperatures and comfort indoors publication-title: Batiment Int. Build. Res. Pract. – volume: 92 start-page: 200 year: 2015 ident: 10.1016/j.buildenv.2019.01.055_bib31 article-title: Comparative analysis of modified PMV models and SET models to predict human thermal sensation in naturally ventilated building publication-title: Build. Environ. doi: 10.1016/j.buildenv.2015.04.030 – volume: 158 start-page: 1296 year: 2018 ident: 10.1016/j.buildenv.2019.01.055_bib43 article-title: Residential adaptive comfort in a humid subtropical climate—sydney Australia publication-title: Energy Build. doi: 10.1016/j.enbuild.2017.11.028 – volume: 107 start-page: 252 year: 2012 ident: 10.1016/j.buildenv.2019.01.055_bib10 article-title: The influence of local effects on thermal sensation under non-uniform environmental conditions — gender differences in thermophysiology, thermal comfort and productivity during convective and radiant cooling publication-title: Physiol. Behav. doi: 10.1016/j.physbeh.2012.07.008 – volume: 105 start-page: 178 year: 2015 ident: 10.1016/j.buildenv.2019.01.055_bib34 article-title: A review of human thermal comfort in the built environment publication-title: Energy Build. doi: 10.1016/j.enbuild.2015.07.047 – volume: 36 start-page: 614 year: 2004 ident: 10.1016/j.buildenv.2019.01.055_bib27 article-title: Thermal comfort for naturally ventilated houses in Indonesia publication-title: Energy Build. doi: 10.1016/j.enbuild.2004.01.011 – year: 2017 ident: 10.1016/j.buildenv.2019.01.055_bib3 – volume: 94 start-page: 1371 issue: Part 1 year: 1988 ident: 10.1016/j.buildenv.2019.01.055_bib8 article-title: Evaluation of the physiological bases of thermal comfort models publication-title: ASHRAE Transact. – volume: 104 start-page: 145 year: 1998 ident: 10.1016/j.buildenv.2019.01.055_bib40 article-title: Developing an adaptive model of thermal comfort and preference publication-title: ASHRAE Transact. – volume: 18 start-page: 182 year: 2008 ident: 10.1016/j.buildenv.2019.01.055_bib2 article-title: Forty years of Fanger's model of thermal comfort: comfort for all? publication-title: Indoor Air doi: 10.1111/j.1600-0668.2007.00516.x – volume: 118 start-page: 273 year: 2017 ident: 10.1016/j.buildenv.2019.01.055_bib13 article-title: Study on adaptive thermal comfort in Japanese offices under various operation modes publication-title: Build. Environ. doi: 10.1016/j.buildenv.2017.02.023 – volume: 53 start-page: 166 year: 2012 ident: 10.1016/j.buildenv.2019.01.055_bib32 article-title: Naturally ventilated classrooms: an assessment of existing comfort models for predicting the thermal sensation and preference of primary school children publication-title: Energy Build. doi: 10.1016/j.enbuild.2012.06.022 – year: 2006 ident: 10.1016/j.buildenv.2019.01.055_bib37 – volume: 1 start-page: 55 year: 2007 ident: 10.1016/j.buildenv.2019.01.055_bib17 article-title: Field studies of indoor thermal comfort and the progress of the adaptive approach publication-title: Adv. Build. Energy Res. doi: 10.1080/17512549.2007.9687269 – volume: 44 start-page: 948 year: 2009 ident: 10.1016/j.buildenv.2019.01.055_bib42 article-title: Thermal comfort in residential buildings – failure to predict by Standard model publication-title: Build. Environ. doi: 10.1016/j.buildenv.2008.06.011 – volume: 82 start-page: 171 year: 2014 ident: 10.1016/j.buildenv.2019.01.055_bib14 article-title: Bayesian thermal comfort model publication-title: Build. Environ. doi: 10.1016/j.buildenv.2014.08.018 – year: 1997 ident: 10.1016/j.buildenv.2019.01.055_bib12 – volume: 142 start-page: 502 year: 2018 ident: 10.1016/j.buildenv.2019.01.055_bib35 article-title: Development of the ASHRAE global thermal comfort database II publication-title: Build. Environ. doi: 10.1016/j.buildenv.2018.06.022 – volume: 34 start-page: 667 year: 2002 ident: 10.1016/j.buildenv.2019.01.055_bib6 article-title: The validity of ISO-PMV for predicting comfort votes in every-day thermal environments publication-title: Energy Build. doi: 10.1016/S0378-7788(02)00018-X – volume: 14 start-page: 18 year: 2004 ident: 10.1016/j.buildenv.2019.01.055_bib26 article-title: International standards for the indoor environment publication-title: Indoor Air doi: 10.1111/j.1600-0668.2004.00268.x |
| SSID | ssj0016934 |
| Score | 2.677991 |
| Snippet | The predicted mean vote (PMV) and predicted percentage of dissatisfied (PPD) are the most widely used thermal comfort indices. Yet, their performance remains a... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 205 |
| SubjectTerms | Accuracy Air conditioners Air temperature ASHRAE Global Thermal Comfort Database II Error detection Mathematical models Model accuracy PMV–PPD model Prediction Prediction models Thermal comfort Ventilation |
| Title | Analysis of the accuracy on PMV – PPD model using the ASHRAE Global Thermal Comfort Database II |
| URI | https://dx.doi.org/10.1016/j.buildenv.2019.01.055 https://www.proquest.com/docview/2218301983 |
| Volume | 153 |
| WOSCitedRecordID | wos000461457500018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-684X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016934 issn: 0360-1323 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LjtMwFLWqGRawQDzFwIC8YFcFUrtJ7GUFRRMEo4qWUXdW7MRSRzPJqE2rLvkHfoBv40u4ju0kvDQgxCaKoji17j29PvZ9IfQ8AZKaE5YFmZRJMM4p3CWMBxLAQkc0GZGmWPXZu-T0lC2XfDYYfPG5MLuLpCzZfs-v_quq4Rko26TO_oW624_CA7gHpcMV1A7XP1J8v8yIYZWZUtu1aeoOep69Pxv68AY6nM1e2044w-3GZ01N5icfJtOhbQVg4jHAcJvjhUsgtzVgpM7MujdM0--8wa63duOJ6KXOdbEDhbMpi0q2Z_hzE2a9s17_eV3orKw6h5Y5wnfJYL0YJhM5tLJhxau9B7Y7sxg17hebtWkP0nwyTRe5ZBO4wgA2x9beFdYes4QGMbNBnK3Bjmjf5IZRb_UmNhP0p4XBnlGcv5BGICAIE9THm4KtUdQthW2A4txMxswF-C2wUFPF4JAArsFuHk7S6fJt66mKOXUlyuzke1nov_613xGgH6hAw28Wd9BttzHBEwuou2hQlPfQrV65yvso89DClcYAFuyhhasSA7Tw10-fMYAKN6DCDaia9yyosAUVdqDCDlTYgwqn6QP08c108eokcC06AgVMsA6KOAdKGcch10xrmceMmBKVmo2lpkBmiTK51wnLFU0oGAEdhlJpKZkMI0aigj5EB2VVFo8QjjnJ9FhxzcchrN45YzwjoYLtPAGarPURirzchHL1600blQvhAxXPhZe3MPIW4UiAvI_Qy3bcla3gcu0I7tUiHA-1_FIAmq4de-z1KJxR2Ahi9iHwDqOP_-HTT9DN7r90jA7q9bZ4im6oXb3arJ85XH4DPCq2zg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+the+accuracy+on+PMV+%E2%80%93+PPD+model+using+the+ASHRAE+Global+Thermal+Comfort+Database+II&rft.jtitle=Building+and+environment&rft.au=Cheung%2C+Toby&rft.au=Schiavon%2C+Stefano&rft.au=Parkinson%2C+Thomas&rft.au=Li%2C+Peixian&rft.date=2019-04-15&rft.pub=Elsevier+Ltd&rft.issn=0360-1323&rft.eissn=1873-684X&rft.volume=153&rft.spage=205&rft.epage=217&rft_id=info:doi/10.1016%2Fj.buildenv.2019.01.055&rft.externalDocID=S0360132319300915 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-1323&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-1323&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-1323&client=summon |