A method for fault detection in multi-component systems based on sparse autoencoder-based deep neural networks
•We consider the problem of detecting failures in multi-component system.•The autoencoder-based method is able to automatically extract degradation indicators.•A single run-to-failure trajectory is enough to pre-train the deep neural network.•The computational burden of deep neural network hyperpara...
Uloženo v:
| Vydáno v: | Reliability engineering & system safety Ročník 220; s. 108278 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Barking
Elsevier Ltd
01.04.2022
Elsevier BV Elsevier |
| Témata: | |
| ISSN: | 0951-8320, 1879-0836 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | •We consider the problem of detecting failures in multi-component system.•The autoencoder-based method is able to automatically extract degradation indicators.•A single run-to-failure trajectory is enough to pre-train the deep neural network.•The computational burden of deep neural network hyperparameter setting is reduced.•The proposed method allows dealing with unbalanced dataset.
In multi-component systems, degradation, maintenance, renewal and operational mode change continuously the operating conditions. The identification of the onset of abnormal conditions from signal measurements taken in such evolving environments can be quite challenging, due to the difficulty of distinguishing the real cause of the signal variations. In this work, we present a method for fault detection in evolving environments that uses a Sparse Autoencoder-based Deep Neural Network (SAE-DNN) and a novel procedure that remarkably reduces the computational burden for setting the values of the hyperparameters. The method is applied to a synthetic case study and to a bearing vibration dataset. The results show that it is able to accurately detect faults in multi-component systems, outperforming other state-of-the-art methods. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0951-8320 1879-0836 |
| DOI: | 10.1016/j.ress.2021.108278 |