The Recommendation Algorithm Based on Improved Conditional Variational Autoencoder and Constrained Probabilistic Matrix Factorization

An improved recommendation algorithm based on Conditional Variational Autoencoder (CVAE) and Constrained Probabilistic Matrix Factorization (CPMF) is proposed to address the issues of poor recommendation performance in traditional user-based collaborative filtering algorithms caused by data sparsity...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences Jg. 13; H. 21; S. 12027
Hauptverfasser: Zhang, Yunfei, Xu, Hongzhen, Yu, Xiaojun
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 01.11.2023
Schlagworte:
ISSN:2076-3417, 2076-3417
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract An improved recommendation algorithm based on Conditional Variational Autoencoder (CVAE) and Constrained Probabilistic Matrix Factorization (CPMF) is proposed to address the issues of poor recommendation performance in traditional user-based collaborative filtering algorithms caused by data sparsity and suboptimal feature extraction. Firstly, in the data preprocessing stage, a hidden layer is added to CVAE, and random noise is introduced into the hidden layer to constrain the data features, thereby obtaining more accurate latent features and improving the model’s robustness and generative capability. Secondly, the category of items is incorporated as auxiliary information in CVAE to supervise the encoding and decoding of item data. By learning the distribution characteristics of the data, missing values in the rating data can be effectively reconstructed, thereby reducing the sparsity of the rating matrix. Subsequently, the reconstructed data is processed using CPMF, which optimizes the feature extraction performance by imposing constraints on user features. Finally, the prediction rating of a user for an item can be obtained through the matrix product of user and item feature matrices. Experimental results on the MovieLens-100K and MovieLens-1M datasets demonstrate the effectiveness and superiority of the proposed algorithm over four comparative algorithms, as it exhibits significant advantages in terms of root mean square error and mean absolute error metrics.
AbstractList An improved recommendation algorithm based on Conditional Variational Autoencoder (CVAE) and Constrained Probabilistic Matrix Factorization (CPMF) is proposed to address the issues of poor recommendation performance in traditional user-based collaborative filtering algorithms caused by data sparsity and suboptimal feature extraction. Firstly, in the data preprocessing stage, a hidden layer is added to CVAE, and random noise is introduced into the hidden layer to constrain the data features, thereby obtaining more accurate latent features and improving the model’s robustness and generative capability. Secondly, the category of items is incorporated as auxiliary information in CVAE to supervise the encoding and decoding of item data. By learning the distribution characteristics of the data, missing values in the rating data can be effectively reconstructed, thereby reducing the sparsity of the rating matrix. Subsequently, the reconstructed data is processed using CPMF, which optimizes the feature extraction performance by imposing constraints on user features. Finally, the prediction rating of a user for an item can be obtained through the matrix product of user and item feature matrices. Experimental results on the MovieLens-100K and MovieLens-1M datasets demonstrate the effectiveness and superiority of the proposed algorithm over four comparative algorithms, as it exhibits significant advantages in terms of root mean square error and mean absolute error metrics.
Audience Academic
Author Zhang, Yunfei
Xu, Hongzhen
Yu, Xiaojun
Author_xml – sequence: 1
  givenname: Yunfei
  surname: Zhang
  fullname: Zhang, Yunfei
– sequence: 2
  givenname: Hongzhen
  surname: Xu
  fullname: Xu, Hongzhen
– sequence: 3
  givenname: Xiaojun
  surname: Yu
  fullname: Yu, Xiaojun
BookMark eNptUU1vEzEQtVCRKKU3fsBKXEnx2N619xgiCpGKQKhwtfwxmzraXQfbqYA7_xsnKVKFsA9-Gr33xvPmOTmb44yEvAR6xXlP35jdDjgDYJTJJ-ScUdktuAB59gg_I5c5b2k9PXAF9Jz8vr3D5gu6OE04e1NCnJvluIkplLupeWsy-qaW1tMuxfuKV3H24cAyY_PNpGAe8HJfIs4uekyNmY-8XJIJc9V8TtEaG8aQS3DNR1NS-NFcG1dql19Hgxfk6WDGjJcP7wX5ev3udvVhcfPp_Xq1vFk4QbuywFZQ8AocKN5jnaLrnG8BByVQUcMkU9xxr6wFOihvLW-lBUCPA3fGcn5B1idfH81W71KYTPqpown6WIhpo02qnxxRd6zzPW2xE8ILOdDeopNDLzhYxbpOVq9XJ6-azPc95qK3cZ9qFlkzpRSAZOLQ8erE2phqGuYh1lRcvR6n4OoGh1DrSylZy6GlogrYSeBSzDnhoF0ox5AOcY4aqD6sWz9edxW9_kf0d7b_0v8A85musg
CitedBy_id crossref_primary_10_1049_cit2_12408
crossref_primary_10_3390_computers13110275
crossref_primary_10_3390_app15052761
Cites_doi 10.1007/s10489-021-02207-7
10.1007/s00521-020-05085-1
10.1109/ACCESS.2021.3074365
10.1145/1273496.1273596
10.1145/2647868.2654940
10.1016/j.inffus.2023.101903
10.1145/3077136.3080697
10.1145/2783258.2783273
10.1145/2835776.2835837
10.1016/j.ins.2020.12.001
10.1155/2021/6610645
10.1109/SmartWorld-UIC-ATC-SCALCOM-IOP-SCI.2019.00201
10.1007/s11280-020-00793-z
10.5565/rev/elcvia.1232
10.1016/j.asoc.2022.108971
10.1145/3097983.3098077
10.1016/j.neucom.2019.01.028
10.1145/2020408.2020480
10.1109/TCSS.2022.3170691
10.1109/ACCESS.2023.3246060
10.3390/electronics10101215
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
DOA
DOI 10.3390/app132112027
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central
ProQuest One Academic Middle East (New)
ProQuest One Academic UKI Edition
ProQuest Central Essentials
ProQuest Central Korea
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList

Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_626d905e644d47f09bec7f9431b82667
A772531504
10_3390_app132112027
GeographicLocations New York
GeographicLocations_xml – name: New York
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c406t-e5401d81c1839e00066cd51ef84e80a27283c3d8bb10f8dbb357b11edef3cab33
IEDL.DBID DOA
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001100460400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2076-3417
IngestDate Tue Oct 14 18:38:14 EDT 2025
Sun Nov 30 05:15:46 EST 2025
Tue Nov 04 18:38:21 EST 2025
Sat Nov 29 07:12:17 EST 2025
Tue Nov 18 21:59:59 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-e5401d81c1839e00066cd51ef84e80a27283c3d8bb10f8dbb357b11edef3cab33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doaj.org/article/626d905e644d47f09bec7f9431b82667
PQID 2888117243
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_626d905e644d47f09bec7f9431b82667
proquest_journals_2888117243
gale_infotracacademiconefile_A772531504
crossref_citationtrail_10_3390_app132112027
crossref_primary_10_3390_app132112027
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Pan (ref_18) 2020; 23
Bin (ref_24) 2021; 2021
Shi (ref_27) 2021; 47
ref_14
ref_13
ref_12
ref_11
Ortega (ref_9) 2021; 553
ref_30
Chen (ref_10) 2020; 57
Goyani (ref_4) 2020; 19
ref_17
ref_15
Qian (ref_5) 2022; 59
Zheng (ref_23) 2022; 10
Na (ref_16) 2021; 51
Wu (ref_1) 2022; 16
Liu (ref_22) 2023; 11
Zhang (ref_8) 2019; 334
Niu (ref_19) 2023; 100
Zhang (ref_25) 2021; 9
Tahmasebi (ref_20) 2021; 33
ref_2
Wang (ref_21) 2022; 123
ref_29
ref_28
ref_26
ref_7
Yimu (ref_3) 2020; 27
ref_6
References_xml – volume: 51
  start-page: 7946
  year: 2021
  ident: ref_16
  article-title: A hybrid user-based collaborative filtering algorithm with topic model
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-021-02207-7
– volume: 33
  start-page: 1607
  year: 2021
  ident: ref_20
  article-title: Social movie recommender system based on deep autoencoder network using Twitter data
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-020-05085-1
– volume: 9
  start-page: 65266
  year: 2021
  ident: ref_25
  article-title: FeatureMF: An item feature enriched matrix factorization model for item recommendation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3074365
– ident: ref_26
– volume: 59
  start-page: 2803
  year: 2022
  ident: ref_5
  article-title: Event Recommendation Strategy Combining User Long-Short Term Interest and Event Influence
  publication-title: J. Comput. Res. Dev.
– ident: ref_6
  doi: 10.1145/1273496.1273596
– ident: ref_7
  doi: 10.1145/2647868.2654940
– volume: 100
  start-page: 101903
  year: 2023
  ident: ref_19
  article-title: Deep adversarial autoencoder recommendation algorithm based on group influence
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2023.101903
– ident: ref_15
  doi: 10.1145/3077136.3080697
– ident: ref_28
  doi: 10.1145/2783258.2783273
– ident: ref_13
  doi: 10.1145/2835776.2835837
– volume: 57
  start-page: 1096
  year: 2020
  ident: ref_10
  article-title: Collaborative filtering recommendation based on transfer learning and joint matrix decomposition
  publication-title: J. Sichuan Univ. (Nat. Sci. Ed.)
– volume: 553
  start-page: 110
  year: 2021
  ident: ref_9
  article-title: Providing reliability in recommender systems through Bernoulli matrix factorization
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2020.12.001
– volume: 2021
  start-page: 6610645
  year: 2021
  ident: ref_24
  article-title: Matrix factorization recommendation algorithm based on multiple social relationships
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2021/6610645
– volume: 47
  start-page: 2103
  year: 2021
  ident: ref_27
  article-title: Research Advances on Stochastic Gradient Descent Algorithms
  publication-title: Acta Autom. Sin.
– ident: ref_11
  doi: 10.1109/SmartWorld-UIC-ATC-SCALCOM-IOP-SCI.2019.00201
– volume: 23
  start-page: 2259
  year: 2020
  ident: ref_18
  article-title: Learning social representations with deep autoencoder for recommender system
  publication-title: World Wide Web
  doi: 10.1007/s11280-020-00793-z
– ident: ref_29
– volume: 16
  start-page: 21
  year: 2022
  ident: ref_1
  article-title: Survey of personalized learning recommendation
  publication-title: J. Front. Comput. Sci. Technol.
– ident: ref_12
– volume: 27
  start-page: 1
  year: 2020
  ident: ref_3
  article-title: Collaborative filtering recommendation algorithm based on interactive data classification
  publication-title: J. China Univ. Posts Telecommun.
– volume: 19
  start-page: 0018
  year: 2020
  ident: ref_4
  article-title: A review of movie recommendation system: Limitations, Survey and Challenges
  publication-title: ELCVIA Electron. Lett. Comput. Vis. Image Anal.
  doi: 10.5565/rev/elcvia.1232
– volume: 123
  start-page: 108971
  year: 2022
  ident: ref_21
  article-title: Research on product recommendation based on matrix factorization models fusing user reviews
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2022.108971
– ident: ref_14
  doi: 10.1145/3097983.3098077
– ident: ref_17
– volume: 334
  start-page: 206
  year: 2019
  ident: ref_8
  article-title: A deep variational matrix factorization method for recommendation on large scale sparse dataset
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.01.028
– ident: ref_30
  doi: 10.1145/2020408.2020480
– volume: 10
  start-page: 1189
  year: 2022
  ident: ref_23
  article-title: A Matrix Factorization Recommendation System-Based Local Differential Privacy for Protecting Users’ Sensitive Data
  publication-title: IEEE Trans. Comput. Soc. Syst.
  doi: 10.1109/TCSS.2022.3170691
– volume: 11
  start-page: 16994
  year: 2023
  ident: ref_22
  article-title: Recommendation system based on deep sentiment analysis and matrix factorization
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3246060
– ident: ref_2
  doi: 10.3390/electronics10101215
SSID ssj0000913810
Score 2.2856026
Snippet An improved recommendation algorithm based on Conditional Variational Autoencoder (CVAE) and Constrained Probabilistic Matrix Factorization (CPMF) is proposed...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 12027
SubjectTerms Algorithms
Analysis
auxiliary information
Collaboration
collaborative filtering
conditional variational autoencoder
constrained probabilistic matrix factorization
feature matric
Neural networks
Optimization techniques
Ratings & rankings
Recommender systems
Sparsity
User behavior
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWg5UAPQAtVF1rkAwgQirDzsYlPaLfqigurFQLUmxXb41KpuylJivgD_G9mHO92L-XCbZV1Ekcez8wb2-8x9mo8dkZhaEtqmfokB2US44oy8T6DelwXPhU2iE2U83l1fq4WseDWxW2Va58YHLVrLNXIP6QI1SRG2zz7eP0zIdUoWl2NEhr32S4xlaGd707P5osvmyoLsV5WUgw73jPE97QujAAMswxBQjJbsShQ9t_lmEO0mT3-334-YY9inskng2Hss3uwOmB7W-yDB2w_zuuOv43k0--esj9oN5ww6XIJUW-JT64u8A39jyWfYsxzHC8NtQj8fdrQmneoJ_LviLtjbZFPbvqGODIdtLxehXZdkKPAexYtOhHalEsc0fwziQT85rMg_BNPhT5j32ZnX08_JVGqIbGYEfQJYOInXSUtJVwQEhnrCgm-yqESdVpiFmMzVxkjha-cMVlRGinBgc9sbbLskO2smhUcMS5E7R1Y4QHS3KlCGYyYeJfyVlTOFiP2fj1o2kYec-r_lUY8Q0Ost4d4xF5vWl8P_B13tJvS-G_aEOt2uNC0FzpOYo3gzylRAOaQLi-9UDgBSq8wBzOI0sb4kDdkPZp8A3bJ1vGIA34YsWzpCUIZ9HmFyEfseG09OjqNTt-azvN___2CPSTV--FI5DHb6dsbOGEP7K_-smtfxjnwF8h8E5s
  priority: 102
  providerName: ProQuest
Title The Recommendation Algorithm Based on Improved Conditional Variational Autoencoder and Constrained Probabilistic Matrix Factorization
URI https://www.proquest.com/docview/2888117243
https://doaj.org/article/626d905e644d47f09bec7f9431b82667
Volume 13
WOSCitedRecordID wos001100460400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxQxDLZQywEOiBYQSx_KAQQIjci8dpLjbtUVHLoaIUDlFE0SB5C6u2h3W_EH-N_YmbSaS9VLbzORo8nEdmwn8WeA1-Oxt5pMW9blRcgq1Dazvm6yEErsxl0dCulisYlmPlfn57odlPriO2E9PHA_cR_J4fZa1kh221dNkJo-2gRNds-SZzyOeeSy0YNgKq7BOmfoqv6me0lxPZ8HU-BF3oXkAjIDGxSh-m9bkKOVmT2FJ8k9FJN-WHvwAJf78HgAGrgPe0kdN-Jdwox-_wz-EbsFh5KLBaYySWJy8XNFof-vhZiSqfKCmvotBHo-WfFRddwGFN8pXE5bgmJyuV0xtKXHteiWkW4Tq0hQn3ZNus93aRnaWZwxtv9fMYv1elIy53P4Njv9evIpSxUWMkeGfJsh-Wu5V7ljPwmj_-F8nWNQFSrZFQ05H670ytpcBuWtLevG5jl6DKXrbFm-gJ3laokvQUjZBY9OBsSi8rrWlgwd9dLBSeVdPYIP13NuXIIf5_FfGApDmENmyKERvLmh_tPDbtxCN2X23dAwWHZsIBEySYTMXSI0grfMfMMqTUNyXcpMoB9jcCwzoQiElqpaViM4vJYPk3R9YwqlOFu3qMpX9zGaA3jEJe37fMdD2NmuL_EIHrqr7e_N-hh2p6fz9stxFHd6az-ftT_-A2zKBqY
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLWqKRKwAFpADBTwggoQinBek3hRoWlh1FE7o1kUVFYmfpVKnUlJUh4fwO_0G7nXcYbZlF0X7KLEiZzk-L5sn0PIi8FASw6uLSjCyAaJ4TKQOs0Ca2NTDIrURkw5sYlsOs2Pj_lsjVx2e2FwWWVnE52h1qXCGvnbCFK1ELxtEr87_xagahTOrnYSGi0sDsyvH5Cy1Tvj9_B_t6No9OFobz_wqgKBAufVBAZilFDnocLYwDifq3QaGpsnJmdFlIHDVbHOpQyZzbWUcZrJMDTa2FgVEgugYPLXEwA765H12Xgy-7ys6iDLZh6ydoV9HHOG89CQ8EFUw1C4ZsX3OYmAqxyB826ju__bd7lH7vg4mg5b4G-QNbPYJLdX2BU3yYa3WzV95cm1X98nv2FcUMy553Pj9aTo8OwE3qj5Oqe74NM1hVNtrQWO90qc03f1UvqpqE597ZQOL5oSOUC1qWixcO1qJ7cB98wqMJK46Bg5sOkERRB-0pETNvK7Xh-Qj9fycR6S3qJcmEeEMlZYbRSzxkSJ5imXEBHAXdwqlmuV9smbDiRCeZ527P-ZgHwNISVWIdUn28vW5y0_yRXtdhFvyzbIKu5OlNWJ8EZKQHKrOUsNxMg6ySzjMMAzyyHGlJCFDuAhLxGtAm0fdEkVfgsHvBiyiIkhpGpg01OW9MlWh1bhjWIt_kL18b8vPyc3948mh-JwPD14Qm5B_-N2--cW6TXVhXlKbqjvzWldPfPjj5Iv1w3tP5NecTU
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5VKUJwAFpABArsgQoQsrp-xd4DQknbiKoQRQhQb1vvq1Rq4uK4PH4Af4pfx4y9DrmUWw_cLHttre1v55uZ3Z0P4NlgYJRAaguKMHJBYoUKlEmzwLnYFoMidRHXjdhENpnkR0diuga_u70wtKyys4mNoTalphz5ToShWohsm8Q7zi-LmO6N35x_DUhBimZaOzmNFiKH9ud3DN8Wrw_28F9vR9F4_-Pu28ArDAQaiawOLPoroclDTX6CbfhXmzS0Lk9szosoQ_LVscmVCrnLjVJxmqkwtMa6WBeKkqFo_tezGIOeHqyP9ifTD8sMD1XczEPerraPY8FpThqDP_RwOInYrPBgIxdwGSk0TDe-_T9_oztwy_vXbNgOiA1Ys_NNuLlSdXETNrw9W7AXvuj2y7vwC8cLo1h8NrNeZ4oNz07wjeovMzZCrjcMT7U5GDzeLWmuv8mjss9Fdepzqmx4UZdUG9TYihXzpt2ikeHAe6YVGk9ajEy1sdl7Ekf4wcaN4JHfDXsPPl3Jx7kPvXk5tw-AcV44YzV31kaJEalQ6CngXcJpnhud9uFVBxipff126v-ZxDiO4CVX4dWH7WXr87ZuySXtRoS9ZRuqNt6cKKsT6Y2XxKDXCJ5a9J1NkjkucOBnTqDvqTA6HeBDnhNyJdlE7JIu_NYOfDGqLiaHGMKhrU950oetDrnSG8uF_Avbh_--_BSuI57lu4PJ4SO4gd2P212hW9Crqwv7GK7pb_XponrihyKD46tG9h8tXHnP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Recommendation+Algorithm+Based+on+Improved+Conditional+Variational+Autoencoder+and+Constrained+Probabilistic+Matrix+Factorization&rft.jtitle=Applied+sciences&rft.au=Yunfei+Zhang&rft.au=Hongzhen+Xu&rft.au=Xiaojun+Yu&rft.date=2023-11-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=13&rft.issue=21&rft.spage=12027&rft_id=info:doi/10.3390%2Fapp132112027&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_626d905e644d47f09bec7f9431b82667
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon