An Improved Mayfly Optimization Algorithm for Type-2 Multi-Objective Integrated Process Planning and Scheduling
The type-2 multi-objective integrated process planning and scheduling problem, as an NP-hard problem, is required to deal with both process planning and job shop scheduling, and to generate optimal schedules while planning optimal machining paths for the workpieces. For the type-2 multi-objective in...
Uloženo v:
| Vydáno v: | Mathematics (Basel) Ročník 11; číslo 20; s. 4384 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
01.10.2023
|
| Témata: | |
| ISSN: | 2227-7390, 2227-7390 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The type-2 multi-objective integrated process planning and scheduling problem, as an NP-hard problem, is required to deal with both process planning and job shop scheduling, and to generate optimal schedules while planning optimal machining paths for the workpieces. For the type-2 multi-objective integrated process planning and scheduling problem, a mathematical model with the minimization objectives of makespan, total machine load, and critical machine load is developed. A multi-objective mayfly optimization algorithm with decomposition and adaptive neighborhood search is designed to solve this problem. The algorithm uses two forms of encoding, a transformation scheme designed to allow the two codes to switch between each other during evolution, and a hybrid population initialization strategy designed to improve the quality of the initial solution while taking into account diversity. In addition, an adaptive neighborhood search cycle based on the average distance of the Pareto optimal set to the ideal point is designed to improve the algorithm’s merit-seeking ability while maintaining the diversity of the population. The proposed encoding and decoding scheme can better transform the continuous optimization algorithm to apply to the combinatorial optimization problem. Finally, it is experimentally verified that the proposed algorithm achieves better experimental results and can effectively deal with type-2 MOIPPS. |
|---|---|
| AbstractList | The type-2 multi-objective integrated process planning and scheduling problem, as an NP-hard problem, is required to deal with both process planning and job shop scheduling, and to generate optimal schedules while planning optimal machining paths for the workpieces. For the type-2 multi-objective integrated process planning and scheduling problem, a mathematical model with the minimization objectives of makespan, total machine load, and critical machine load is developed. A multi-objective mayfly optimization algorithm with decomposition and adaptive neighborhood search is designed to solve this problem. The algorithm uses two forms of encoding, a transformation scheme designed to allow the two codes to switch between each other during evolution, and a hybrid population initialization strategy designed to improve the quality of the initial solution while taking into account diversity. In addition, an adaptive neighborhood search cycle based on the average distance of the Pareto optimal set to the ideal point is designed to improve the algorithm’s merit-seeking ability while maintaining the diversity of the population. The proposed encoding and decoding scheme can better transform the continuous optimization algorithm to apply to the combinatorial optimization problem. Finally, it is experimentally verified that the proposed algorithm achieves better experimental results and can effectively deal with type-2 MOIPPS. |
| Audience | Academic |
| Author | Pan, Dazhi Yang, Ke |
| Author_xml | – sequence: 1 givenname: Ke surname: Yang fullname: Yang, Ke – sequence: 2 givenname: Dazhi surname: Pan fullname: Pan, Dazhi |
| BookMark | eNptUU1r3DAQFSWFpmlu_QGCXutUlmzLOi6hHwsJG2h6FmNp5NViS1tZG9j--irZEkKo5jCa0XtPw7z35CzEgIR8rNmVEIp9mSFv65qzRvTNG3LOOZeVLA9nL-7vyOWy7Fg5qi4wdU7iKtD1vE_xAS29haObjnSzz372fyD7GOhqGmPyeTtTFxO9P-6x4vT2MGVfbYYdmuwfkK5DxjFBLhp3KRpcFno3QQg-jBSCpT_NFu1hKuUH8tbBtODlv3xBfn37en_9o7rZfF9fr24q07AuVxYNG1SPTHTcKjdIaRU2omXIu94ZJ5xoB2GgQ6dc3XROOjtYEG1JaEwtLsj6pGsj7PQ--RnSUUfw-qkR06ghZW8m1MoykBKMMow3xjo1QGe7piuFktg-an06aZU1_T7gkvUuHlIo42ve97ztOy5ZQV2dUCMUUR9czAlMCYuzN8Ur50t_JSVnqpeqKYTPJ4JJcVkSuucxa6YfLdUvLS1w_gpufH7yqPzjp_-T_gIfQKhf |
| CitedBy_id | crossref_primary_10_1038_s41598_025_08517_x crossref_primary_10_1016_j_rineng_2024_103407 |
| Cites_doi | 10.1016/S0305-0548(02)00063-1 10.1109/TEVC.2007.892759 10.1016/j.rcim.2022.102334 10.1080/23311916.2015.1070494 10.1016/j.eswa.2011.07.019 10.1016/j.eswa.2010.08.145 10.1016/j.cor.2022.105728 10.1080/00207543.2016.1267414 10.1080/00207543.2013.853890 10.1007/s11227-022-04998-z 10.1016/j.rcim.2007.12.002 10.1109/TEVC.2015.2443001 10.1080/00207543.2016.1140917 10.1287/ijoc.6.2.108 10.1109/CEC.2018.8477730 10.1016/j.cie.2020.106559 10.1016/j.swevo.2022.101204 10.1016/0736-5845(84)90020-6 10.1109/4235.996017 10.1016/j.cor.2008.07.006 10.1016/j.cie.2011.08.015 10.1016/j.cie.2021.107194 10.1016/j.jclepro.2017.08.068 10.1023/A:1008952024606 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS Q9U DOA |
| DOI | 10.3390/math11204384 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central Engineering Research Database ProQuest Central Student SciTech Collection (ProQuest) ProQuest Computer Science Collection Computer Science Database (ProQuest) Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition Engineering Collection ProQuest Central Basic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 2227-7390 |
| ExternalDocumentID | oai_doaj_org_article_9d0a77ac9c024cdf9ba6d64624c97e51 A772098794 10_3390_math11204384 |
| GroupedDBID | -~X 5VS 85S 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ABPPZ ABUWG ACIPV ACIWK ADBBV AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO GNUQQ GROUPED_DOAJ HCIFZ IAO ITC K6V K7- KQ8 L6V M7S MODMG M~E OK1 PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PTHSS RNS 3V. 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D M0N P62 PKEHL PQEST PQUKI Q9U |
| ID | FETCH-LOGICAL-c406t-dec0b98e0362d9fb77d9e4350e268fcf3f35b3ca6ef9f146f7fdbda35fdbecc13 |
| IEDL.DBID | M7S |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001089982600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2227-7390 |
| IngestDate | Tue Oct 14 19:04:35 EDT 2025 Fri Jul 25 12:04:36 EDT 2025 Tue Nov 04 18:42:38 EST 2025 Sat Nov 29 07:19:59 EST 2025 Tue Nov 18 20:39:31 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 20 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c406t-dec0b98e0362d9fb77d9e4350e268fcf3f35b3ca6ef9f146f7fdbda35fdbecc13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.proquest.com/docview/2882586270?pq-origsite=%requestingapplication% |
| PQID | 2882586270 |
| PQPubID | 2032364 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_9d0a77ac9c024cdf9ba6d64624c97e51 proquest_journals_2882586270 gale_infotracacademiconefile_A772098794 crossref_primary_10_3390_math11204384 crossref_citationtrail_10_3390_math11204384 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-10-01 |
| PublicationDateYYYYMMDD | 2023-10-01 |
| PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Mathematics (Basel) |
| PublicationYear | 2023 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Li (ref_12) 2012; 39 Zhang (ref_24) 2007; 11 Hosseinzadeh (ref_23) 2022; 22 Kim (ref_5) 2003; 30 Zervoudakis (ref_16) 2020; 145 Wu (ref_10) 2021; 155 Wen (ref_15) 2022; 77 Lou (ref_21) 2022; 75 Mohapatra (ref_13) 2012; 51 Zhang (ref_9) 2016; 55 Zhang (ref_26) 2011; 38 Huang (ref_27) 2021; 41 Chryssolouris (ref_4) 1984; 1 Wen (ref_33) 2018; 29 Chryssolouris (ref_1) 1985; 1 Chiang (ref_29) 2012; Volume 1 An (ref_18) 2022; 50 Chutima (ref_32) 2011; 62 Zhang (ref_34) 2016; 340 Jin (ref_3) 2016; 54 Deb (ref_35) 2002; 6 Naderi (ref_6) 2021; 142 Tan (ref_2) 2000; 11 ref_25 Taillard (ref_28) 1994; 6 Zhang (ref_19) 2022; 43 Yuan (ref_20) 2016; 20 Ausaf (ref_7) 2015; 2 Xuan (ref_11) 2019; 25 Huang (ref_8) 2018; 24 Guo (ref_22) 2009; 25 Zou (ref_17) 2022; 79 Zhang (ref_30) 2017; 167 Shokouhi (ref_14) 2018; 6 Shao (ref_31) 2009; 36 |
| References_xml | – volume: 30 start-page: 1151 year: 2003 ident: ref_5 article-title: A symbiotic evolutionary algorithm for the integration of process planning and scheduling publication-title: Comput. Oper. Res. doi: 10.1016/S0305-0548(02)00063-1 – volume: 11 start-page: 712 year: 2007 ident: ref_24 article-title: MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2007.892759 – volume: 77 start-page: 102334 year: 2022 ident: ref_15 article-title: Dynamic scheduling method for integrated process planning and scheduling problem with machine fault publication-title: Robot. Comput.-Integr. Manuf. doi: 10.1016/j.rcim.2022.102334 – volume: Volume 1 start-page: 49 year: 2012 ident: ref_29 article-title: Flexible job shop scheduling using a multiobjective memetic algorithm publication-title: Advanced Intelligent Computing Theories and Applications. With Aspects of Artificial Intelligence: Proceedings of the 7th International Conference, ICIC 2011, Zhengzhou, China, 11–14 August 2011 – volume: 2 start-page: 1070494 year: 2015 ident: ref_7 article-title: A priority-based heuristic algorithm (PBHA) for optimizing integrated process planning and scheduling problem publication-title: Cogent Eng. doi: 10.1080/23311916.2015.1070494 – volume: 39 start-page: 288 year: 2012 ident: ref_12 article-title: Application of game theory based hybrid algorithm for multi-objective integrated process planning and scheduling publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.07.019 – volume: 38 start-page: 3563 year: 2011 ident: ref_26 article-title: An effective genetic algorithm for the flexible job-shop scheduling problem publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2010.08.145 – volume: 25 start-page: 1729 year: 2019 ident: ref_11 article-title: Clustering and differential evolution algorithm for solving multi-objectives IPPS problem publication-title: Comput. Integr. Manuf. Syst. – volume: 6 start-page: 61 year: 2018 ident: ref_14 article-title: Integrated multi-objective process planning and flexible job shop scheduling considering precedence constraints publication-title: Prod. Manuf. Res.-Open Access J. – volume: 22 start-page: 5055 year: 2022 ident: ref_23 article-title: Mathematical modeling and two metaheuristic algorithms for integrated process planning and group scheduling with sequence-dependent setup time publication-title: Oper. Res. – volume: 142 start-page: 105728 year: 2021 ident: ref_6 article-title: Type-2 integrated process-planning and scheduling problem: Reformulation and solution algorithms publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2022.105728 – volume: 55 start-page: 3173 year: 2016 ident: ref_9 article-title: Flexible job-shop scheduling/rescheduling in dynamic environment: A hybrid MAS/ACO approach publication-title: Int. J. Prod. Res. doi: 10.1080/00207543.2016.1267414 – volume: 51 start-page: 7190 year: 2012 ident: ref_13 article-title: Integration of process planning and scheduling through adaptive setup planning: A multi-objective approach publication-title: Int. J. Prod. Res. doi: 10.1080/00207543.2013.853890 – volume: 340 start-page: 1 year: 2016 ident: ref_34 article-title: Solving integrated process planning and scheduling problem with constructive meta-heuristics publication-title: Inf. Sci. – volume: 24 start-page: 558 year: 2018 ident: ref_8 article-title: ACO integrated approach for solving flexible job-shop scheduling with mulitple process plans publication-title: Comput. Integr. Manuf. Syst. – volume: 79 start-page: 8340 year: 2022 ident: ref_17 article-title: Mobile robot path planning using improved mayfly optimization algorithm and dynamic window approach publication-title: J. Supercomput. doi: 10.1007/s11227-022-04998-z – volume: 25 start-page: 280 year: 2009 ident: ref_22 article-title: Applications of particle swarm optimisation in integrated process planning and scheduling publication-title: Robot. Comput.-Integr. Manuf. doi: 10.1016/j.rcim.2007.12.002 – volume: 20 start-page: 180 year: 2016 ident: ref_20 article-title: Balancing Conver- gence and Diversity in Decomposition-Based Many-Objective Optimizers publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2015.2443001 – volume: 54 start-page: 4387 year: 2016 ident: ref_3 article-title: More MILP models for integrated process planning and scheduling publication-title: Int. J. Prod. Res. doi: 10.1080/00207543.2016.1140917 – volume: 6 start-page: 108 year: 1994 ident: ref_28 article-title: Parallel Taboo Search Techniques for the Job Shop Scheduling Problem publication-title: INFORMS J. Comput. doi: 10.1287/ijoc.6.2.108 – ident: ref_25 doi: 10.1109/CEC.2018.8477730 – volume: 145 start-page: 106559 year: 2020 ident: ref_16 article-title: A mayfly optimization algorithm publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2020.106559 – volume: 75 start-page: 101204 year: 2022 ident: ref_21 article-title: Memetic algorithm based on learning and decomposition for multiobjective flexible job shop scheduling considering human factors publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2022.101204 – volume: 1 start-page: 315 year: 1984 ident: ref_4 article-title: Decision making on the factory floor: An integrated approach to process planning and scheduling publication-title: Robot. Comput.-Integr. Manuf. doi: 10.1016/0736-5845(84)90020-6 – volume: 41 start-page: 2367 year: 2021 ident: ref_27 article-title: A new neighborhood structure for solving the flexible job-shop scheduling problem publication-title: Syst. Eng.-Theory Pract. – volume: 6 start-page: 182 year: 2002 ident: ref_35 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.996017 – volume: 36 start-page: 2082 year: 2009 ident: ref_31 article-title: Integration of process planning and scheduling—A modified genetic algorithm-based approach publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2008.07.006 – volume: 62 start-page: 39 year: 2011 ident: ref_32 article-title: Multi-objective two-sided mixed-model assembly line balancing using particle swarm optimisation with negative knowledge publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2011.08.015 – volume: 1 start-page: 315 year: 1985 ident: ref_1 article-title: An integrated apporach to process planning and scheduling publication-title: CIRP Ann. – volume: 29 start-page: 2716 year: 2018 ident: ref_33 article-title: Two-stage Hybrid Algorithm for Integrated Process Planning and Scheduling Problems publication-title: China Mech. Eng. – volume: 155 start-page: 107194 year: 2021 ident: ref_10 article-title: Two layered approaches integrating harmony search with genetic algorithm for the integrated process planning and scheduling problem publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2021.107194 – volume: 43 start-page: 156 year: 2022 ident: ref_19 article-title: Resource allocation strategies for improved mayfly algorithm in cognitive heterogeneous cellular network publication-title: J. Commun. – volume: 50 start-page: 31 year: 2022 ident: ref_18 article-title: Optimal location and sizing of battery energy storage systems in a distribution network based on a modified multiobjective mayfly algorithm publication-title: Power Syst. Prot. Control – volume: 167 start-page: 665 year: 2017 ident: ref_30 article-title: Game theory based real-time multi-objective flexible job shop scheduling considering environmental impact publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2017.08.068 – volume: 11 start-page: 51 year: 2000 ident: ref_2 article-title: Integration of process planning and scheduling—A review publication-title: J. Intell. Manuf. doi: 10.1023/A:1008952024606 |
| SSID | ssj0000913849 |
| Score | 2.2546787 |
| Snippet | The type-2 multi-objective integrated process planning and scheduling problem, as an NP-hard problem, is required to deal with both process planning and job... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 4384 |
| SubjectTerms | Algorithms Analysis Coding Combinatorial analysis Decoding Genetic algorithms Job shop scheduling Machining Manufacturing Mathematical optimization multi-objective optimization Multiple objective analysis neighborhood structure Optimization Optimization algorithms Process planning Scheduling shop scheduling Workpieces |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6keNCD-MT6Yg-KBwnGbJLdOUZR9NBWUMHbsk-rtKnYKvTfO5ukpR7Ei6eQsIfNzOzMfMnMN4Qc2yTlOssCFWIKgVTbR5A6dIYYXjB6MJOBqYZN8G5XPD_D_cKor1ATVtMD14I7BxsrzpUBg9HEWA9a5TZPc7wB7qrm6STmsACmKh8MF0ykUFe6M8T155j_9TG3CD--0h8xqKLq_80hV1HmZp2sNekhLeptbZAlV26S1c6cW3W8RUZFSetPAc7Sjpr6wZT28OAPm45KWgxeRgj5-0OKCSkNQDNKaNVoG_X0W-3g6N2MJsLSpleAzuYXUVVa-oDKtKFK_WWbPN1cP17dRs3YhMhgdJ5E1plYg3AhNlnwmnMLDrOi2CW58MYzzzLNjMqdB4-O0nNvtVUswwsq9ILtkFY5Kt0uoVYLcIxry5RIMZpiNuUEiAAbRW4y3SZnM0FK03CKh9EWA4nYIohdLoq9TU7mq99rLo1f1l0GnczXBAbs6gHahWzsQv5lF21yGjQqwznFLRnVtBvgiwXGK1kgrIhBoIm2ycFM6bI5wGOZIPLIEO3xeO8_drNPVsKc-roK8IC0Jh-f7pAsm6_J6_jjqLLdb9gP9cs priority: 102 providerName: Directory of Open Access Journals |
| Title | An Improved Mayfly Optimization Algorithm for Type-2 Multi-Objective Integrated Process Planning and Scheduling |
| URI | https://www.proquest.com/docview/2882586270 https://doaj.org/article/9d0a77ac9c024cdf9ba6d64624c97e51 |
| Volume | 11 |
| WOSCitedRecordID | wos001089982600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center) customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Computer Science Database (ProQuest) customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: K7- dateStart: 20130301 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: M7S dateStart: 20130301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: BENPR dateStart: 20130301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: PIMPY dateStart: 20130301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB5BywEOvCsCJfIBxAGtuol31_YJpSgVFUoaUZDKyVq_UlC6KUlA6oXfzozXG-BQLlx2tWtr5ZXHM9-Mx98AvHDDQpiyJCrEQhGpdshU4VEZonlB68FtqWwsNiGmU3l2pmYp4LZOaZWdToyK2i0txcgPhggFS4TfIn9z-S2jqlG0u5pKaNyEXWJJGMTUvdNtjIU4L2Wh2nx3jt79AaLAc0QYtP1V_GWJImH_dWo52pqje_87yvtwN6FMNmrF4gHc8M1DuDPZUrSuH8Fy1LA2ouAdm9RXYXHFTlB_XKSDmWy0mOOXN-cXDHEtI381G7J4Xjc7MV9bPcmOO7YJx9KRA9aVQWJ149gpyoSjZPf5Y_h0NP749l2Wqi9kFo38JnPe5kZJTybOqWCEcMojuMr9sJLBBh54abitKx9UQH0bRHDG1bzEG8rFgO_BTrNs_BNgzkjluTCO17JAo4ygzEslyfuUlS1ND153M6FtoianChkLjS4KzZv-c9568HLb-7Kl5Lim3yFN6rYPEWnHF8vVXKd1qZXLayFqqyyCFeuCMnXlqqLCByV8OejBKxIJTcsdh2TrdGoBf4yIs_QIvZNcSZT0Hux3IqGTHljr3_Lw9N_Nz-A2FbJv0wT3YWez-u6fwy37Y_NlverD7uF4OvvQjxEDvL4XWT-KOl1_jrF9djyZff4FHEUJvQ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VggQceCMCBXyg4oBW3a531_YBofCoGqVJkShSb8bPFJRuShJA-VP8Rmb2EeBQbj1wipJYUbz7-ZtvvJ5vAJ75LBe2KMgKMVdkqh0TlQckQwwvGD24K5Srm02I8VgeH6v3G_Czq4WhY5UdJ9ZE7WeO9sh3MpSCBcpvkb46-5pQ1yh6utq10GhgMQyrH5iyLV4O3uL93c6yvXdHb_aTtqtA4jB4LRMfXGqVDETdXkUrhFcBRUMaslJGF3nkheXOlCGqiDwSRfTWG17gC853l-PvXoLLOZeC1tVQJOs9HfLYlLlqztdzrtIdVJ0nqGjocVv-V-SrGwScFwbq2LZ383-7KrfgRquiWb-B_W3YCNUduD5aW9Au7sKsX7FmxyR4NjKrOF2xQ-TH07bwlPWnE5zJ8uSUoW5nlI8nGavrkZND-6WJA2zQuWl41pZUsK7NEzOVZx8Q854O80_uwccLmfF92KxmVXgAzFupAhfWcyNzFB0oOoNUkrJrWbrC9uBFd-e1a63XqQPIVGMKRjjRf-KkB9vr0WeN5cg5414TiNZjyCi8_mA2n-iWd7TyqRHCOOVQjDkflTWlL_MS3ygRit0ePCcIaqIz_EvOtFUZODEyBtN9zL5SJXEl92Crg6BueW6hf-Pv4b-_fgpX949GB_pgMB4-gmsZSsXmSOQWbC7n38JjuOK-Lz8v5k_qJcXg00Wj9RdkiWUT |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NbxMxEB2VFCE48I0IFPCBigNaZbveXdsHhAIlIipJIwFSObn-TEHppiQBlL_Gr2O86w1wKLceOK12Y0Vx9nnmjT3zBuCpzXKmiyJIIeYiiGr7ROQOjSG6F_Qe1BTC1M0m2HjMj47EZAt-trUwIa2ytYm1obZzE_bIexlSwQLpN0t7PqZFTPYHL8--JqGDVDhpbdtpNBA5cOsfGL4tXwz38V3vZtngzYfXb5PYYSAx6MhWiXUm1YK7YMat8JoxKxwSiNRlJffGU08LTY0qnRcebYpn3mqraIEXnPsexe-9BNtIyfOsA9uT4WjyabPDExQ3eS6abHtKRdpDDnqC_CYcvuV_-cG6XcB5TqH2dIMb__N_dBOuR35N-s2CuAVbrroN10YbcdrlHZj3K9LspThLRmrtZ2tyiJbzNJakkv5sijNZnZwSZPQkROpJRupK5eRQf2k8BBm2OhuWxGIL0jaAIqqy5D2uBhvS_Kd34eOFzPgedKp55e4DsZoLR5m2VPEc6QjSUccFD3E3L02hu_C8RYE0UZQ99AaZSQzOAmbkn5jpwu5m9FkjRnLOuFcBUJsxQUK8fjBfTGW0SFLYVDGmjDBI04z1QqvSlnmJN4K5Yq8LzwIcZTB0-JOMivUaOLEgGSb7GJelguMa78JOC0cZLeBS_sbig39__ASuIEjlu-H44CFczZBDNrmSO9BZLb65R3DZfF99Xi4ex_VF4Pii4foLaYhvlA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Improved+Mayfly+Optimization+Algorithm+for+Type-2+Multi-Objective+Integrated+Process+Planning+and+Scheduling&rft.jtitle=Mathematics+%28Basel%29&rft.au=Yang%2C+Ke&rft.au=Pan%2C+Dazhi&rft.date=2023-10-01&rft.issn=2227-7390&rft.eissn=2227-7390&rft.volume=11&rft.issue=20&rft.spage=4384&rft_id=info:doi/10.3390%2Fmath11204384&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_math11204384 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon |