Mapping between Spin-Glass Three-Dimensional (3D) Ising Model and Boolean Satisfiability Problem
The common feature for a nontrivial hard problem is the existence of nontrivial topological structures, non-planarity graphs, nonlocalities, or long-range spin entanglements in a model system with randomness. For instance, the Boolean satisfiability (K-SAT) problems for K ≥ 3 MSATK≥3 are nontrivial...
Saved in:
| Published in: | Mathematics (Basel) Vol. 11; no. 1; p. 237 |
|---|---|
| Main Author: | |
| Format: | Journal Article |
| Language: | English |
| Published: |
Basel
MDPI AG
01.01.2023
|
| Subjects: | |
| ISSN: | 2227-7390, 2227-7390 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The common feature for a nontrivial hard problem is the existence of nontrivial topological structures, non-planarity graphs, nonlocalities, or long-range spin entanglements in a model system with randomness. For instance, the Boolean satisfiability (K-SAT) problems for K ≥ 3 MSATK≥3 are nontrivial, due to the existence of non-planarity graphs, nonlocalities, and the randomness. In this work, the relation between a spin-glass three-dimensional (3D) Ising model MSGI3D with the lattice size N = mnl and the K-SAT problems is investigated in detail. With the Clifford algebra representation, it is easy to reveal the existence of the long-range entanglements between Ising spins in the spin-glass 3D Ising lattice. The internal factors in the transfer matrices of the spin-glass 3D Ising model lead to the nontrivial topological structures and the nonlocalities. At first, we prove that the absolute minimum core (AMC) model MAMC3D exists in the spin-glass 3D Ising model, which is defined as a spin-glass 2D Ising model interacting with its nearest neighboring plane. Any algorithms, which use any approximations and/or break the long-range spin entanglements of the AMC model, cannot result in the exact solution of the spin-glass 3D Ising model. Second, we prove that the dual transformation between the spin-glass 3D Ising model and the spin-glass 3D Z2 lattice gauge model shows that it can be mapped to a K-SAT problem for K ≥ 4 also in the consideration of random interactions and frustrations. Third, we prove that the AMC model is equivalent to the K-SAT problem for K = 3. Because the lower bound of the computational complexity of the spin-glass 3D Ising model CLMSGI3D is the computational complexity by brute force search of the AMC model CUMAMC3D, the lower bound of the computational complexity of the K-SAT problem for K ≥ 4 CLMSATK≥4 is the computational complexity by brute force search of the K-SAT problem for K = 3 CUMSATK=3. Namely, CLMSATK≥4=CLMSGI3D≥CUMAMC3D=CUMSATK=3. All of them are in subexponential and superpolynomial. Therefore, the computational complexity of the K-SAT problem for K ≥ 4 cannot be reduced to that of the K-SAT problem for K < 3. |
|---|---|
| AbstractList | The common feature for a nontrivial hard problem is the existence of nontrivial topological structures, non-planarity graphs, nonlocalities, or long-range spin entanglements in a model system with randomness. For instance, the Boolean satisfiability (K-SAT) problems for K ≥ 3 MSATK≥3 are nontrivial, due to the existence of non-planarity graphs, nonlocalities, and the randomness. In this work, the relation between a spin-glass three-dimensional (3D) Ising model MSGI3D with the lattice size N = mnl and the K-SAT problems is investigated in detail. With the Clifford algebra representation, it is easy to reveal the existence of the long-range entanglements between Ising spins in the spin-glass 3D Ising lattice. The internal factors in the transfer matrices of the spin-glass 3D Ising model lead to the nontrivial topological structures and the nonlocalities. At first, we prove that the absolute minimum core (AMC) model MAMC3D exists in the spin-glass 3D Ising model, which is defined as a spin-glass 2D Ising model interacting with its nearest neighboring plane. Any algorithms, which use any approximations and/or break the long-range spin entanglements of the AMC model, cannot result in the exact solution of the spin-glass 3D Ising model. Second, we prove that the dual transformation between the spin-glass 3D Ising model and the spin-glass 3D Z2 lattice gauge model shows that it can be mapped to a K-SAT problem for K ≥ 4 also in the consideration of random interactions and frustrations. Third, we prove that the AMC model is equivalent to the K-SAT problem for K = 3. Because the lower bound of the computational complexity of the spin-glass 3D Ising model CLMSGI3D is the computational complexity by brute force search of the AMC model CUMAMC3D, the lower bound of the computational complexity of the K-SAT problem for K ≥ 4 CLMSATK≥4 is the computational complexity by brute force search of the K-SAT problem for K = 3 CUMSATK=3. Namely, CLMSATK≥4=CLMSGI3D≥CUMAMC3D=CUMSATK=3. All of them are in subexponential and superpolynomial. Therefore, the computational complexity of the K-SAT problem for K ≥ 4 cannot be reduced to that of the K-SAT problem for K < 3. The common feature for a nontrivial hard problem is the existence of nontrivial topological structures, non-planarity graphs, nonlocalities, or long-range spin entanglements in a model system with randomness. For instance, the Boolean satisfiability (K-SAT) problems for K ≥ 3 MSATK≥3 are nontrivial, due to the existence of non-planarity graphs, nonlocalities, and the randomness. In this work, the relation between a spin-glass three-dimensional (3D) Ising model MSGI3D with the lattice size N = mnl and the K-SAT problems is investigated in detail. With the Clifford algebra representation, it is easy to reveal the existence of the long-range entanglements between Ising spins in the spin-glass 3D Ising lattice. The internal factors in the transfer matrices of the spin-glass 3D Ising model lead to the nontrivial topological structures and the nonlocalities. At first, we prove that the absolute minimum core (AMC) model MAMC3D exists in the spin-glass 3D Ising model, which is defined as a spin-glass 2D Ising model interacting with its nearest neighboring plane. Any algorithms, which use any approximations and/or break the long-range spin entanglements of the AMC model, cannot result in the exact solution of the spin-glass 3D Ising model. Second, we prove that the dual transformation between the spin-glass 3D Ising model and the spin-glass 3D Z2 lattice gauge model shows that it can be mapped to a K-SAT problem for K ≥ 4 also in the consideration of random interactions and frustrations. Third, we prove that the AMC model is equivalent to the K-SAT problem for K = 3. Because the lower bound of the computational complexity of the spin-glass 3D Ising model CLMSGI3D is the computational complexity by brute force search of the AMC model CUMAMC3D, the lower bound of the computational complexity of the K-SAT problem for K ≥ 4 CLMSATK≥4 is the computational complexity by brute force search of the K-SAT problem for K = 3 CUMSATK=3. Namely, CLMSATK≥4=CLMSGI3D≥CUMAMC3D=CUMSATK=3. All of them are in subexponential and superpolynomial. Therefore, the computational complexity of the K-SAT problem for K ≥ 4 cannot be reduced to that of the K-SAT problem for K < 3. The common feature for a nontrivial hard problem is the existence of nontrivial topological structures, non-planarity graphs, nonlocalities, or long-range spin entanglements in a model system with randomness. For instance, the Boolean satisfiability (K-SAT) problems for K ≥ 3 M SAT K ≥3 are nontrivial, due to the existence of non-planarity graphs, nonlocalities, and the randomness. In this work, the relation between a spin-glass three-dimensional (3D) Ising model M SGI3 D with the lattice size N = mnl and the K-SAT problems is investigated in detail. With the Clifford algebra representation, it is easy to reveal the existence of the long-range entanglements between Ising spins in the spin-glass 3D Ising lattice. The internal factors in the transfer matrices of the spin-glass 3D Ising model lead to the nontrivial topological structures and the nonlocalities. At first, we prove that the absolute minimum core (AMC) model M AMC3 D exists in the spin-glass 3D Ising model, which is defined as a spin-glass 2D Ising model interacting with its nearest neighboring plane. Any algorithms, which use any approximations and/or break the long-range spin entanglements of the AMC model, cannot result in the exact solution of the spin-glass 3D Ising model. Second, we prove that the dual transformation between the spin-glass 3D Ising model and the spin-glass 3D Z2 lattice gauge model shows that it can be mapped to a K-SAT problem for K ≥ 4 also in the consideration of random interactions and frustrations. Third, we prove that the AMC model is equivalent to the K-SAT problem for K = 3. Because the lower bound of the computational complexity of the spin-glass 3D Ising model C L M SGI3 D is the computational complexity by brute force search of the AMC model C U M AMC3 D , the lower bound of the computational complexity of the K-SAT problem for K ≥ 4 C L M SAT K ≥4 is the computational complexity by brute force search of the K-SAT problem for K = 3 C U M SAT K =3 . Namely, C L M SAT K ≥4= C L M SGI3 D ≥ C U M AMC3 D = C U M SAT K =3 . All of them are in subexponential and superpolynomial. Therefore, the computational complexity of the K-SAT problem for K ≥ 4 cannot be reduced to that of the K-SAT problem for K < 3. The common feature for a nontrivial hard problem is the existence of nontrivial topological structures, non-planarity graphs, nonlocalities, or long-range spin entanglements in a model system with randomness. For instance, the Boolean satisfiability (K-SAT) problems for K ≥ 3 M[sub.SAT] [sup.K≥3] are nontrivial, due to the existence of non-planarity graphs, nonlocalities, and the randomness. In this work, the relation between a spin-glass three-dimensional (3D) Ising model M[sub.SGI] [sup.3D] with the lattice size N = mnl and the K-SAT problems is investigated in detail. With the Clifford algebra representation, it is easy to reveal the existence of the long-range entanglements between Ising spins in the spin-glass 3D Ising lattice. The internal factors in the transfer matrices of the spin-glass 3D Ising model lead to the nontrivial topological structures and the nonlocalities. At first, we prove that the absolute minimum core (AMC) model M[sub.AMC] [sup.3D] exists in the spin-glass 3D Ising model, which is defined as a spin-glass 2D Ising model interacting with its nearest neighboring plane. Any algorithms, which use any approximations and/or break the long-range spin entanglements of the AMC model, cannot result in the exact solution of the spin-glass 3D Ising model. Second, we prove that the dual transformation between the spin-glass 3D Ising model and the spin-glass 3D Z[sub.2] lattice gauge model shows that it can be mapped to a K-SAT problem for K ≥ 4 also in the consideration of random interactions and frustrations. Third, we prove that the AMC model is equivalent to the K-SAT problem for K = 3. Because the lower bound of the computational complexity of the spin-glass 3D Ising model C[sub.L](M[sub.SGI] [sup.3D]) is the computational complexity by brute force search of the AMC model C[sup.U](M[sub.AMC] [sup.3D]), the lower bound of the computational complexity of the K-SAT problem for K ≥ 4 C[sub.L](M[sub.SAT] [sup.K≥4]) is the computational complexity by brute force search of the K-SAT problem for K = 3 C[sup.U](M[sub.SAT] [sup.K=3]). Namely, C[sub.L](M[sub.SAT] [sup.K≥4])=C[sub.L](M[sub.SGI] [sup.3D])≥C[sup.U](M[sub.AMC] [sup.3D])=C[sup.U](M[sub.SAT] [sup.K=3]). All of them are in subexponential and superpolynomial. Therefore, the computational complexity of the K-SAT problem for K ≥ 4 cannot be reduced to that of the K-SAT problem for K < 3. |
| Audience | Academic |
| Author | Zhang, Zhidong |
| Author_xml | – sequence: 1 givenname: Zhidong orcidid: 0000-0002-6203-0171 surname: Zhang fullname: Zhang, Zhidong |
| BookMark | eNptUV1rFTEQDVLBWvvmD1jwRcGt-drN3sfa2nqhRcH6HCfZyW0u2eSapEj_vWmvSBEzgSQz55wJc16Sg5giEvKa0RMhVvTDAvWWMcooF-oZOeScq161wsGT-wtyXMqWtrViYpKrQ_LjGnY7HzedwfoLMXbf2qu_DFBKd3ObEftzv2AsPkUI3Vtx_q5blwf8dZoxdBDn7mNKAaExofriPBgffL3vvuZkAi6vyHMHoeDxn_OIfL_4dHP2ub_6crk-O73qraRj7XFwhoIwg7ScG8nVYBgMuHIoRqoETspQpIPhAyqrpAWGKNG2bRwXxogjst7rzgm2epf9AvleJ_D6MZHyRkOu3gbU0golpUMF4yQnxQFhNoOZx0HMxlDXtN7stXY5_bzDUvU23eU2gKK5Ghmb1ChZQ53sURtooj66VDPYFjMu3jZznG_5UyX5NPHGaYT3e4LNqZSM7u83GdUPHuqnHjY4_wdufW0zTrH18eH_pN-8GqFN |
| CitedBy_id | crossref_primary_10_1016_j_cjph_2023_12_023 crossref_primary_10_1063_5_0195464 crossref_primary_10_1016_j_physb_2023_415084 crossref_primary_10_1016_j_cjph_2024_05_021 crossref_primary_10_1063_5_0216656 crossref_primary_10_1088_1402_4896_ad6f55 crossref_primary_10_3934_math_2025538 crossref_primary_10_1088_1402_4896_accfd1 crossref_primary_10_1103_PhysRevE_110_065306 crossref_primary_10_1016_j_physa_2024_129817 crossref_primary_10_1088_1402_4896_addb13 |
| Cites_doi | 10.1016/0022-0000(88)90039-6 10.3390/math9222936 10.1088/0305-4470/15/10/028 10.1023/A:1022885828956 10.1063/1.1665530 10.1103/PhysRevLett.81.4281 10.1038/nature16961 10.1007/BF01213466 10.3390/sym14020323 10.1103/PhysRev.76.1232 10.1103/RevModPhys.58.801 10.1103/PhysRev.65.117 10.1103/PhysRevB.17.4384 10.1007/s00006-012-0360-6 10.1007/s00006-018-0923-2 10.1089/cmb.1998.5.27 10.1088/1674-1056/22/3/030513 10.1103/PhysRevE.63.026702 10.1103/PhysRevE.56.1357 10.1103/PhysRevLett.35.1792 10.1088/0305-4470/15/2/033 10.1007/BF00289116 10.1016/0022-0000(80)90060-4 10.1007/BF02592948 10.1103/PhysRevLett.76.3881 10.1016/0304-3975(80)90009-2 10.1007/s00006-010-0219-7 10.1016/S0005-1098(00)00050-9 10.1016/0166-218X(84)90081-7 10.1080/14786430701646325 10.1088/0305-4608/5/5/017 10.1103/RevModPhys.52.453 10.1103/PhysRevE.66.056126 10.1103/PhysRev.60.252 10.3390/math9070776 10.1088/1742-6596/827/1/012001 10.1080/14786430902776970 10.1142/S0218127412300030 10.1007/BF02980577 10.1016/j.jmst.2019.12.009 10.3390/s20236979 10.1103/PhysRevLett.94.197205 10.1016/j.physe.2021.114632 10.1142/0271 10.1103/RevModPhys.51.659 10.1016/0304-3975(87)90083-1 10.1016/S0166-218X(03)00333-0 10.1007/s100510051065 10.1016/0304-3975(77)90012-3 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U DOA |
| DOI | 10.3390/math11010237 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Database Suite (ProQuest) ProQuest Technology Collection ProQuest One ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database (ProQuest) Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics Computer Science Physics |
| EISSN | 2227-7390 |
| ExternalDocumentID | oai_doaj_org_article_4c3744fe7a684872aeadb5bd653dbb0f A742882187 10_3390_math11010237 |
| GroupedDBID | -~X 5VS 85S 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ABPPZ ABUWG ACIPV ACIWK ADBBV AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO GNUQQ GROUPED_DOAJ HCIFZ IAO ITC K6V K7- KQ8 L6V M7S MODMG M~E OK1 PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PTHSS RNS 3V. 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D M0N P62 PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c406t-e5fb0a3b54c22b4275b1a5e9fe36073e87b0e05b25e7c74ca1ee4ec4ecbf23bb3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 14 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000919443600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2227-7390 |
| IngestDate | Tue Oct 14 19:05:52 EDT 2025 Fri Jul 25 12:05:58 EDT 2025 Tue Nov 04 18:10:04 EST 2025 Sat Nov 29 07:10:00 EST 2025 Tue Nov 18 22:21:10 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c406t-e5fb0a3b54c22b4275b1a5e9fe36073e87b0e05b25e7c74ca1ee4ec4ecbf23bb3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-6203-0171 |
| OpenAccessLink | https://doaj.org/article/4c3744fe7a684872aeadb5bd653dbb0f |
| PQID | 2761187641 |
| PQPubID | 2032364 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_4c3744fe7a684872aeadb5bd653dbb0f proquest_journals_2761187641 gale_infotracacademiconefile_A742882187 crossref_primary_10_3390_math11010237 crossref_citationtrail_10_3390_math11010237 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-01-01 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Mathematics (Basel) |
| PublicationYear | 2023 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Ising (ref_1) 1925; 31 Zhang (ref_3) 2007; 87 ref_58 ref_57 ref_56 Weigt (ref_41) 2001; 63 ref_52 Kogut (ref_54) 1979; 51 ref_16 Marchiafava (ref_9) 2010; 20 Suzuki (ref_10) 2012; 22 Kramers (ref_59) 1941; 60 Papadimitriou (ref_26) 1977; 4 Mora (ref_37) 2005; 94 Monasson (ref_40) 1997; 56 Peeters (ref_29) 2003; 131 Kfivfinek (ref_21) 1986; 23 Kirkpatrick (ref_45) 1978; 17 Mundici (ref_24) 1987; 52 Poljak (ref_30) 1993; 6 Onsager (ref_2) 1944; 65 Lou (ref_49) 2000; 38 ref_28 ref_27 Fortune (ref_20) 1980; 10 Franz (ref_36) 2003; 111 Zhang (ref_15) 2020; 44 Tovey (ref_31) 1984; 8 Silver (ref_14) 2016; 529 Berger (ref_18) 1998; 5 ref_34 Binder (ref_43) 1986; 58 Suzuki (ref_12) 2012; 29 Sherrington (ref_46) 1975; 35 Zhang (ref_42) 2021; 128 Zhang (ref_8) 2017; 827 ref_38 Edwards (ref_44) 1975; 5 Barahona (ref_33) 1982; 15 Biroli (ref_35) 2000; 14 Wegner (ref_13) 1971; 12 Lewis (ref_23) 1980; 20 Monasson (ref_53) 1996; 76 Savit (ref_55) 1980; 52 Blondel (ref_19) 2000; 36 Mertens (ref_51) 1998; 81 Zecchina (ref_39) 2002; 66 ref_47 Zhang (ref_7) 2013; 22 Levin (ref_17) 1973; 9 Murty (ref_25) 1987; 39 Zhang (ref_4) 2019; 29 Krentel (ref_22) 1988; 36 Kaufman (ref_48) 1949; 76 ref_5 Suzuki (ref_11) 2012; 22 Perk (ref_50) 2009; 89 Barahona (ref_32) 1982; 15 ref_6 |
| References_xml | – volume: 36 start-page: 490 year: 1988 ident: ref_22 article-title: The complexity of optimization problems publication-title: J. Comput. Syst. Sci. doi: 10.1016/0022-0000(88)90039-6 – ident: ref_6 doi: 10.3390/math9222936 – volume: 15 start-page: 3241 year: 1982 ident: ref_32 article-title: On the computational complexity of Ising spin glass models publication-title: J. Phys. A doi: 10.1088/0305-4470/15/10/028 – ident: ref_16 – volume: 111 start-page: 535 year: 2003 ident: ref_36 article-title: Replica bounds for optimization problems and diluted spin systems publication-title: J. Stat. Phys. doi: 10.1023/A:1022885828956 – volume: 12 start-page: 2259 year: 1971 ident: ref_13 article-title: Duality in generalized Ising models and phase transitions without local order parameters publication-title: J. Math. Phys. doi: 10.1063/1.1665530 – volume: 81 start-page: 4281 year: 1998 ident: ref_51 article-title: Phase transition in the number partitioning problem publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.81.4281 – volume: 529 start-page: 484 year: 2016 ident: ref_14 article-title: Mastering the game of Go with deep neural networks and tree search publication-title: Nature doi: 10.1038/nature16961 – volume: 6 start-page: 1 year: 1993 ident: ref_30 article-title: Checking robust nonsingularity is NP-hard publication-title: Math. Control Signals Syst. doi: 10.1007/BF01213466 – volume: 29 start-page: 45 year: 2012 ident: ref_12 article-title: Fractals and chaos related to Ising-Onsager-Zhang lattices. Quaternary Approach vs. Ternary Approach publication-title: Adv. Appl. Clifford Alg. – ident: ref_56 doi: 10.3390/sym14020323 – ident: ref_58 – volume: 76 start-page: 1232 year: 1949 ident: ref_48 article-title: Crystal Statistics II: Partition function evaluated by spinor analysis publication-title: Phys. Rev. doi: 10.1103/PhysRev.76.1232 – volume: 58 start-page: 801 year: 1986 ident: ref_43 article-title: Spin glasses: Experimental facts, theoretical concepts, and open questions publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.58.801 – volume: 65 start-page: 117 year: 1944 ident: ref_2 article-title: Crystal statistics I: A two-dimensional model with an order-disorder transition publication-title: Phys. Rev. doi: 10.1103/PhysRev.65.117 – volume: 17 start-page: 4384 year: 1978 ident: ref_45 article-title: Infinite-ranged models of spin-glasses publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.17.4384 – volume: 22 start-page: 757 year: 2012 ident: ref_10 article-title: On the ternary approach to Clifford structures and Ising lattices publication-title: Adv. Appl. Clifford Alg. doi: 10.1007/s00006-012-0360-6 – ident: ref_27 – ident: ref_52 – volume: 29 start-page: 12 year: 2019 ident: ref_4 article-title: Clifford algebra approach of 3D Ising model publication-title: Adv. Appl. Clifford Alg. doi: 10.1007/s00006-018-0923-2 – volume: 5 start-page: 27 year: 1998 ident: ref_18 article-title: Protein folding in the hydrophobic-hydrophilic (HP) model is NP-complete publication-title: J. Comput. Biol. doi: 10.1089/cmb.1998.5.27 – volume: 22 start-page: 030513 year: 2013 ident: ref_7 article-title: Mathematical structure of the three-dimensional (3D) Ising model publication-title: Chin. Phys. B doi: 10.1088/1674-1056/22/3/030513 – volume: 63 start-page: 026702 year: 2001 ident: ref_41 article-title: Simplest random K-satisfiability problem publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.63.026702 – volume: 56 start-page: 1357 year: 1997 ident: ref_40 article-title: Statistical mechanics of the random K-satisfiability model publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.56.1357 – volume: 35 start-page: 1792 year: 1975 ident: ref_46 article-title: Solvable model of a spin-glass publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.35.1792 – volume: 15 start-page: 673 year: 1982 ident: ref_33 article-title: Morphology of ground states of two-dimensional frustration model publication-title: J. Phys. A doi: 10.1088/0305-4470/15/2/033 – volume: 23 start-page: 311 year: 1986 ident: ref_21 article-title: NP-hard problems in hierarchical-tree clustering publication-title: Acta Inform. doi: 10.1007/BF00289116 – volume: 20 start-page: 219 year: 1980 ident: ref_23 article-title: The node-deletion problem for hereditary properties is NP-complete publication-title: J. Comput. Syst. Sci. doi: 10.1016/0022-0000(80)90060-4 – volume: 39 start-page: 117 year: 1987 ident: ref_25 article-title: Some NP-complete problems in quadratic and nonlinear programming publication-title: Math. Program. doi: 10.1007/BF02592948 – volume: 76 start-page: 3881 year: 1996 ident: ref_53 article-title: Entropy of the K-satisfiability problem publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.76.3881 – volume: 10 start-page: 11l year: 1980 ident: ref_20 article-title: The directed subgraph homeomorphism problem publication-title: Theor. Comput. Sci. doi: 10.1016/0304-3975(80)90009-2 – volume: 20 start-page: 733 year: 2010 ident: ref_9 article-title: An approach to models of order-disorder and Ising lattices publication-title: Adv. Appl. Clifford Alg. doi: 10.1007/s00006-010-0219-7 – ident: ref_34 – volume: 36 start-page: 1249 year: 2000 ident: ref_19 article-title: A survey of computational complexity results in systems and control publication-title: Automatica doi: 10.1016/S0005-1098(00)00050-9 – volume: 8 start-page: 85 year: 1984 ident: ref_31 article-title: A simplified NP-complete satisfiability problem publication-title: Discrete Appl. Math. doi: 10.1016/0166-218X(84)90081-7 – ident: ref_47 – volume: 87 start-page: 5309 year: 2007 ident: ref_3 article-title: Conjectures on the exact solution of three-dimensional (3D) simple orthorhombic Ising lattices publication-title: Phil. Mag. doi: 10.1080/14786430701646325 – volume: 5 start-page: 965 year: 1975 ident: ref_44 article-title: Theory of spin glasses publication-title: J. Phys. F Met. Phys. doi: 10.1088/0305-4608/5/5/017 – volume: 52 start-page: 453 year: 1980 ident: ref_55 article-title: Duality in field theory and statistical systems publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.52.453 – volume: 66 start-page: 056126 year: 2002 ident: ref_39 article-title: Random K-satisfiability problem: From an analytic solution to an efficient algorithm publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.66.056126 – volume: 38 start-page: 841 year: 2000 ident: ref_49 article-title: Three-dimensional Ising model and transfer matrices publication-title: Chin. J. Phys. – volume: 9 start-page: 115 year: 1973 ident: ref_17 article-title: Universal search problems (Russian: Универсальные задачи перебoра, Universal’nye perebornye zadachi). Problems of Information Transmission (Russian: Прoблемы передачи инфoрмации publication-title: Probl. Peredachi Inf. – volume: 60 start-page: 252 year: 1941 ident: ref_59 article-title: Statistics of the two-dimensional ferromagnet Part publication-title: Phys. Rev. doi: 10.1103/PhysRev.60.252 – ident: ref_5 doi: 10.3390/math9070776 – volume: 827 start-page: 012001 year: 2017 ident: ref_8 article-title: The nature of three dimensions: Non-local behavior in the three-dimensional (3D) Ising model publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/827/1/012001 – volume: 89 start-page: 761 year: 2009 ident: ref_50 article-title: Comment on ‘Conjectures on exact solution of three-dimensional (3D) simple orthorhombic Ising lattices’ publication-title: Phil. Mag. doi: 10.1080/14786430902776970 – volume: 22 start-page: 1230003 year: 2012 ident: ref_11 article-title: Fractals and chaos related to Ising-Onsager-Zhang lattices versus the Jordan-von Neumann-Wigner procedures. Quaternary approach, Inter publication-title: J. Bifurc. Chaos doi: 10.1142/S0218127412300030 – volume: 31 start-page: 253 year: 1925 ident: ref_1 article-title: Beitrag zur Theorie des Ferromagnetismus publication-title: Z. Phys. doi: 10.1007/BF02980577 – volume: 44 start-page: 116 year: 2020 ident: ref_15 article-title: Computational complexity of spin-glass three-dimensional (3D) Ising model publication-title: J. Mater. Sci. Tech. doi: 10.1016/j.jmst.2019.12.009 – ident: ref_28 doi: 10.3390/s20236979 – volume: 94 start-page: 197205 year: 2005 ident: ref_37 article-title: Clustering of solutions in the random satisfiability problem publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.94.197205 – volume: 128 start-page: 114632 year: 2021 ident: ref_42 article-title: Exact solution of two-dimensional (2D) Ising model with a transverse field: A low-dimensional quantum spin system publication-title: Phys. E doi: 10.1016/j.physe.2021.114632 – ident: ref_38 doi: 10.1142/0271 – volume: 51 start-page: 659 year: 1979 ident: ref_54 article-title: An introduction to lattice gauge theory and spin systems publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.51.659 – volume: 52 start-page: 145 year: 1987 ident: ref_24 article-title: Satisfiability in many-valued sentential logic is NP-complete publication-title: Theor. Comput. Sci. doi: 10.1016/0304-3975(87)90083-1 – volume: 131 start-page: 651 year: 2003 ident: ref_29 article-title: The maximum edge biclique problem is NP-complete publication-title: Discrete Appl. Math. doi: 10.1016/S0166-218X(03)00333-0 – volume: 14 start-page: 551 year: 2000 ident: ref_35 article-title: A variational description of the ground state structure in random satisfiability problems publication-title: Eur. Phys. J. B doi: 10.1007/s100510051065 – ident: ref_57 – volume: 4 start-page: 237 year: 1977 ident: ref_26 article-title: The Euclidean traveling salesman problem is NP-complete publication-title: Theor. Comput. Sci. doi: 10.1016/0304-3975(77)90012-3 |
| SSID | ssj0000913849 |
| Score | 2.3299 |
| Snippet | The common feature for a nontrivial hard problem is the existence of nontrivial topological structures, non-planarity graphs, nonlocalities, or long-range spin... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 237 |
| SubjectTerms | Algebra Algorithms Artificial intelligence Boolean Boolean satisfiability Complexity computational complexity Computer science Exact solutions Food science Graphs Ising model Lower bounds Machine learning Magnetic fields Mathematics Phase transitions Physics Randomness Spin glasses spin-glass 3D Ising model Three dimensional models Topology Transfer matrices Two dimensional models |
| SummonAdditionalLinks | – databaseName: ProQuest Central Database Suite (ProQuest) dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWgBQkOLSwglhbkAwgQspp17Ng5VV3aAoeuVlCk3oztjAvSalN2CxL_vjOJd4FDuSDlkmSiOJoPz0zs9xh7rqAoYrSVUColoSxoUadaC6WNh6AxUZKhI5swk4k9O6unueG2zMsqVzGxC9RNG6lHviex3h6h66rR_sV3QaxR9Hc1U2jcZJuEVIZ2vjk-mkw_rrsshHppVd2veC-xvt_DPPArTnmEWGD-mos6yP7rAnM32xxv_-8477GtnGfyg94w7rMbMB-w7RWHA88uPWB3T9a4rcsBu90tCI3LB-zLiSfkhnOeF3LxT3gm3lGuzU9R_yAOiRegx_Tgr8rD1_wDtR04kavNuJ83fNy2M_D4ZLeB4lsPCP6LT3sKm4fs8_HR6dv3IrMxiIiT_qUAnULhy6BVlDIoaXQYeQ11grLCOAHWhAIKHaQGE42KfgSgIOIRkixDKB-xjXk7h8eM6yZUlbQRrSEpjQLRJix7ygg1YD5WDdmblV5czFDlxJgxc1iykBbdn1ocshdr6YseouMauTGpeC1DwNrdhXZx7rKfOhVLg2YLxlcWaznp0dOCDk2lyyaEIg3ZSzIQR-6PQ4o-72LADyMgLXdgsJ6zmDfh63ZXBuJyXFi639bx5N-3d9gdIrbvmz27bONy8QOeslvxJ2ps8Syb-RWaqgiJ priority: 102 providerName: ProQuest |
| Title | Mapping between Spin-Glass Three-Dimensional (3D) Ising Model and Boolean Satisfiability Problem |
| URI | https://www.proquest.com/docview/2761187641 https://doaj.org/article/4c3744fe7a684872aeadb5bd653dbb0f |
| Volume | 11 |
| WOSCitedRecordID | wos000919443600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Computer Science Database (ProQuest) customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: K7- dateStart: 20130301 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: M7S dateStart: 20130301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: BENPR dateStart: 20130301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: PIMPY dateStart: 20130301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEA9SfdAH8at4Wo88KCoSupfvfezZqxa5Y7EV2qeY5CYqHHdyrYIv_u3O7G6P86H4IiwLuzu7m8xMMjNh8hvGnmuoqpy9FVqXIrQHI-pSG6GNi5AMOkoytcUm3Gzmz87qZqvUF-WEdfDAHeP2dVYOvwMuWo_OtYzY9WTS3Bo1T6kqNPtWrt4Kpto5uB4pr-su011hXL-P_t9XNHWEVOD-skEtVP91E3JrZY7usbu9e8gPumbdZzdg-YDdmW6wVS8ess_TSJgKX3ifYsVP8Eq8Iy-Yn6JkQBwSYn-HtsFfqcPX_JgWBDiVPVvwuJzz8Wq1gIhvtlsbvnVQ3b940xWXecQ-HU1O374XfZ0EkdEcXwowJVVRJaOzlElLZ9IoGqgLKIsjGLxLFVQmSQMuO53jCEBDxiMVqVJSu2xnuVrCY8bNPFkrfUY5FW2QIPuCAYnKUAN6SnbA3lxxLuQeRJxqWSwCBhPE57DN5wF7saH-3oFnXEM3JiFsaAjyur2BihB6RQj_UoQBe0kiDDQwsUk59vsLsGMEcRUOHEZaHj0a_N3elZRDP2IvgnSWKq9bPXryP1rzlN2mwvTdYs0e27lc_4Bn7Fb-iXJdD9nN8WTWfBy2SovnD04MKev0hM6_J_i8OZ42538ALab3Tg |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbhMxFL0qKQhYUAggAgW8oAKErE78mMcCoZZQGrWJIhGksnJtz52CFGVKUkD9Kb6R63kEWJRdF0izmRnPw-Pj-_DY5wA8UxhF3qcxV6oouEpR86zINFc6seg0BUrCVWITyXicHh1lkzX42a6FCdMqW5tYGeq89GGMfFtQvt2nrqv6b06_8qAaFf6uthIaNSwO8PwHpWzL18MBte-WEHvvpm_3eaMqwD05rzOOunCRlU4rL4RTItGubzVmBcqY8I5p4iKMtBMaE58ob_uICj1trhDSOUn3vQLrisAedWB9MhxNPq1GdQLLZqqyeoa9lFm0TXHnZ3KxgSEh-cv3VRIBFzmCyrvtbfxv3-U23GriaLZTA_8OrOG8CxutRgVrTFYXbo5WvLTLLlyrJrz65V04HtnATHHCmolq7APt8fchl2BTwjfyQdA9qDlL2As5eMmGYViFBfG4GbPznO2W5QwtXVktEPlSE56fs0kt0XMPPl5K_e9DZ17O8QEwnbs4FqkntBdKUwGfFpTWSY8ZUrwZ9-BViwPjGyr2oAgyM5SSBdSYP1HTg61V6dOaguSCcrsBUqsygTi8OlAuTkxjh4zyMqFuiYmNU8pVhSVL4rTLYy1z56KiB88DIE0wb_RK3jarNKhigSjM7CSUr6YUF9LjNltAmsbuLc1vND789-mncH1_Ojo0h8PxwSO4IagC9cDWJnTOFt_wMVz136n1Fk-aLsbg-LLR-wtNyGhg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB2VFCo4UAhUBArsgQoQWsXZD699QKghDUSlUQSt1JvrXY8LUpSUpID61_h1zNrrAIdy6wHJl9ib2I7ffK1n3wN4pjCKnEtirlRZcpWg5mmZaq60ydFqSpSErcQmzHicHB-nkzX42ayF8W2VjU-sHHUxd36OvCuo3u6R6apetwxtEZPB8M3ZV-4VpPyb1kZOo4bIPl78oPJt-Xo0oGe9I8Rw7_Dtex4UBrijQHbOUZc2yqXVyglhlTDa9nKNaYkyJuxjYmyEkbZCo3FGubyHqNDRZkshrZX0u9dg3Ugqelqw3t8bTz6uZng842ai0rrbXso06lIO-pnCrWdLMH_FwUou4LKgUEW64eb__B_dgdshv2a7tUHchTWctWGz0a5gwZW14dbBiq922YYbVSOsW96Dk4PcM1acstDAxj7RJ_7O1xjskHCPfOD1EGouE_ZCDl6ykZ9uYV5UbsryWcH68_kUc_pmtXDkS02EfsEmtXTPfTi6kvvfgtZsPsMHwHRh41gkjqygVJoGuKSkck86TJHy0LgDrxpMZC5QtHulkGlGpZpHUPYngjqwsxp9VlOTXDKu7-G1GuMJxasd88VpFvxTppw0ZK5o8jihGlbk5GGstkWsZWFtVHbguQdn5t0eXZLLw-oNujFPIJbtGqpjE8oX6XTbDTiz4A-X2W9kPvz34aewQZDNPozG-4_gpqDrr-e7tqF1vviGj-G6-04Pb_EkWBuDk6sG7y_qUXD6 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mapping+between+Spin-Glass+Three-Dimensional+Ising+Model+and+Boolean+Satisfiability+Problem&rft.jtitle=Mathematics+%28Basel%29&rft.au=Zhang%2C+Zhidong&rft.date=2023-01-01&rft.pub=MDPI+AG&rft.issn=2227-7390&rft.eissn=2227-7390&rft.volume=11&rft.issue=1&rft_id=info:doi/10.3390%2Fmath11010237&rft.externalDocID=A742882187 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon |