Mapping between Spin-Glass Three-Dimensional (3D) Ising Model and Boolean Satisfiability Problem

The common feature for a nontrivial hard problem is the existence of nontrivial topological structures, non-planarity graphs, nonlocalities, or long-range spin entanglements in a model system with randomness. For instance, the Boolean satisfiability (K-SAT) problems for K ≥ 3 MSATK≥3  are nontrivial...

Full description

Saved in:
Bibliographic Details
Published in:Mathematics (Basel) Vol. 11; no. 1; p. 237
Main Author: Zhang, Zhidong
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.01.2023
Subjects:
ISSN:2227-7390, 2227-7390
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The common feature for a nontrivial hard problem is the existence of nontrivial topological structures, non-planarity graphs, nonlocalities, or long-range spin entanglements in a model system with randomness. For instance, the Boolean satisfiability (K-SAT) problems for K ≥ 3 MSATK≥3  are nontrivial, due to the existence of non-planarity graphs, nonlocalities, and the randomness. In this work, the relation between a spin-glass three-dimensional (3D) Ising model  MSGI3D  with the lattice size N = mnl and the K-SAT problems is investigated in detail. With the Clifford algebra representation, it is easy to reveal the existence of the long-range entanglements between Ising spins in the spin-glass 3D Ising lattice. The internal factors in the transfer matrices of the spin-glass 3D Ising model lead to the nontrivial topological structures and the nonlocalities. At first, we prove that the absolute minimum core (AMC) model MAMC3D exists in the spin-glass 3D Ising model, which is defined as a spin-glass 2D Ising model interacting with its nearest neighboring plane. Any algorithms, which use any approximations and/or break the long-range spin entanglements of the AMC model, cannot result in the exact solution of the spin-glass 3D Ising model. Second, we prove that the dual transformation between the spin-glass 3D Ising model and the spin-glass 3D Z2 lattice gauge model shows that it can be mapped to a K-SAT problem for K ≥ 4 also in the consideration of random interactions and frustrations. Third, we prove that the AMC model is equivalent to the K-SAT problem for K = 3. Because the lower bound of the computational complexity of the spin-glass 3D Ising model CLMSGI3D  is the computational complexity by brute force search of the AMC model CUMAMC3D, the lower bound of the computational complexity of the K-SAT problem for K ≥ 4 CLMSATK≥4  is the computational complexity by brute force search of the K-SAT problem for K = 3  CUMSATK=3. Namely, CLMSATK≥4=CLMSGI3D≥CUMAMC3D=CUMSATK=3. All of them are in subexponential and superpolynomial. Therefore, the computational complexity of the K-SAT problem for K ≥ 4 cannot be reduced to that of the K-SAT problem for K < 3.
AbstractList The common feature for a nontrivial hard problem is the existence of nontrivial topological structures, non-planarity graphs, nonlocalities, or long-range spin entanglements in a model system with randomness. For instance, the Boolean satisfiability (K-SAT) problems for K ≥ 3 MSATK≥3  are nontrivial, due to the existence of non-planarity graphs, nonlocalities, and the randomness. In this work, the relation between a spin-glass three-dimensional (3D) Ising model  MSGI3D  with the lattice size N = mnl and the K-SAT problems is investigated in detail. With the Clifford algebra representation, it is easy to reveal the existence of the long-range entanglements between Ising spins in the spin-glass 3D Ising lattice. The internal factors in the transfer matrices of the spin-glass 3D Ising model lead to the nontrivial topological structures and the nonlocalities. At first, we prove that the absolute minimum core (AMC) model MAMC3D exists in the spin-glass 3D Ising model, which is defined as a spin-glass 2D Ising model interacting with its nearest neighboring plane. Any algorithms, which use any approximations and/or break the long-range spin entanglements of the AMC model, cannot result in the exact solution of the spin-glass 3D Ising model. Second, we prove that the dual transformation between the spin-glass 3D Ising model and the spin-glass 3D Z2 lattice gauge model shows that it can be mapped to a K-SAT problem for K ≥ 4 also in the consideration of random interactions and frustrations. Third, we prove that the AMC model is equivalent to the K-SAT problem for K = 3. Because the lower bound of the computational complexity of the spin-glass 3D Ising model CLMSGI3D  is the computational complexity by brute force search of the AMC model CUMAMC3D, the lower bound of the computational complexity of the K-SAT problem for K ≥ 4 CLMSATK≥4  is the computational complexity by brute force search of the K-SAT problem for K = 3  CUMSATK=3. Namely, CLMSATK≥4=CLMSGI3D≥CUMAMC3D=CUMSATK=3. All of them are in subexponential and superpolynomial. Therefore, the computational complexity of the K-SAT problem for K ≥ 4 cannot be reduced to that of the K-SAT problem for K < 3.
The common feature for a nontrivial hard problem is the existence of nontrivial topological structures, non-planarity graphs, nonlocalities, or long-range spin entanglements in a model system with randomness. For instance, the Boolean satisfiability (K-SAT) problems for K ≥ 3 MSATK≥3 are nontrivial, due to the existence of non-planarity graphs, nonlocalities, and the randomness. In this work, the relation between a spin-glass three-dimensional (3D) Ising model MSGI3D with the lattice size N = mnl and the K-SAT problems is investigated in detail. With the Clifford algebra representation, it is easy to reveal the existence of the long-range entanglements between Ising spins in the spin-glass 3D Ising lattice. The internal factors in the transfer matrices of the spin-glass 3D Ising model lead to the nontrivial topological structures and the nonlocalities. At first, we prove that the absolute minimum core (AMC) model MAMC3D exists in the spin-glass 3D Ising model, which is defined as a spin-glass 2D Ising model interacting with its nearest neighboring plane. Any algorithms, which use any approximations and/or break the long-range spin entanglements of the AMC model, cannot result in the exact solution of the spin-glass 3D Ising model. Second, we prove that the dual transformation between the spin-glass 3D Ising model and the spin-glass 3D Z2 lattice gauge model shows that it can be mapped to a K-SAT problem for K ≥ 4 also in the consideration of random interactions and frustrations. Third, we prove that the AMC model is equivalent to the K-SAT problem for K = 3. Because the lower bound of the computational complexity of the spin-glass 3D Ising model CLMSGI3D is the computational complexity by brute force search of the AMC model CUMAMC3D, the lower bound of the computational complexity of the K-SAT problem for K ≥ 4 CLMSATK≥4 is the computational complexity by brute force search of the K-SAT problem for K = 3 CUMSATK=3. Namely, CLMSATK≥4=CLMSGI3D≥CUMAMC3D=CUMSATK=3. All of them are in subexponential and superpolynomial. Therefore, the computational complexity of the K-SAT problem for K ≥ 4 cannot be reduced to that of the K-SAT problem for K < 3.
The common feature for a nontrivial hard problem is the existence of nontrivial topological structures, non-planarity graphs, nonlocalities, or long-range spin entanglements in a model system with randomness. For instance, the Boolean satisfiability (K-SAT) problems for K ≥ 3 M SAT K ≥3  are nontrivial, due to the existence of non-planarity graphs, nonlocalities, and the randomness. In this work, the relation between a spin-glass three-dimensional (3D) Ising model   M SGI3 D   with the lattice size N = mnl and the K-SAT problems is investigated in detail. With the Clifford algebra representation, it is easy to reveal the existence of the long-range entanglements between Ising spins in the spin-glass 3D Ising lattice. The internal factors in the transfer matrices of the spin-glass 3D Ising model lead to the nontrivial topological structures and the nonlocalities. At first, we prove that the absolute minimum core (AMC) model M AMC3 D exists in the spin-glass 3D Ising model, which is defined as a spin-glass 2D Ising model interacting with its nearest neighboring plane. Any algorithms, which use any approximations and/or break the long-range spin entanglements of the AMC model, cannot result in the exact solution of the spin-glass 3D Ising model. Second, we prove that the dual transformation between the spin-glass 3D Ising model and the spin-glass 3D Z2 lattice gauge model shows that it can be mapped to a K-SAT problem for K ≥ 4 also in the consideration of random interactions and frustrations. Third, we prove that the AMC model is equivalent to the K-SAT problem for K = 3. Because the lower bound of the computational complexity of the spin-glass 3D Ising model C L M SGI3 D   is the computational complexity by brute force search of the AMC model C U M AMC3 D , the lower bound of the computational complexity of the K-SAT problem for K ≥ 4 C L M SAT K ≥4  is the computational complexity by brute force search of the K-SAT problem for K = 3   C U M SAT K =3 . Namely, C L M SAT K ≥4= C L M SGI3 D ≥ C U M AMC3 D = C U M SAT K =3 . All of them are in subexponential and superpolynomial. Therefore, the computational complexity of the K-SAT problem for K ≥ 4 cannot be reduced to that of the K-SAT problem for K < 3.
The common feature for a nontrivial hard problem is the existence of nontrivial topological structures, non-planarity graphs, nonlocalities, or long-range spin entanglements in a model system with randomness. For instance, the Boolean satisfiability (K-SAT) problems for K ≥ 3 M[sub.SAT] [sup.K≥3] are nontrivial, due to the existence of non-planarity graphs, nonlocalities, and the randomness. In this work, the relation between a spin-glass three-dimensional (3D) Ising model M[sub.SGI] [sup.3D] with the lattice size N = mnl and the K-SAT problems is investigated in detail. With the Clifford algebra representation, it is easy to reveal the existence of the long-range entanglements between Ising spins in the spin-glass 3D Ising lattice. The internal factors in the transfer matrices of the spin-glass 3D Ising model lead to the nontrivial topological structures and the nonlocalities. At first, we prove that the absolute minimum core (AMC) model M[sub.AMC] [sup.3D] exists in the spin-glass 3D Ising model, which is defined as a spin-glass 2D Ising model interacting with its nearest neighboring plane. Any algorithms, which use any approximations and/or break the long-range spin entanglements of the AMC model, cannot result in the exact solution of the spin-glass 3D Ising model. Second, we prove that the dual transformation between the spin-glass 3D Ising model and the spin-glass 3D Z[sub.2] lattice gauge model shows that it can be mapped to a K-SAT problem for K ≥ 4 also in the consideration of random interactions and frustrations. Third, we prove that the AMC model is equivalent to the K-SAT problem for K = 3. Because the lower bound of the computational complexity of the spin-glass 3D Ising model C[sub.L](M[sub.SGI] [sup.3D]) is the computational complexity by brute force search of the AMC model C[sup.U](M[sub.AMC] [sup.3D]), the lower bound of the computational complexity of the K-SAT problem for K ≥ 4 C[sub.L](M[sub.SAT] [sup.K≥4]) is the computational complexity by brute force search of the K-SAT problem for K = 3 C[sup.U](M[sub.SAT] [sup.K=3]). Namely, C[sub.L](M[sub.SAT] [sup.K≥4])=C[sub.L](M[sub.SGI] [sup.3D])≥C[sup.U](M[sub.AMC] [sup.3D])=C[sup.U](M[sub.SAT] [sup.K=3]). All of them are in subexponential and superpolynomial. Therefore, the computational complexity of the K-SAT problem for K ≥ 4 cannot be reduced to that of the K-SAT problem for K < 3.
Audience Academic
Author Zhang, Zhidong
Author_xml – sequence: 1
  givenname: Zhidong
  orcidid: 0000-0002-6203-0171
  surname: Zhang
  fullname: Zhang, Zhidong
BookMark eNptUV1rFTEQDVLBWvvmD1jwRcGt-drN3sfa2nqhRcH6HCfZyW0u2eSapEj_vWmvSBEzgSQz55wJc16Sg5giEvKa0RMhVvTDAvWWMcooF-oZOeScq161wsGT-wtyXMqWtrViYpKrQ_LjGnY7HzedwfoLMXbf2qu_DFBKd3ObEftzv2AsPkUI3Vtx_q5blwf8dZoxdBDn7mNKAaExofriPBgffL3vvuZkAi6vyHMHoeDxn_OIfL_4dHP2ub_6crk-O73qraRj7XFwhoIwg7ScG8nVYBgMuHIoRqoETspQpIPhAyqrpAWGKNG2bRwXxogjst7rzgm2epf9AvleJ_D6MZHyRkOu3gbU0golpUMF4yQnxQFhNoOZx0HMxlDXtN7stXY5_bzDUvU23eU2gKK5Ghmb1ChZQ53sURtooj66VDPYFjMu3jZznG_5UyX5NPHGaYT3e4LNqZSM7u83GdUPHuqnHjY4_wdufW0zTrH18eH_pN-8GqFN
CitedBy_id crossref_primary_10_1016_j_cjph_2023_12_023
crossref_primary_10_1063_5_0195464
crossref_primary_10_1016_j_physb_2023_415084
crossref_primary_10_1016_j_cjph_2024_05_021
crossref_primary_10_1063_5_0216656
crossref_primary_10_1088_1402_4896_ad6f55
crossref_primary_10_3934_math_2025538
crossref_primary_10_1088_1402_4896_accfd1
crossref_primary_10_1103_PhysRevE_110_065306
crossref_primary_10_1016_j_physa_2024_129817
crossref_primary_10_1088_1402_4896_addb13
Cites_doi 10.1016/0022-0000(88)90039-6
10.3390/math9222936
10.1088/0305-4470/15/10/028
10.1023/A:1022885828956
10.1063/1.1665530
10.1103/PhysRevLett.81.4281
10.1038/nature16961
10.1007/BF01213466
10.3390/sym14020323
10.1103/PhysRev.76.1232
10.1103/RevModPhys.58.801
10.1103/PhysRev.65.117
10.1103/PhysRevB.17.4384
10.1007/s00006-012-0360-6
10.1007/s00006-018-0923-2
10.1089/cmb.1998.5.27
10.1088/1674-1056/22/3/030513
10.1103/PhysRevE.63.026702
10.1103/PhysRevE.56.1357
10.1103/PhysRevLett.35.1792
10.1088/0305-4470/15/2/033
10.1007/BF00289116
10.1016/0022-0000(80)90060-4
10.1007/BF02592948
10.1103/PhysRevLett.76.3881
10.1016/0304-3975(80)90009-2
10.1007/s00006-010-0219-7
10.1016/S0005-1098(00)00050-9
10.1016/0166-218X(84)90081-7
10.1080/14786430701646325
10.1088/0305-4608/5/5/017
10.1103/RevModPhys.52.453
10.1103/PhysRevE.66.056126
10.1103/PhysRev.60.252
10.3390/math9070776
10.1088/1742-6596/827/1/012001
10.1080/14786430902776970
10.1142/S0218127412300030
10.1007/BF02980577
10.1016/j.jmst.2019.12.009
10.3390/s20236979
10.1103/PhysRevLett.94.197205
10.1016/j.physe.2021.114632
10.1142/0271
10.1103/RevModPhys.51.659
10.1016/0304-3975(87)90083-1
10.1016/S0166-218X(03)00333-0
10.1007/s100510051065
10.1016/0304-3975(77)90012-3
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOA
DOI 10.3390/math11010237
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central Database Suite (ProQuest)
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database (ProQuest)
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList CrossRef
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
Physics
EISSN 2227-7390
ExternalDocumentID oai_doaj_org_article_4c3744fe7a684872aeadb5bd653dbb0f
A742882187
10_3390_math11010237
GroupedDBID -~X
5VS
85S
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABPPZ
ABUWG
ACIPV
ACIWK
ADBBV
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ITC
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
RNS
3V.
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c406t-e5fb0a3b54c22b4275b1a5e9fe36073e87b0e05b25e7c74ca1ee4ec4ecbf23bb3
IEDL.DBID DOA
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000919443600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2227-7390
IngestDate Tue Oct 14 19:05:52 EDT 2025
Fri Jul 25 12:05:58 EDT 2025
Tue Nov 04 18:10:04 EST 2025
Sat Nov 29 07:10:00 EST 2025
Tue Nov 18 22:21:10 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-e5fb0a3b54c22b4275b1a5e9fe36073e87b0e05b25e7c74ca1ee4ec4ecbf23bb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6203-0171
OpenAccessLink https://doaj.org/article/4c3744fe7a684872aeadb5bd653dbb0f
PQID 2761187641
PQPubID 2032364
ParticipantIDs doaj_primary_oai_doaj_org_article_4c3744fe7a684872aeadb5bd653dbb0f
proquest_journals_2761187641
gale_infotracacademiconefile_A742882187
crossref_primary_10_3390_math11010237
crossref_citationtrail_10_3390_math11010237
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Mathematics (Basel)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Ising (ref_1) 1925; 31
Zhang (ref_3) 2007; 87
ref_58
ref_57
ref_56
Weigt (ref_41) 2001; 63
ref_52
Kogut (ref_54) 1979; 51
ref_16
Marchiafava (ref_9) 2010; 20
Suzuki (ref_10) 2012; 22
Kramers (ref_59) 1941; 60
Papadimitriou (ref_26) 1977; 4
Mora (ref_37) 2005; 94
Monasson (ref_40) 1997; 56
Peeters (ref_29) 2003; 131
Kfivfinek (ref_21) 1986; 23
Kirkpatrick (ref_45) 1978; 17
Mundici (ref_24) 1987; 52
Poljak (ref_30) 1993; 6
Onsager (ref_2) 1944; 65
Lou (ref_49) 2000; 38
ref_28
ref_27
Fortune (ref_20) 1980; 10
Franz (ref_36) 2003; 111
Zhang (ref_15) 2020; 44
Tovey (ref_31) 1984; 8
Silver (ref_14) 2016; 529
Berger (ref_18) 1998; 5
ref_34
Binder (ref_43) 1986; 58
Suzuki (ref_12) 2012; 29
Sherrington (ref_46) 1975; 35
Zhang (ref_42) 2021; 128
Zhang (ref_8) 2017; 827
ref_38
Edwards (ref_44) 1975; 5
Barahona (ref_33) 1982; 15
Biroli (ref_35) 2000; 14
Wegner (ref_13) 1971; 12
Lewis (ref_23) 1980; 20
Monasson (ref_53) 1996; 76
Savit (ref_55) 1980; 52
Blondel (ref_19) 2000; 36
Mertens (ref_51) 1998; 81
Zecchina (ref_39) 2002; 66
ref_47
Zhang (ref_7) 2013; 22
Levin (ref_17) 1973; 9
Murty (ref_25) 1987; 39
Zhang (ref_4) 2019; 29
Krentel (ref_22) 1988; 36
Kaufman (ref_48) 1949; 76
ref_5
Suzuki (ref_11) 2012; 22
Perk (ref_50) 2009; 89
Barahona (ref_32) 1982; 15
ref_6
References_xml – volume: 36
  start-page: 490
  year: 1988
  ident: ref_22
  article-title: The complexity of optimization problems
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1016/0022-0000(88)90039-6
– ident: ref_6
  doi: 10.3390/math9222936
– volume: 15
  start-page: 3241
  year: 1982
  ident: ref_32
  article-title: On the computational complexity of Ising spin glass models
  publication-title: J. Phys. A
  doi: 10.1088/0305-4470/15/10/028
– ident: ref_16
– volume: 111
  start-page: 535
  year: 2003
  ident: ref_36
  article-title: Replica bounds for optimization problems and diluted spin systems
  publication-title: J. Stat. Phys.
  doi: 10.1023/A:1022885828956
– volume: 12
  start-page: 2259
  year: 1971
  ident: ref_13
  article-title: Duality in generalized Ising models and phase transitions without local order parameters
  publication-title: J. Math. Phys.
  doi: 10.1063/1.1665530
– volume: 81
  start-page: 4281
  year: 1998
  ident: ref_51
  article-title: Phase transition in the number partitioning problem
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.81.4281
– volume: 529
  start-page: 484
  year: 2016
  ident: ref_14
  article-title: Mastering the game of Go with deep neural networks and tree search
  publication-title: Nature
  doi: 10.1038/nature16961
– volume: 6
  start-page: 1
  year: 1993
  ident: ref_30
  article-title: Checking robust nonsingularity is NP-hard
  publication-title: Math. Control Signals Syst.
  doi: 10.1007/BF01213466
– volume: 29
  start-page: 45
  year: 2012
  ident: ref_12
  article-title: Fractals and chaos related to Ising-Onsager-Zhang lattices. Quaternary Approach vs. Ternary Approach
  publication-title: Adv. Appl. Clifford Alg.
– ident: ref_56
  doi: 10.3390/sym14020323
– ident: ref_58
– volume: 76
  start-page: 1232
  year: 1949
  ident: ref_48
  article-title: Crystal Statistics II: Partition function evaluated by spinor analysis
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.76.1232
– volume: 58
  start-page: 801
  year: 1986
  ident: ref_43
  article-title: Spin glasses: Experimental facts, theoretical concepts, and open questions
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.58.801
– volume: 65
  start-page: 117
  year: 1944
  ident: ref_2
  article-title: Crystal statistics I: A two-dimensional model with an order-disorder transition
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.65.117
– volume: 17
  start-page: 4384
  year: 1978
  ident: ref_45
  article-title: Infinite-ranged models of spin-glasses
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.17.4384
– volume: 22
  start-page: 757
  year: 2012
  ident: ref_10
  article-title: On the ternary approach to Clifford structures and Ising lattices
  publication-title: Adv. Appl. Clifford Alg.
  doi: 10.1007/s00006-012-0360-6
– ident: ref_27
– ident: ref_52
– volume: 29
  start-page: 12
  year: 2019
  ident: ref_4
  article-title: Clifford algebra approach of 3D Ising model
  publication-title: Adv. Appl. Clifford Alg.
  doi: 10.1007/s00006-018-0923-2
– volume: 5
  start-page: 27
  year: 1998
  ident: ref_18
  article-title: Protein folding in the hydrophobic-hydrophilic (HP) model is NP-complete
  publication-title: J. Comput. Biol.
  doi: 10.1089/cmb.1998.5.27
– volume: 22
  start-page: 030513
  year: 2013
  ident: ref_7
  article-title: Mathematical structure of the three-dimensional (3D) Ising model
  publication-title: Chin. Phys. B
  doi: 10.1088/1674-1056/22/3/030513
– volume: 63
  start-page: 026702
  year: 2001
  ident: ref_41
  article-title: Simplest random K-satisfiability problem
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.63.026702
– volume: 56
  start-page: 1357
  year: 1997
  ident: ref_40
  article-title: Statistical mechanics of the random K-satisfiability model
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.56.1357
– volume: 35
  start-page: 1792
  year: 1975
  ident: ref_46
  article-title: Solvable model of a spin-glass
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.35.1792
– volume: 15
  start-page: 673
  year: 1982
  ident: ref_33
  article-title: Morphology of ground states of two-dimensional frustration model
  publication-title: J. Phys. A
  doi: 10.1088/0305-4470/15/2/033
– volume: 23
  start-page: 311
  year: 1986
  ident: ref_21
  article-title: NP-hard problems in hierarchical-tree clustering
  publication-title: Acta Inform.
  doi: 10.1007/BF00289116
– volume: 20
  start-page: 219
  year: 1980
  ident: ref_23
  article-title: The node-deletion problem for hereditary properties is NP-complete
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1016/0022-0000(80)90060-4
– volume: 39
  start-page: 117
  year: 1987
  ident: ref_25
  article-title: Some NP-complete problems in quadratic and nonlinear programming
  publication-title: Math. Program.
  doi: 10.1007/BF02592948
– volume: 76
  start-page: 3881
  year: 1996
  ident: ref_53
  article-title: Entropy of the K-satisfiability problem
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.76.3881
– volume: 10
  start-page: 11l
  year: 1980
  ident: ref_20
  article-title: The directed subgraph homeomorphism problem
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/0304-3975(80)90009-2
– volume: 20
  start-page: 733
  year: 2010
  ident: ref_9
  article-title: An approach to models of order-disorder and Ising lattices
  publication-title: Adv. Appl. Clifford Alg.
  doi: 10.1007/s00006-010-0219-7
– ident: ref_34
– volume: 36
  start-page: 1249
  year: 2000
  ident: ref_19
  article-title: A survey of computational complexity results in systems and control
  publication-title: Automatica
  doi: 10.1016/S0005-1098(00)00050-9
– volume: 8
  start-page: 85
  year: 1984
  ident: ref_31
  article-title: A simplified NP-complete satisfiability problem
  publication-title: Discrete Appl. Math.
  doi: 10.1016/0166-218X(84)90081-7
– ident: ref_47
– volume: 87
  start-page: 5309
  year: 2007
  ident: ref_3
  article-title: Conjectures on the exact solution of three-dimensional (3D) simple orthorhombic Ising lattices
  publication-title: Phil. Mag.
  doi: 10.1080/14786430701646325
– volume: 5
  start-page: 965
  year: 1975
  ident: ref_44
  article-title: Theory of spin glasses
  publication-title: J. Phys. F Met. Phys.
  doi: 10.1088/0305-4608/5/5/017
– volume: 52
  start-page: 453
  year: 1980
  ident: ref_55
  article-title: Duality in field theory and statistical systems
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.52.453
– volume: 66
  start-page: 056126
  year: 2002
  ident: ref_39
  article-title: Random K-satisfiability problem: From an analytic solution to an efficient algorithm
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.66.056126
– volume: 38
  start-page: 841
  year: 2000
  ident: ref_49
  article-title: Three-dimensional Ising model and transfer matrices
  publication-title: Chin. J. Phys.
– volume: 9
  start-page: 115
  year: 1973
  ident: ref_17
  article-title: Universal search problems (Russian: Универсальные задачи перебoра, Universal’nye perebornye zadachi). Problems of Information Transmission (Russian: Прoблемы передачи инфoрмации
  publication-title: Probl. Peredachi Inf.
– volume: 60
  start-page: 252
  year: 1941
  ident: ref_59
  article-title: Statistics of the two-dimensional ferromagnet Part
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.60.252
– ident: ref_5
  doi: 10.3390/math9070776
– volume: 827
  start-page: 012001
  year: 2017
  ident: ref_8
  article-title: The nature of three dimensions: Non-local behavior in the three-dimensional (3D) Ising model
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/827/1/012001
– volume: 89
  start-page: 761
  year: 2009
  ident: ref_50
  article-title: Comment on ‘Conjectures on exact solution of three-dimensional (3D) simple orthorhombic Ising lattices’
  publication-title: Phil. Mag.
  doi: 10.1080/14786430902776970
– volume: 22
  start-page: 1230003
  year: 2012
  ident: ref_11
  article-title: Fractals and chaos related to Ising-Onsager-Zhang lattices versus the Jordan-von Neumann-Wigner procedures. Quaternary approach, Inter
  publication-title: J. Bifurc. Chaos
  doi: 10.1142/S0218127412300030
– volume: 31
  start-page: 253
  year: 1925
  ident: ref_1
  article-title: Beitrag zur Theorie des Ferromagnetismus
  publication-title: Z. Phys.
  doi: 10.1007/BF02980577
– volume: 44
  start-page: 116
  year: 2020
  ident: ref_15
  article-title: Computational complexity of spin-glass three-dimensional (3D) Ising model
  publication-title: J. Mater. Sci. Tech.
  doi: 10.1016/j.jmst.2019.12.009
– ident: ref_28
  doi: 10.3390/s20236979
– volume: 94
  start-page: 197205
  year: 2005
  ident: ref_37
  article-title: Clustering of solutions in the random satisfiability problem
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.94.197205
– volume: 128
  start-page: 114632
  year: 2021
  ident: ref_42
  article-title: Exact solution of two-dimensional (2D) Ising model with a transverse field: A low-dimensional quantum spin system
  publication-title: Phys. E
  doi: 10.1016/j.physe.2021.114632
– ident: ref_38
  doi: 10.1142/0271
– volume: 51
  start-page: 659
  year: 1979
  ident: ref_54
  article-title: An introduction to lattice gauge theory and spin systems
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.51.659
– volume: 52
  start-page: 145
  year: 1987
  ident: ref_24
  article-title: Satisfiability in many-valued sentential logic is NP-complete
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/0304-3975(87)90083-1
– volume: 131
  start-page: 651
  year: 2003
  ident: ref_29
  article-title: The maximum edge biclique problem is NP-complete
  publication-title: Discrete Appl. Math.
  doi: 10.1016/S0166-218X(03)00333-0
– volume: 14
  start-page: 551
  year: 2000
  ident: ref_35
  article-title: A variational description of the ground state structure in random satisfiability problems
  publication-title: Eur. Phys. J. B
  doi: 10.1007/s100510051065
– ident: ref_57
– volume: 4
  start-page: 237
  year: 1977
  ident: ref_26
  article-title: The Euclidean traveling salesman problem is NP-complete
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/0304-3975(77)90012-3
SSID ssj0000913849
Score 2.3299
Snippet The common feature for a nontrivial hard problem is the existence of nontrivial topological structures, non-planarity graphs, nonlocalities, or long-range spin...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 237
SubjectTerms Algebra
Algorithms
Artificial intelligence
Boolean
Boolean satisfiability
Complexity
computational complexity
Computer science
Exact solutions
Food science
Graphs
Ising model
Lower bounds
Machine learning
Magnetic fields
Mathematics
Phase transitions
Physics
Randomness
Spin glasses
spin-glass 3D Ising model
Three dimensional models
Topology
Transfer matrices
Two dimensional models
SummonAdditionalLinks – databaseName: ProQuest Central Database Suite (ProQuest)
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWgBQkOLSwglhbkAwgQspp17Ng5VV3aAoeuVlCk3oztjAvSalN2CxL_vjOJd4FDuSDlkmSiOJoPz0zs9xh7rqAoYrSVUColoSxoUadaC6WNh6AxUZKhI5swk4k9O6unueG2zMsqVzGxC9RNG6lHviex3h6h66rR_sV3QaxR9Hc1U2jcZJuEVIZ2vjk-mkw_rrsshHppVd2veC-xvt_DPPArTnmEWGD-mos6yP7rAnM32xxv_-8477GtnGfyg94w7rMbMB-w7RWHA88uPWB3T9a4rcsBu90tCI3LB-zLiSfkhnOeF3LxT3gm3lGuzU9R_yAOiRegx_Tgr8rD1_wDtR04kavNuJ83fNy2M_D4ZLeB4lsPCP6LT3sKm4fs8_HR6dv3IrMxiIiT_qUAnULhy6BVlDIoaXQYeQ11grLCOAHWhAIKHaQGE42KfgSgIOIRkixDKB-xjXk7h8eM6yZUlbQRrSEpjQLRJix7ygg1YD5WDdmblV5czFDlxJgxc1iykBbdn1ocshdr6YseouMauTGpeC1DwNrdhXZx7rKfOhVLg2YLxlcWaznp0dOCDk2lyyaEIg3ZSzIQR-6PQ4o-72LADyMgLXdgsJ6zmDfh63ZXBuJyXFi639bx5N-3d9gdIrbvmz27bONy8QOeslvxJ2ps8Syb-RWaqgiJ
  priority: 102
  providerName: ProQuest
Title Mapping between Spin-Glass Three-Dimensional (3D) Ising Model and Boolean Satisfiability Problem
URI https://www.proquest.com/docview/2761187641
https://doaj.org/article/4c3744fe7a684872aeadb5bd653dbb0f
Volume 11
WOSCitedRecordID wos000919443600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Computer Science Database (ProQuest)
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: K7-
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: M7S
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: BENPR
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: PIMPY
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEA9SfdAH8at4Wo88KCoSupfvfezZqxa5Y7EV2qeY5CYqHHdyrYIv_u3O7G6P86H4IiwLuzu7m8xMMjNh8hvGnmuoqpy9FVqXIrQHI-pSG6GNi5AMOkoytcUm3Gzmz87qZqvUF-WEdfDAHeP2dVYOvwMuWo_OtYzY9WTS3Bo1T6kqNPtWrt4Kpto5uB4pr-su011hXL-P_t9XNHWEVOD-skEtVP91E3JrZY7usbu9e8gPumbdZzdg-YDdmW6wVS8ess_TSJgKX3ifYsVP8Eq8Iy-Yn6JkQBwSYn-HtsFfqcPX_JgWBDiVPVvwuJzz8Wq1gIhvtlsbvnVQ3b940xWXecQ-HU1O374XfZ0EkdEcXwowJVVRJaOzlElLZ9IoGqgLKIsjGLxLFVQmSQMuO53jCEBDxiMVqVJSu2xnuVrCY8bNPFkrfUY5FW2QIPuCAYnKUAN6SnbA3lxxLuQeRJxqWSwCBhPE57DN5wF7saH-3oFnXEM3JiFsaAjyur2BihB6RQj_UoQBe0kiDDQwsUk59vsLsGMEcRUOHEZaHj0a_N3elZRDP2IvgnSWKq9bPXryP1rzlN2mwvTdYs0e27lc_4Bn7Fb-iXJdD9nN8WTWfBy2SovnD04MKev0hM6_J_i8OZ42538ALab3Tg
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbhMxFL0qKQhYUAggAgW8oAKErE78mMcCoZZQGrWJIhGksnJtz52CFGVKUkD9Kb6R63kEWJRdF0izmRnPw-Pj-_DY5wA8UxhF3qcxV6oouEpR86zINFc6seg0BUrCVWITyXicHh1lkzX42a6FCdMqW5tYGeq89GGMfFtQvt2nrqv6b06_8qAaFf6uthIaNSwO8PwHpWzL18MBte-WEHvvpm_3eaMqwD05rzOOunCRlU4rL4RTItGubzVmBcqY8I5p4iKMtBMaE58ob_uICj1trhDSOUn3vQLrisAedWB9MhxNPq1GdQLLZqqyeoa9lFm0TXHnZ3KxgSEh-cv3VRIBFzmCyrvtbfxv3-U23GriaLZTA_8OrOG8CxutRgVrTFYXbo5WvLTLLlyrJrz65V04HtnATHHCmolq7APt8fchl2BTwjfyQdA9qDlL2As5eMmGYViFBfG4GbPznO2W5QwtXVktEPlSE56fs0kt0XMPPl5K_e9DZ17O8QEwnbs4FqkntBdKUwGfFpTWSY8ZUrwZ9-BViwPjGyr2oAgyM5SSBdSYP1HTg61V6dOaguSCcrsBUqsygTi8OlAuTkxjh4zyMqFuiYmNU8pVhSVL4rTLYy1z56KiB88DIE0wb_RK3jarNKhigSjM7CSUr6YUF9LjNltAmsbuLc1vND789-mncH1_Ojo0h8PxwSO4IagC9cDWJnTOFt_wMVz136n1Fk-aLsbg-LLR-wtNyGhg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB2VFCo4UAhUBArsgQoQWsXZD699QKghDUSlUQSt1JvrXY8LUpSUpID61_h1zNrrAIdy6wHJl9ib2I7ffK1n3wN4pjCKnEtirlRZcpWg5mmZaq60ydFqSpSErcQmzHicHB-nkzX42ayF8W2VjU-sHHUxd36OvCuo3u6R6apetwxtEZPB8M3ZV-4VpPyb1kZOo4bIPl78oPJt-Xo0oGe9I8Rw7_Dtex4UBrijQHbOUZc2yqXVyglhlTDa9nKNaYkyJuxjYmyEkbZCo3FGubyHqNDRZkshrZX0u9dg3Ugqelqw3t8bTz6uZng842ai0rrbXso06lIO-pnCrWdLMH_FwUou4LKgUEW64eb__B_dgdshv2a7tUHchTWctWGz0a5gwZW14dbBiq922YYbVSOsW96Dk4PcM1acstDAxj7RJ_7O1xjskHCPfOD1EGouE_ZCDl6ykZ9uYV5UbsryWcH68_kUc_pmtXDkS02EfsEmtXTPfTi6kvvfgtZsPsMHwHRh41gkjqygVJoGuKSkck86TJHy0LgDrxpMZC5QtHulkGlGpZpHUPYngjqwsxp9VlOTXDKu7-G1GuMJxasd88VpFvxTppw0ZK5o8jihGlbk5GGstkWsZWFtVHbguQdn5t0eXZLLw-oNujFPIJbtGqpjE8oX6XTbDTiz4A-X2W9kPvz34aewQZDNPozG-4_gpqDrr-e7tqF1vviGj-G6-04Pb_EkWBuDk6sG7y_qUXD6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mapping+between+Spin-Glass+Three-Dimensional+Ising+Model+and+Boolean+Satisfiability+Problem&rft.jtitle=Mathematics+%28Basel%29&rft.au=Zhang%2C+Zhidong&rft.date=2023-01-01&rft.pub=MDPI+AG&rft.issn=2227-7390&rft.eissn=2227-7390&rft.volume=11&rft.issue=1&rft_id=info:doi/10.3390%2Fmath11010237&rft.externalDocID=A742882187
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon