A combined deep learning application for short term load forecasting

An accurate prediction of buildings' load demand is one of the most important issues in smart grid and smart building applications. In this way, an important contribution is made to improving the reliability of the power system, facilitating the integration of renewable energy sources and makin...

Full description

Saved in:
Bibliographic Details
Published in:Alexandria engineering journal Vol. 60; no. 4; pp. 3807 - 3818
Main Authors: Ozer, Ilyas, Efe, Serhat Berat, Ozbay, Harun
Format: Journal Article
Language:English
Published: Elsevier B.V 01.08.2021
Elsevier
Subjects:
ISSN:1110-0168
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract An accurate prediction of buildings' load demand is one of the most important issues in smart grid and smart building applications. In this way, an important contribution is made to improving the reliability of the power system, facilitating the integration of renewable energy sources and making demand response processes more effective. Nowadays, the electricity prediction based on sensor data has become quite common with the increasing popularity of smart meter applications. While such approaches produce very successful results, they often require large amounts of data recorded over long periods of time during the training of machine learning models to make accurate predictions. The fact that smart meter and sensor applications are becoming more widespread in different parts of the world and that the newly constructed buildings and new meters have relatively small historical data is an important constraint for sensor-based approaches. In this article, a cross-correlation based transfer learning approach is proposed on getting data from different parts of the world to obtain more successful predictive results with limited data. Results of application on actual energy system validate the advantages of proposed model.
AbstractList An accurate prediction of buildings' load demand is one of the most important issues in smart grid and smart building applications. In this way, an important contribution is made to improving the reliability of the power system, facilitating the integration of renewable energy sources and making demand response processes more effective. Nowadays, the electricity prediction based on sensor data has become quite common with the increasing popularity of smart meter applications. While such approaches produce very successful results, they often require large amounts of data recorded over long periods of time during the training of machine learning models to make accurate predictions. The fact that smart meter and sensor applications are becoming more widespread in different parts of the world and that the newly constructed buildings and new meters have relatively small historical data is an important constraint for sensor-based approaches. In this article, a cross-correlation based transfer learning approach is proposed on getting data from different parts of the world to obtain more successful predictive results with limited data. Results of application on actual energy system validate the advantages of proposed model.
Author Efe, Serhat Berat
Ozer, Ilyas
Ozbay, Harun
Author_xml – sequence: 1
  givenname: Ilyas
  orcidid: 0000-0003-2112-5497
  surname: Ozer
  fullname: Ozer, Ilyas
  email: iozer@bandirma.edu.tr
  organization: Department of Computer Engineering, Bandirma Onyedi Eylul University, 10200 Balikesir, Turkey
– sequence: 2
  givenname: Serhat Berat
  surname: Efe
  fullname: Efe, Serhat Berat
  email: sefe@bandirma.edu.tr
  organization: Department of Electrical Engineering, Bandirma Onyedi Eylul University, 10200 Balikesir, Turkey
– sequence: 3
  givenname: Harun
  surname: Ozbay
  fullname: Ozbay, Harun
  email: hozbay@bandirma.edu.tr
  organization: Department of Electrical Engineering, Bandirma Onyedi Eylul University, 10200 Balikesir, Turkey
BookMark eNp9kLFu2zAQhjm4QNzED5BNL2CFR4mUjE5G2rQBDGRJZuJ0PLoUZNGgiAJ9-9Jxu3QIFwJHfj_--z6L1RxnFuIeZA0SzMNYI4-1kgpqqWqp5UqsAUBuy2N_IzbLMspydLdrd2Ytvu4riqchzOwqx3yuJsY0h_lY4fk8BcIc4lz5mKrlZ0y5ypxO1RTRXWZMuOTy90588jgtvPl734q3p2-vjz-2h5fvz4_7w5ZaafKWdau4h85LINUNSE2DBIZYDQRDSxrBKD0Y3UpX-nUeDWlmRK87N3hqbsXzNddFHO05hROm3zZisO-DmI4WUw40sVVkenBofANN63vYYctdJ7HRveNB-5LVXbMoxWVJ7C2F_L5tThgmC9JefNrRFp_24tNKZYvPQsJ_5L8mHzFfrgwXPb8CJ7tQ4JnYhWIxl_7hA_oP28uSFQ
CitedBy_id crossref_primary_10_33383_2024_088
crossref_primary_10_1002_2050_7038_13204
crossref_primary_10_1049_tje2_12324
crossref_primary_10_3390_biomimetics8040378
crossref_primary_10_1007_s13246_022_01189_1
crossref_primary_10_1016_j_compeleceng_2021_107479
crossref_primary_10_3390_en18112676
crossref_primary_10_1016_j_energy_2023_128274
crossref_primary_10_1007_s11042_022_13810_2
crossref_primary_10_1016_j_engappai_2025_110980
crossref_primary_10_1016_j_measen_2023_100855
crossref_primary_10_1016_j_aei_2022_101542
crossref_primary_10_1016_j_eswa_2023_121438
crossref_primary_10_1016_j_tsep_2023_102005
crossref_primary_10_1016_j_applthermaleng_2024_122357
crossref_primary_10_1016_j_compeleceng_2025_110718
crossref_primary_10_1049_rpg2_12572
crossref_primary_10_3390_en17215513
crossref_primary_10_1016_j_enbuild_2022_112461
crossref_primary_10_3390_en16165972
crossref_primary_10_32604_cmes_2023_025396
crossref_primary_10_1016_j_prime_2022_100030
crossref_primary_10_1002_cpe_70082
crossref_primary_10_1186_s42162_022_00214_7
crossref_primary_10_1155_2022_1008491
crossref_primary_10_3390_en14227644
crossref_primary_10_1007_s13369_023_07798_6
crossref_primary_10_1016_j_rineng_2023_101109
crossref_primary_10_1007_s11831_024_10155_x
crossref_primary_10_3390_su16177805
crossref_primary_10_1109_ACCESS_2024_3498107
crossref_primary_10_1016_j_segan_2024_101304
crossref_primary_10_1051_e3sconf_202128901015
crossref_primary_10_1016_j_egyr_2023_09_175
crossref_primary_10_1007_s12273_021_0849_9
crossref_primary_10_1007_s40430_023_04042_y
crossref_primary_10_1016_j_jobe_2024_108817
crossref_primary_10_3390_math12203295
crossref_primary_10_1016_j_procs_2023_11_090
crossref_primary_10_1109_ACCESS_2024_3392592
crossref_primary_10_1155_2021_3250732
crossref_primary_10_1080_23311916_2024_2340302
crossref_primary_10_1155_2024_9257508
crossref_primary_10_1007_s13369_024_09905_7
Cites_doi 10.1109/TSG.2018.2818167
10.1016/j.segan.2017.03.001
10.1016/j.ijepes.2018.11.022
10.1016/j.segan.2020.100308
10.1016/j.energy.2019.03.081
10.1109/TII.2015.2414355
10.1016/j.asoc.2019.105616
10.1109/ACCESS.2017.2696365
10.1109/TEVC.2005.857075
10.1016/j.aej.2020.06.008
10.1016/j.enbuild.2016.01.030
10.1016/j.enbuild.2014.02.011
10.1016/j.energy.2020.117087
10.1016/j.egyr.2019.08.086
10.1016/j.enbuild.2018.01.034
10.1016/j.knosys.2018.05.021
10.1016/j.aej.2020.06.049
10.1109/TII.2017.2711648
10.1109/ACCESS.2019.2943752
10.1049/iet-rpg.2016.1036
10.1016/j.enbuild.2020.109941
10.1016/j.knosys.2018.08.027
10.1016/j.apenergy.2017.03.064
10.1016/j.egypro.2019.01.952
10.1109/TKDE.2009.191
10.1162/neco.1997.9.8.1735
10.1016/j.energy.2020.118874
10.1049/iet-smt.2013.0135
10.1007/s10115-020-01481-0
10.1016/j.energy.2020.117127
10.1016/j.enbuild.2019.04.034
10.1016/j.enconman.2015.07.041
10.1016/j.eij.2018.11.001
10.1109/ACCESS.2019.2901920
10.1016/j.procs.2017.11.374
10.1016/j.neucom.2020.01.031
10.1161/JAHA.118.008678
ContentType Journal Article
Copyright 2021 THE AUTHORS
Copyright_xml – notice: 2021 THE AUTHORS
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.aej.2021.02.050
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 3818
ExternalDocumentID oai_doaj_org_article_2c681da6f3134f819a4e770a358deb5f
10_1016_j_aej_2021_02_050
S111001682100137X
GroupedDBID --K
0R~
0SF
4.4
457
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
HZ~
IPNFZ
IXB
KQ8
M41
NCXOZ
O-L
O9-
OK1
P2P
RIG
ROL
SES
SSZ
XH2
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
CITATION
ID FETCH-LOGICAL-c406t-e542e817f01c27bac33ac16ce2bc1b4c5a1625b6540d5797fa6c5eeaaf57dbfc3
IEDL.DBID DOA
ISICitedReferencesCount 45
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000637530300010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1110-0168
IngestDate Fri Oct 03 12:38:12 EDT 2025
Tue Nov 18 22:07:03 EST 2025
Wed Oct 29 21:25:09 EDT 2025
Wed May 17 00:05:39 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Load forecasting
Transfer learning
Cross-correlation
Electrical power systems
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-e542e817f01c27bac33ac16ce2bc1b4c5a1625b6540d5797fa6c5eeaaf57dbfc3
ORCID 0000-0003-2112-5497
OpenAccessLink https://doaj.org/article/2c681da6f3134f819a4e770a358deb5f
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_2c681da6f3134f819a4e770a358deb5f
crossref_citationtrail_10_1016_j_aej_2021_02_050
crossref_primary_10_1016_j_aej_2021_02_050
elsevier_sciencedirect_doi_10_1016_j_aej_2021_02_050
PublicationCentury 2000
PublicationDate August 2021
2021-08-00
2021-08-01
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: August 2021
PublicationDecade 2020
PublicationTitle Alexandria engineering journal
PublicationYear 2021
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Sadaei, de Lima e Silva, Guimarães, Lee (b0105) 2019; 175
L'Heureux, Grolinger, Elyamany, Capretz (b0185) 2017; 5
Ju, Sun, Chen, Zhang, Zhu, Rehman (b0230) 2019; 7
Le, Vo, Kieu, Hwang, Rho, Sung (b0130) 2020; 20
Moon, Kim, Kang, Hwang (b0125) 2020; 13
Ribeiro, Grolinger, ElYamany, Higashino, Capretz (b0150) 2018; 165
Tian, Sehovac, Grolinger (b0040) 2019; 7
Ye, Dai (b0135) 2018; 156
Fan, Xiao, Zhao (b0210) 2017; 195
Alahakoon, Yu (b0015) 2016; 12
Lu, Zhang, Chen, Seng (b0160) 2021; 60
Kim, Son, Kim (b0145) 2019; 5
Fan, Ding, Zheng, Xiao, Ai (b0085) 2020; 388
Liu, Li, Li, Yan, Saha (b0095) 2017; 11
Grolinger, Hayes, Higashino, L’Heureux, Allison, Capretz (b0180) 2014
Lahouar, Ben Hadj Slama (b0220) 2015; 103
Yang, Li, Yang (b0170) 2019; 163
Bracale, Carpinelli, De Falco, Hong (b0025) 2019; 107
Malekizadeh, Karami, Karimi, Moshari, Sanjari (b0080) 2020; 196
Access Date: 10.04.2020.
Mocanu, Nguyen, Kling, Gibescu (b0140) 2016; 116
Maldonado, González, Crone (b0060) 2019; 83
Larsen, Pinson, Leimgruber, Judex (b0050) 2017; 10
Muzaffar, Afshari (b0070) 2019; 158
He (b0100) 2017; 122
De Giorgi, Congedo, Malvoni (b0090) 2014; 8
Wen, Zhou, Yang (b0195) 2020; 179
D.P. Kingma, J.L. Ba, Adam: a method for stochastic optimization, in: 3rd International Conference on Learning Representations, ICLR 2015 – Conference Track Proceedings, 2015, pp. 1–15.
Massaoudi, Refaat, Chihi, Trabelsi, Oueslati, Abu-Rub (b0225) 2021; 214
Wang, Chen, Hong, Kang (b0035) 2019; 10
Liao, Tsao (b0075) 2006; 10
Beretta, Grillo, Pigoli, Bionda, Bossi, Tornelli (b0055) 2020; 21
Bashar, Nayak, Suzor (b0120) 2020; 62
Liu, Zhang, Song (b0045) 2020; 119
Kim, Moon, Hwang, Kang (b0110) 2019; 194
Talaat, Farahat, Mansour, Hatata (b0005) 2020; 196
Xia, Pan, Yan, Cai, Yan, Ning (b0235) 2020; 37
Huang, Hong, Li (b0020) 2017; 13
Kwon, Lee, Lee, Lee, Park (b0175) 2018; 7
Özer (b0190) 2019
Aly (b0010) 2020; 182
Ma, Cheng, Jiang, Chen, Wang, Zhai (b0115) 2020; 216
Hochreiter, Schmidhuber (b0155) 1997; 9
Pan, Yang (b0205) 2010; 22
Menezes, Cripps, Buswell, Wright, Bouchlaghem (b0030) 2014; 75
Wu, Cattani, Song, Zio (b0065) 2020; 59
Walia, Josan, Singh (b0165) 2019; 20
Huang (10.1016/j.aej.2021.02.050_b0020) 2017; 13
Fan (10.1016/j.aej.2021.02.050_b0210) 2017; 195
10.1016/j.aej.2021.02.050_b0215
Grolinger (10.1016/j.aej.2021.02.050_b0180) 2014
Kim (10.1016/j.aej.2021.02.050_b0145) 2019; 5
Kwon (10.1016/j.aej.2021.02.050_b0175) 2018; 7
Muzaffar (10.1016/j.aej.2021.02.050_b0070) 2019; 158
Ma (10.1016/j.aej.2021.02.050_b0115) 2020; 216
He (10.1016/j.aej.2021.02.050_b0100) 2017; 122
Bashar (10.1016/j.aej.2021.02.050_b0120) 2020; 62
Hochreiter (10.1016/j.aej.2021.02.050_b0155) 1997; 9
Özer (10.1016/j.aej.2021.02.050_b0190) 2019
Le (10.1016/j.aej.2021.02.050_b0130) 2020; 20
Lu (10.1016/j.aej.2021.02.050_b0160) 2021; 60
Moon (10.1016/j.aej.2021.02.050_b0125) 2020; 13
Ribeiro (10.1016/j.aej.2021.02.050_b0150) 2018; 165
Tian (10.1016/j.aej.2021.02.050_b0040) 2019; 7
Wen (10.1016/j.aej.2021.02.050_b0195) 2020; 179
Malekizadeh (10.1016/j.aej.2021.02.050_b0080) 2020; 196
Beretta (10.1016/j.aej.2021.02.050_b0055) 2020; 21
Ye (10.1016/j.aej.2021.02.050_b0135) 2018; 156
Pan (10.1016/j.aej.2021.02.050_b0205) 2010; 22
Talaat (10.1016/j.aej.2021.02.050_b0005) 2020; 196
Menezes (10.1016/j.aej.2021.02.050_b0030) 2014; 75
Kim (10.1016/j.aej.2021.02.050_b0110) 2019; 194
Ju (10.1016/j.aej.2021.02.050_b0230) 2019; 7
Liu (10.1016/j.aej.2021.02.050_b0045) 2020; 119
Mocanu (10.1016/j.aej.2021.02.050_b0140) 2016; 116
Lahouar (10.1016/j.aej.2021.02.050_b0220) 2015; 103
Alahakoon (10.1016/j.aej.2021.02.050_b0015) 2016; 12
Wu (10.1016/j.aej.2021.02.050_b0065) 2020; 59
Larsen (10.1016/j.aej.2021.02.050_b0050) 2017; 10
Bracale (10.1016/j.aej.2021.02.050_b0025) 2019; 107
Fan (10.1016/j.aej.2021.02.050_b0085) 2020; 388
Wang (10.1016/j.aej.2021.02.050_b0035) 2019; 10
Massaoudi (10.1016/j.aej.2021.02.050_b0225) 2021; 214
Yang (10.1016/j.aej.2021.02.050_b0170) 2019; 163
L'Heureux (10.1016/j.aej.2021.02.050_b0185) 2017; 5
Liu (10.1016/j.aej.2021.02.050_b0095) 2017; 11
Sadaei (10.1016/j.aej.2021.02.050_b0105) 2019; 175
Maldonado (10.1016/j.aej.2021.02.050_b0060) 2019; 83
Xia (10.1016/j.aej.2021.02.050_b0235) 2020; 37
Walia (10.1016/j.aej.2021.02.050_b0165) 2019; 20
Liao (10.1016/j.aej.2021.02.050_b0075) 2006; 10
De Giorgi (10.1016/j.aej.2021.02.050_b0090) 2014; 8
10.1016/j.aej.2021.02.050_b0200
Aly (10.1016/j.aej.2021.02.050_b0010) 2020; 182
References_xml – volume: 103
  start-page: 1040
  year: 2015
  end-page: 1051
  ident: b0220
  article-title: Day-ahead load forecast using random forest and expert input selection
  publication-title: Energy Convers. Manage.
– volume: 60
  start-page: 87
  year: 2021
  end-page: 94
  ident: b0160
  article-title: A combined method for short-term traffic flow prediction based on recurrent neural network
  publication-title: Alexandria Eng. J.
– volume: 7
  start-page: 139895
  year: 2019
  end-page: 139908
  ident: b0040
  article-title: Similarity-based chained transfer learning for energy forecasting with big data
  publication-title: IEEE Access
– volume: 182
  year: 2020
  ident: b0010
  article-title: A proposed intelligent short-term load forecasting hybrid models of ANN, WNN and KF based on clustering techniques for smart grid
  publication-title: Electr. Power Syst. Res.
– volume: 107
  start-page: 177
  year: 2019
  end-page: 185
  ident: b0025
  article-title: Short-term industrial reactive power forecasting
  publication-title: Int. J. Electric. Power Energy Syst.
– volume: 8
  start-page: 90
  year: 2014
  end-page: 97
  ident: b0090
  article-title: Photovoltaic power forecasting using statistical methods: impact of weather data
  publication-title: IET Sci. Measur. Technol.
– volume: 196
  start-page: 117087
  year: 2020
  ident: b0005
  article-title: Load forecasting based on grasshopper optimization and a multilayer feed-forward neural network using regressive approach
  publication-title: Energy
– volume: 122
  start-page: 308
  year: 2017
  end-page: 314
  ident: b0100
  article-title: load forecasting via deep neural networks
  publication-title: Procedia Comput. Sci.
– year: 2019
  ident: b0190
  article-title: The Effect of Normalization on the Classification of Traffic Comments
– volume: 59
  start-page: 3111
  year: 2020
  end-page: 3118
  ident: b0065
  article-title: Fractional ARIMA with an improved cuckoo search optimization for the efficient Short-term power load forecasting
  publication-title: Alexandria Eng. J.
– start-page: 182
  year: 2014
  end-page: 189
  ident: b0180
  article-title: Challenges for MapReduce in big data
  publication-title: IEEE 10th World Congress on Services
– volume: 11
  start-page: 1281
  year: 2017
  end-page: 1287
  ident: b0095
  article-title: Takagi–Sugeno fuzzy model‐based approach considering multiple weather factors for the photovoltaic power short‐term forecasting
  publication-title: IET Renew. Power Gen.
– volume: 13
  start-page: 1
  year: 2020
  end-page: 37
  ident: b0125
  article-title: Solving the cold-start problem in short-term load
  publication-title: Energies
– volume: 179
  year: 2020
  ident: b0195
  article-title: Load demand forecasting of residential buildings using a deep learning model
  publication-title: Electr. Power Syst. Res.
– reference: D.P. Kingma, J.L. Ba, Adam: a method for stochastic optimization, in: 3rd International Conference on Learning Representations, ICLR 2015 – Conference Track Proceedings, 2015, pp. 1–15.
– volume: 216
  start-page: 1
  year: 2020
  end-page: 9
  ident: b0115
  article-title: A bi-directional missing data imputation scheme based on LSTM and transfer learning for building energy data
  publication-title: Energy Build.
– volume: 7
  start-page: 1
  year: 2018
  end-page: 11
  ident: b0175
  article-title: An algorithm based on deep learning for predicting in-hospital cardiac arrest
  publication-title: J. Am. Heart Assoc.
– volume: 75
  start-page: 199
  year: 2014
  end-page: 209
  ident: b0030
  article-title: Estimating the energy consumption and power demand of small power equipment in office buildings
  publication-title: Energy Build.
– volume: 175
  start-page: 365
  year: 2019
  end-page: 377
  ident: b0105
  article-title: Short-term load forecasting by using a combined method of convolutional neural networks and fuzzy time series
  publication-title: Energy
– volume: 156
  start-page: 74
  year: 2018
  end-page: 99
  ident: b0135
  article-title: A novel transfer learning framework for time series forecasting
  publication-title: Knowl. Syst.
– volume: 20
  start-page: 89
  year: 2019
  end-page: 96
  ident: b0165
  article-title: An efficient automated answer scoring system for Punjabi language
  publication-title: Egyptian Inform. J.
– volume: 119
  year: 2020
  ident: b0045
  article-title: A comparative study of the data-driven day-ahead hourly provincial load forecasting methods: from classical data mining to deep learning
  publication-title: Renew. Sustain. Energy Rev.
– volume: 13
  start-page: 2886
  year: 2017
  end-page: 2898
  ident: b0020
  article-title: Hour-ahead price based energy management scheme for industrial facilities
  publication-title: IEEE Trans. Ind. Inf.
– volume: 62
  start-page: 4029
  year: 2020
  end-page: 4054
  ident: b0120
  article-title: Regularising LSTM classifier by transfer learning for detecting misogynistic tweets with small training set
  publication-title: Knowl. Inf. Syst.
– volume: 195
  start-page: 222
  year: 2017
  end-page: 233
  ident: b0210
  article-title: A short-term building cooling load prediction method using deep learning algorithms
  publication-title: Appl. Energy
– volume: 83
  start-page: 105616
  year: 2019
  ident: b0060
  article-title: Automatic time series analysis for electric load forecasting via support vector regression
  publication-title: Appl. Soft Comput.
– volume: 388
  start-page: 110
  year: 2020
  end-page: 123
  ident: b0085
  article-title: Empirical mode decomposition based multi-objective deep belief network for short-term power load forecasting
  publication-title: Neurocomputing
– volume: 163
  start-page: 159
  year: 2019
  end-page: 173
  ident: b0170
  article-title: Short-term electricity load forecasting based on feature selection and Least Squares Support Vector Machines
  publication-title: Knowl. Syst.
– volume: 7
  start-page: 28309
  year: 2019
  end-page: 28318
  ident: b0230
  article-title: A model combining convolutional neural network and LightGBM algorithm for ultra-short-term wind power forecasting
  publication-title: IEEE Access
– volume: 21
  start-page: 100308
  year: 2020
  ident: b0055
  article-title: Functional principal component analysis as a versatile technique to understand and predict the electric consumption patterns
  publication-title: Sustain. Energy Grids Netw.
– volume: 12
  start-page: 425
  year: 2016
  end-page: 436
  ident: b0015
  article-title: Smart electricity meter data intelligence for future energy systems: a survey
  publication-title: IEEE Trans. Ind. Inf.
– volume: 20
  start-page: 1
  year: 2020
  end-page: 17
  ident: b0130
  article-title: Multiple electric energy consumption forecasting using a cluster-based strategy for transfer learning in smart building
  publication-title: Sensors
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: b0155
  article-title: Long short-term memory
  publication-title: Neural Comput.
– volume: 5
  start-page: 7776
  year: 2017
  end-page: 7797
  ident: b0185
  article-title: Machine Learning with big data: challenges and approaches
  publication-title: IEEE Access
– volume: 10
  start-page: 3125
  year: 2019
  end-page: 3148
  ident: b0035
  article-title: Review of smart meter data analytics: applications, methodologies, and challenges
  publication-title: IEEE Trans. Smart Grid
– volume: 10
  start-page: 75
  year: 2017
  end-page: 83
  ident: b0050
  article-title: Demand response evaluation and forecasting—methods and results from the EcoGrid EU experiment
  publication-title: Sustain. Energy Grids Netw.
– volume: 165
  start-page: 352
  year: 2018
  end-page: 363
  ident: b0150
  article-title: Transfer learning with seasonal and trend adjustment for cross-building energy forecasting
  publication-title: Energy Build.
– volume: 214
  start-page: 118874
  year: 2021
  ident: b0225
  article-title: A novel stacked generalization ensemble-based hybrid LGBM-XGB-MLP model for Short-Term Load Forecasting
  publication-title: Energy
– volume: 116
  start-page: 646
  year: 2016
  end-page: 655
  ident: b0140
  article-title: Unsupervised energy prediction in a Smart Grid context using reinforcement cross-building transfer learning
  publication-title: Energy Build.
– volume: 10
  start-page: 330
  year: 2006
  end-page: 340
  ident: b0075
  article-title: Application of a fuzzy neural network combined with a chaos genetic algorithm and simulated annealing to short-term load forecasting
  publication-title: IEEE Trans. Evol. Comput.
– volume: 196
  start-page: 117127
  year: 2020
  ident: b0080
  article-title: Short-term load forecast using ensemble neuro-fuzzy model
  publication-title: Energy
– volume: 5
  start-page: 1270
  year: 2019
  end-page: 1280
  ident: b0145
  article-title: Short term electricity load forecasting for institutional buildings
  publication-title: Energy Reports
– volume: 158
  start-page: 2922
  year: 2019
  end-page: 2927
  ident: b0070
  article-title: Short-term load forecasts using LSTM networks
  publication-title: Energy Procedia
– volume: 37
  start-page: 1
  year: 2020
  end-page: 9
  ident: b0235
  article-title: Prognostic model of small sample critical diseases based on transfer learning
  publication-title: J. Biomed. Eng.
– volume: 194
  start-page: 328
  year: 2019
  end-page: 341
  ident: b0110
  article-title: Recurrent inception convolution neural network for multi short-term load forecasting
  publication-title: Energy Build.
– reference: . Access Date: 10.04.2020.
– volume: 22
  start-page: 1345
  year: 2010
  end-page: 1359
  ident: b0205
  article-title: A survey on transfer learning
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 10
  start-page: 3125
  issue: 3
  year: 2019
  ident: 10.1016/j.aej.2021.02.050_b0035
  article-title: Review of smart meter data analytics: applications, methodologies, and challenges
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2018.2818167
– volume: 10
  start-page: 75
  year: 2017
  ident: 10.1016/j.aej.2021.02.050_b0050
  article-title: Demand response evaluation and forecasting—methods and results from the EcoGrid EU experiment
  publication-title: Sustain. Energy Grids Netw.
  doi: 10.1016/j.segan.2017.03.001
– volume: 107
  start-page: 177
  year: 2019
  ident: 10.1016/j.aej.2021.02.050_b0025
  article-title: Short-term industrial reactive power forecasting
  publication-title: Int. J. Electric. Power Energy Syst.
  doi: 10.1016/j.ijepes.2018.11.022
– volume: 21
  start-page: 100308
  year: 2020
  ident: 10.1016/j.aej.2021.02.050_b0055
  article-title: Functional principal component analysis as a versatile technique to understand and predict the electric consumption patterns
  publication-title: Sustain. Energy Grids Netw.
  doi: 10.1016/j.segan.2020.100308
– volume: 175
  start-page: 365
  year: 2019
  ident: 10.1016/j.aej.2021.02.050_b0105
  article-title: Short-term load forecasting by using a combined method of convolutional neural networks and fuzzy time series
  publication-title: Energy
  doi: 10.1016/j.energy.2019.03.081
– year: 2019
  ident: 10.1016/j.aej.2021.02.050_b0190
– volume: 37
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.aej.2021.02.050_b0235
  article-title: Prognostic model of small sample critical diseases based on transfer learning
  publication-title: J. Biomed. Eng.
– volume: 12
  start-page: 425
  issue: 1
  year: 2016
  ident: 10.1016/j.aej.2021.02.050_b0015
  article-title: Smart electricity meter data intelligence for future energy systems: a survey
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2015.2414355
– volume: 83
  start-page: 105616
  year: 2019
  ident: 10.1016/j.aej.2021.02.050_b0060
  article-title: Automatic time series analysis for electric load forecasting via support vector regression
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.105616
– volume: 5
  start-page: 7776
  year: 2017
  ident: 10.1016/j.aej.2021.02.050_b0185
  article-title: Machine Learning with big data: challenges and approaches
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2696365
– volume: 179
  issue: October 2019
  year: 2020
  ident: 10.1016/j.aej.2021.02.050_b0195
  article-title: Load demand forecasting of residential buildings using a deep learning model
  publication-title: Electr. Power Syst. Res.
– volume: 10
  start-page: 330
  issue: 3
  year: 2006
  ident: 10.1016/j.aej.2021.02.050_b0075
  article-title: Application of a fuzzy neural network combined with a chaos genetic algorithm and simulated annealing to short-term load forecasting
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2005.857075
– start-page: 182
  year: 2014
  ident: 10.1016/j.aej.2021.02.050_b0180
  article-title: Challenges for MapReduce in big data
– volume: 60
  start-page: 87
  issue: 1
  year: 2021
  ident: 10.1016/j.aej.2021.02.050_b0160
  article-title: A combined method for short-term traffic flow prediction based on recurrent neural network
  publication-title: Alexandria Eng. J.
  doi: 10.1016/j.aej.2020.06.008
– volume: 119
  issue: April 2019
  year: 2020
  ident: 10.1016/j.aej.2021.02.050_b0045
  article-title: A comparative study of the data-driven day-ahead hourly provincial load forecasting methods: from classical data mining to deep learning
  publication-title: Renew. Sustain. Energy Rev.
– volume: 116
  start-page: 646
  year: 2016
  ident: 10.1016/j.aej.2021.02.050_b0140
  article-title: Unsupervised energy prediction in a Smart Grid context using reinforcement cross-building transfer learning
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2016.01.030
– volume: 75
  start-page: 199
  year: 2014
  ident: 10.1016/j.aej.2021.02.050_b0030
  article-title: Estimating the energy consumption and power demand of small power equipment in office buildings
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2014.02.011
– volume: 196
  start-page: 117087
  year: 2020
  ident: 10.1016/j.aej.2021.02.050_b0005
  article-title: Load forecasting based on grasshopper optimization and a multilayer feed-forward neural network using regressive approach
  publication-title: Energy
  doi: 10.1016/j.energy.2020.117087
– volume: 5
  start-page: 1270
  year: 2019
  ident: 10.1016/j.aej.2021.02.050_b0145
  article-title: Short term electricity load forecasting for institutional buildings
  publication-title: Energy Reports
  doi: 10.1016/j.egyr.2019.08.086
– volume: 165
  start-page: 352
  year: 2018
  ident: 10.1016/j.aej.2021.02.050_b0150
  article-title: Transfer learning with seasonal and trend adjustment for cross-building energy forecasting
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2018.01.034
– volume: 156
  start-page: 74
  year: 2018
  ident: 10.1016/j.aej.2021.02.050_b0135
  article-title: A novel transfer learning framework for time series forecasting
  publication-title: Knowl. Syst.
  doi: 10.1016/j.knosys.2018.05.021
– volume: 59
  start-page: 3111
  issue: 5
  year: 2020
  ident: 10.1016/j.aej.2021.02.050_b0065
  article-title: Fractional ARIMA with an improved cuckoo search optimization for the efficient Short-term power load forecasting
  publication-title: Alexandria Eng. J.
  doi: 10.1016/j.aej.2020.06.049
– volume: 13
  start-page: 2886
  issue: 6
  year: 2017
  ident: 10.1016/j.aej.2021.02.050_b0020
  article-title: Hour-ahead price based energy management scheme for industrial facilities
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2017.2711648
– volume: 7
  start-page: 139895
  year: 2019
  ident: 10.1016/j.aej.2021.02.050_b0040
  article-title: Similarity-based chained transfer learning for energy forecasting with big data
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2943752
– volume: 11
  start-page: 1281
  issue: 10
  year: 2017
  ident: 10.1016/j.aej.2021.02.050_b0095
  article-title: Takagi–Sugeno fuzzy model‐based approach considering multiple weather factors for the photovoltaic power short‐term forecasting
  publication-title: IET Renew. Power Gen.
  doi: 10.1049/iet-rpg.2016.1036
– volume: 182
  issue: December 2019
  year: 2020
  ident: 10.1016/j.aej.2021.02.050_b0010
  article-title: A proposed intelligent short-term load forecasting hybrid models of ANN, WNN and KF based on clustering techniques for smart grid
  publication-title: Electr. Power Syst. Res.
– ident: 10.1016/j.aej.2021.02.050_b0215
– volume: 216
  start-page: 1
  year: 2020
  ident: 10.1016/j.aej.2021.02.050_b0115
  article-title: A bi-directional missing data imputation scheme based on LSTM and transfer learning for building energy data
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2020.109941
– volume: 163
  start-page: 159
  year: 2019
  ident: 10.1016/j.aej.2021.02.050_b0170
  article-title: Short-term electricity load forecasting based on feature selection and Least Squares Support Vector Machines
  publication-title: Knowl. Syst.
  doi: 10.1016/j.knosys.2018.08.027
– volume: 195
  start-page: 222
  year: 2017
  ident: 10.1016/j.aej.2021.02.050_b0210
  article-title: A short-term building cooling load prediction method using deep learning algorithms
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.03.064
– volume: 158
  start-page: 2922
  year: 2019
  ident: 10.1016/j.aej.2021.02.050_b0070
  article-title: Short-term load forecasts using LSTM networks
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2019.01.952
– volume: 22
  start-page: 1345
  issue: 10
  year: 2010
  ident: 10.1016/j.aej.2021.02.050_b0205
  article-title: A survey on transfer learning
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2009.191
– volume: 9
  start-page: 1735
  year: 1997
  ident: 10.1016/j.aej.2021.02.050_b0155
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: 214
  start-page: 118874
  year: 2021
  ident: 10.1016/j.aej.2021.02.050_b0225
  article-title: A novel stacked generalization ensemble-based hybrid LGBM-XGB-MLP model for Short-Term Load Forecasting
  publication-title: Energy
  doi: 10.1016/j.energy.2020.118874
– volume: 8
  start-page: 90
  issue: 3
  year: 2014
  ident: 10.1016/j.aej.2021.02.050_b0090
  article-title: Photovoltaic power forecasting using statistical methods: impact of weather data
  publication-title: IET Sci. Measur. Technol.
  doi: 10.1049/iet-smt.2013.0135
– volume: 62
  start-page: 4029
  issue: 10
  year: 2020
  ident: 10.1016/j.aej.2021.02.050_b0120
  article-title: Regularising LSTM classifier by transfer learning for detecting misogynistic tweets with small training set
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-020-01481-0
– volume: 196
  start-page: 117127
  year: 2020
  ident: 10.1016/j.aej.2021.02.050_b0080
  article-title: Short-term load forecast using ensemble neuro-fuzzy model
  publication-title: Energy
  doi: 10.1016/j.energy.2020.117127
– volume: 194
  start-page: 328
  issue: 2019
  year: 2019
  ident: 10.1016/j.aej.2021.02.050_b0110
  article-title: Recurrent inception convolution neural network for multi short-term load forecasting
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2019.04.034
– volume: 13
  start-page: 1
  issue: 886
  year: 2020
  ident: 10.1016/j.aej.2021.02.050_b0125
  article-title: Solving the cold-start problem in short-term load
  publication-title: Energies
– volume: 103
  start-page: 1040
  year: 2015
  ident: 10.1016/j.aej.2021.02.050_b0220
  article-title: Day-ahead load forecast using random forest and expert input selection
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2015.07.041
– volume: 20
  start-page: 89
  issue: 2
  year: 2019
  ident: 10.1016/j.aej.2021.02.050_b0165
  article-title: An efficient automated answer scoring system for Punjabi language
  publication-title: Egyptian Inform. J.
  doi: 10.1016/j.eij.2018.11.001
– volume: 7
  start-page: 28309
  year: 2019
  ident: 10.1016/j.aej.2021.02.050_b0230
  article-title: A model combining convolutional neural network and LightGBM algorithm for ultra-short-term wind power forecasting
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2901920
– volume: 122
  start-page: 308
  year: 2017
  ident: 10.1016/j.aej.2021.02.050_b0100
  article-title: load forecasting via deep neural networks
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2017.11.374
– volume: 20
  start-page: 1
  issue: 2668
  year: 2020
  ident: 10.1016/j.aej.2021.02.050_b0130
  article-title: Multiple electric energy consumption forecasting using a cluster-based strategy for transfer learning in smart building
  publication-title: Sensors
– volume: 388
  start-page: 110
  year: 2020
  ident: 10.1016/j.aej.2021.02.050_b0085
  article-title: Empirical mode decomposition based multi-objective deep belief network for short-term power load forecasting
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.01.031
– ident: 10.1016/j.aej.2021.02.050_b0200
– volume: 7
  start-page: 1
  issue: 13
  year: 2018
  ident: 10.1016/j.aej.2021.02.050_b0175
  article-title: An algorithm based on deep learning for predicting in-hospital cardiac arrest
  publication-title: J. Am. Heart Assoc.
  doi: 10.1161/JAHA.118.008678
SSID ssj0000579496
Score 2.4183621
Snippet An accurate prediction of buildings' load demand is one of the most important issues in smart grid and smart building applications. In this way, an important...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 3807
SubjectTerms Cross-correlation
Electrical power systems
Load forecasting
Transfer learning
Title A combined deep learning application for short term load forecasting
URI https://dx.doi.org/10.1016/j.aej.2021.02.050
https://doaj.org/article/2c681da6f3134f819a4e770a358deb5f
Volume 60
WOSCitedRecordID wos000637530300010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  issn: 1110-0168
  databaseCode: DOA
  dateStart: 20100101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: false
  ssIdentifier: ssj0000579496
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV27TsMwFLVQxQAD4inKSx6YkCLiV-yM5VExoIoBUDfLT2hVtVVb-H6ukxRlARbWyLGtkyvfc-WbcxC6FIKqZGGexVDyjPPIM2VpmXkfqXMl5IjKh-z1UQ4Gajgsn1pWX6knrJYHroG7pq4ASmWKyAjjEfKX4UHK3DChfLAiptM3l2WrmKpVvSHOKnMu2EfqvCrU-kqzau4yYQy1Ia31OtM_962kVGn3t3JTK9_0d9FOQxRxr97gHtoI03203ZIPPEB3PQzxAqVt8NiHMMeNBcQbbl1LY2ClePkOLBunUxhPZsanZ8GZZWp5PkQv_fvn24escUXIHCTfVRYEp0ERGXPiqLTGMWYcScZe1hHLnTAEahpbABXzgIKMpnAiBGOikN5Gx45QZzqbhmOEI7AHzjwnSWNeRVvGIIX13JXSEKbyLsrXsGjXSIYn54qJXveGjTUgqROSOqcakOyiq-9X5rVexm-DbxLW3wOT1HX1AAJANwGg_wqALuLrL6Ub1lCzAZhq9PPaJ_-x9inaSlPWDYFnqLNafIRztOk-V6Pl4qIKyS9LT-LU
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+combined+deep+learning+application+for+short+term+load+forecasting&rft.jtitle=Alexandria+engineering+journal&rft.au=Ozer%2C+Ilyas&rft.au=Efe%2C+Serhat+Berat&rft.au=Ozbay%2C+Harun&rft.date=2021-08-01&rft.pub=Elsevier+B.V&rft.issn=1110-0168&rft.volume=60&rft.issue=4&rft.spage=3807&rft.epage=3818&rft_id=info:doi/10.1016%2Fj.aej.2021.02.050&rft.externalDocID=S111001682100137X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1110-0168&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1110-0168&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1110-0168&client=summon