An Improved Mayfly Optimization Algorithm for Type-2 Multi-Objective Integrated Process Planning and Scheduling

The type-2 multi-objective integrated process planning and scheduling problem, as an NP-hard problem, is required to deal with both process planning and job shop scheduling, and to generate optimal schedules while planning optimal machining paths for the workpieces. For the type-2 multi-objective in...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematics (Basel) Ročník 11; číslo 20; s. 4384
Hlavní autoři: Yang, Ke, Pan, Dazhi
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.10.2023
Témata:
ISSN:2227-7390, 2227-7390
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The type-2 multi-objective integrated process planning and scheduling problem, as an NP-hard problem, is required to deal with both process planning and job shop scheduling, and to generate optimal schedules while planning optimal machining paths for the workpieces. For the type-2 multi-objective integrated process planning and scheduling problem, a mathematical model with the minimization objectives of makespan, total machine load, and critical machine load is developed. A multi-objective mayfly optimization algorithm with decomposition and adaptive neighborhood search is designed to solve this problem. The algorithm uses two forms of encoding, a transformation scheme designed to allow the two codes to switch between each other during evolution, and a hybrid population initialization strategy designed to improve the quality of the initial solution while taking into account diversity. In addition, an adaptive neighborhood search cycle based on the average distance of the Pareto optimal set to the ideal point is designed to improve the algorithm’s merit-seeking ability while maintaining the diversity of the population. The proposed encoding and decoding scheme can better transform the continuous optimization algorithm to apply to the combinatorial optimization problem. Finally, it is experimentally verified that the proposed algorithm achieves better experimental results and can effectively deal with type-2 MOIPPS.
AbstractList The type-2 multi-objective integrated process planning and scheduling problem, as an NP-hard problem, is required to deal with both process planning and job shop scheduling, and to generate optimal schedules while planning optimal machining paths for the workpieces. For the type-2 multi-objective integrated process planning and scheduling problem, a mathematical model with the minimization objectives of makespan, total machine load, and critical machine load is developed. A multi-objective mayfly optimization algorithm with decomposition and adaptive neighborhood search is designed to solve this problem. The algorithm uses two forms of encoding, a transformation scheme designed to allow the two codes to switch between each other during evolution, and a hybrid population initialization strategy designed to improve the quality of the initial solution while taking into account diversity. In addition, an adaptive neighborhood search cycle based on the average distance of the Pareto optimal set to the ideal point is designed to improve the algorithm’s merit-seeking ability while maintaining the diversity of the population. The proposed encoding and decoding scheme can better transform the continuous optimization algorithm to apply to the combinatorial optimization problem. Finally, it is experimentally verified that the proposed algorithm achieves better experimental results and can effectively deal with type-2 MOIPPS.
Audience Academic
Author Pan, Dazhi
Yang, Ke
Author_xml – sequence: 1
  givenname: Ke
  surname: Yang
  fullname: Yang, Ke
– sequence: 2
  givenname: Dazhi
  surname: Pan
  fullname: Pan, Dazhi
BookMark eNptUU1r3DAQFSWFpmlu_QGCXutUlmzLOi6hHwsJG2h6FmNp5NViS1tZG9j--irZEkKo5jCa0XtPw7z35CzEgIR8rNmVEIp9mSFv65qzRvTNG3LOOZeVLA9nL-7vyOWy7Fg5qi4wdU7iKtD1vE_xAS29haObjnSzz372fyD7GOhqGmPyeTtTFxO9P-6x4vT2MGVfbYYdmuwfkK5DxjFBLhp3KRpcFno3QQg-jBSCpT_NFu1hKuUH8tbBtODlv3xBfn37en_9o7rZfF9fr24q07AuVxYNG1SPTHTcKjdIaRU2omXIu94ZJ5xoB2GgQ6dc3XROOjtYEG1JaEwtLsj6pGsj7PQ--RnSUUfw-qkR06ghZW8m1MoykBKMMow3xjo1QGe7piuFktg-an06aZU1_T7gkvUuHlIo42ve97ztOy5ZQV2dUCMUUR9czAlMCYuzN8Ur50t_JSVnqpeqKYTPJ4JJcVkSuucxa6YfLdUvLS1w_gpufH7yqPzjp_-T_gIfQKhf
CitedBy_id crossref_primary_10_1038_s41598_025_08517_x
crossref_primary_10_1016_j_rineng_2024_103407
Cites_doi 10.1016/S0305-0548(02)00063-1
10.1109/TEVC.2007.892759
10.1016/j.rcim.2022.102334
10.1080/23311916.2015.1070494
10.1016/j.eswa.2011.07.019
10.1016/j.eswa.2010.08.145
10.1016/j.cor.2022.105728
10.1080/00207543.2016.1267414
10.1080/00207543.2013.853890
10.1007/s11227-022-04998-z
10.1016/j.rcim.2007.12.002
10.1109/TEVC.2015.2443001
10.1080/00207543.2016.1140917
10.1287/ijoc.6.2.108
10.1109/CEC.2018.8477730
10.1016/j.cie.2020.106559
10.1016/j.swevo.2022.101204
10.1016/0736-5845(84)90020-6
10.1109/4235.996017
10.1016/j.cor.2008.07.006
10.1016/j.cie.2011.08.015
10.1016/j.cie.2021.107194
10.1016/j.jclepro.2017.08.068
10.1023/A:1008952024606
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
Q9U
DOA
DOI 10.3390/math11204384
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Collection (ProQuest)
ProQuest Computer Science Collection
Computer Science Database (ProQuest)
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Engineering Collection
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList

Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2227-7390
ExternalDocumentID oai_doaj_org_article_9d0a77ac9c024cdf9ba6d64624c97e51
A772098794
10_3390_math11204384
GroupedDBID -~X
5VS
85S
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABPPZ
ABUWG
ACIPV
ACIWK
ADBBV
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ITC
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
RNS
3V.
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c406t-dec0b98e0362d9fb77d9e4350e268fcf3f35b3ca6ef9f146f7fdbda35fdbecc13
IEDL.DBID M7S
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001089982600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2227-7390
IngestDate Tue Oct 14 19:04:35 EDT 2025
Fri Jul 25 12:04:36 EDT 2025
Tue Nov 04 18:42:38 EST 2025
Sat Nov 29 07:19:59 EST 2025
Tue Nov 18 20:39:31 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 20
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-dec0b98e0362d9fb77d9e4350e268fcf3f35b3ca6ef9f146f7fdbda35fdbecc13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2882586270?pq-origsite=%requestingapplication%
PQID 2882586270
PQPubID 2032364
ParticipantIDs doaj_primary_oai_doaj_org_article_9d0a77ac9c024cdf9ba6d64624c97e51
proquest_journals_2882586270
gale_infotracacademiconefile_A772098794
crossref_primary_10_3390_math11204384
crossref_citationtrail_10_3390_math11204384
PublicationCentury 2000
PublicationDate 2023-10-01
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Mathematics (Basel)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Li (ref_12) 2012; 39
Zhang (ref_24) 2007; 11
Hosseinzadeh (ref_23) 2022; 22
Kim (ref_5) 2003; 30
Zervoudakis (ref_16) 2020; 145
Wu (ref_10) 2021; 155
Wen (ref_15) 2022; 77
Lou (ref_21) 2022; 75
Mohapatra (ref_13) 2012; 51
Zhang (ref_9) 2016; 55
Zhang (ref_26) 2011; 38
Huang (ref_27) 2021; 41
Chryssolouris (ref_4) 1984; 1
Wen (ref_33) 2018; 29
Chryssolouris (ref_1) 1985; 1
Chiang (ref_29) 2012; Volume 1
An (ref_18) 2022; 50
Chutima (ref_32) 2011; 62
Zhang (ref_34) 2016; 340
Jin (ref_3) 2016; 54
Deb (ref_35) 2002; 6
Naderi (ref_6) 2021; 142
Tan (ref_2) 2000; 11
ref_25
Taillard (ref_28) 1994; 6
Zhang (ref_19) 2022; 43
Yuan (ref_20) 2016; 20
Ausaf (ref_7) 2015; 2
Xuan (ref_11) 2019; 25
Huang (ref_8) 2018; 24
Guo (ref_22) 2009; 25
Zou (ref_17) 2022; 79
Zhang (ref_30) 2017; 167
Shokouhi (ref_14) 2018; 6
Shao (ref_31) 2009; 36
References_xml – volume: 30
  start-page: 1151
  year: 2003
  ident: ref_5
  article-title: A symbiotic evolutionary algorithm for the integration of process planning and scheduling
  publication-title: Comput. Oper. Res.
  doi: 10.1016/S0305-0548(02)00063-1
– volume: 11
  start-page: 712
  year: 2007
  ident: ref_24
  article-title: MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2007.892759
– volume: 77
  start-page: 102334
  year: 2022
  ident: ref_15
  article-title: Dynamic scheduling method for integrated process planning and scheduling problem with machine fault
  publication-title: Robot. Comput.-Integr. Manuf.
  doi: 10.1016/j.rcim.2022.102334
– volume: Volume 1
  start-page: 49
  year: 2012
  ident: ref_29
  article-title: Flexible job shop scheduling using a multiobjective memetic algorithm
  publication-title: Advanced Intelligent Computing Theories and Applications. With Aspects of Artificial Intelligence: Proceedings of the 7th International Conference, ICIC 2011, Zhengzhou, China, 11–14 August 2011
– volume: 2
  start-page: 1070494
  year: 2015
  ident: ref_7
  article-title: A priority-based heuristic algorithm (PBHA) for optimizing integrated process planning and scheduling problem
  publication-title: Cogent Eng.
  doi: 10.1080/23311916.2015.1070494
– volume: 39
  start-page: 288
  year: 2012
  ident: ref_12
  article-title: Application of game theory based hybrid algorithm for multi-objective integrated process planning and scheduling
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.07.019
– volume: 38
  start-page: 3563
  year: 2011
  ident: ref_26
  article-title: An effective genetic algorithm for the flexible job-shop scheduling problem
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2010.08.145
– volume: 25
  start-page: 1729
  year: 2019
  ident: ref_11
  article-title: Clustering and differential evolution algorithm for solving multi-objectives IPPS problem
  publication-title: Comput. Integr. Manuf. Syst.
– volume: 6
  start-page: 61
  year: 2018
  ident: ref_14
  article-title: Integrated multi-objective process planning and flexible job shop scheduling considering precedence constraints
  publication-title: Prod. Manuf. Res.-Open Access J.
– volume: 22
  start-page: 5055
  year: 2022
  ident: ref_23
  article-title: Mathematical modeling and two metaheuristic algorithms for integrated process planning and group scheduling with sequence-dependent setup time
  publication-title: Oper. Res.
– volume: 142
  start-page: 105728
  year: 2021
  ident: ref_6
  article-title: Type-2 integrated process-planning and scheduling problem: Reformulation and solution algorithms
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2022.105728
– volume: 55
  start-page: 3173
  year: 2016
  ident: ref_9
  article-title: Flexible job-shop scheduling/rescheduling in dynamic environment: A hybrid MAS/ACO approach
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207543.2016.1267414
– volume: 51
  start-page: 7190
  year: 2012
  ident: ref_13
  article-title: Integration of process planning and scheduling through adaptive setup planning: A multi-objective approach
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207543.2013.853890
– volume: 340
  start-page: 1
  year: 2016
  ident: ref_34
  article-title: Solving integrated process planning and scheduling problem with constructive meta-heuristics
  publication-title: Inf. Sci.
– volume: 24
  start-page: 558
  year: 2018
  ident: ref_8
  article-title: ACO integrated approach for solving flexible job-shop scheduling with mulitple process plans
  publication-title: Comput. Integr. Manuf. Syst.
– volume: 79
  start-page: 8340
  year: 2022
  ident: ref_17
  article-title: Mobile robot path planning using improved mayfly optimization algorithm and dynamic window approach
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-022-04998-z
– volume: 25
  start-page: 280
  year: 2009
  ident: ref_22
  article-title: Applications of particle swarm optimisation in integrated process planning and scheduling
  publication-title: Robot. Comput.-Integr. Manuf.
  doi: 10.1016/j.rcim.2007.12.002
– volume: 20
  start-page: 180
  year: 2016
  ident: ref_20
  article-title: Balancing Conver- gence and Diversity in Decomposition-Based Many-Objective Optimizers
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2015.2443001
– volume: 54
  start-page: 4387
  year: 2016
  ident: ref_3
  article-title: More MILP models for integrated process planning and scheduling
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207543.2016.1140917
– volume: 6
  start-page: 108
  year: 1994
  ident: ref_28
  article-title: Parallel Taboo Search Techniques for the Job Shop Scheduling Problem
  publication-title: INFORMS J. Comput.
  doi: 10.1287/ijoc.6.2.108
– ident: ref_25
  doi: 10.1109/CEC.2018.8477730
– volume: 145
  start-page: 106559
  year: 2020
  ident: ref_16
  article-title: A mayfly optimization algorithm
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2020.106559
– volume: 75
  start-page: 101204
  year: 2022
  ident: ref_21
  article-title: Memetic algorithm based on learning and decomposition for multiobjective flexible job shop scheduling considering human factors
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2022.101204
– volume: 1
  start-page: 315
  year: 1984
  ident: ref_4
  article-title: Decision making on the factory floor: An integrated approach to process planning and scheduling
  publication-title: Robot. Comput.-Integr. Manuf.
  doi: 10.1016/0736-5845(84)90020-6
– volume: 41
  start-page: 2367
  year: 2021
  ident: ref_27
  article-title: A new neighborhood structure for solving the flexible job-shop scheduling problem
  publication-title: Syst. Eng.-Theory Pract.
– volume: 6
  start-page: 182
  year: 2002
  ident: ref_35
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.996017
– volume: 36
  start-page: 2082
  year: 2009
  ident: ref_31
  article-title: Integration of process planning and scheduling—A modified genetic algorithm-based approach
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2008.07.006
– volume: 62
  start-page: 39
  year: 2011
  ident: ref_32
  article-title: Multi-objective two-sided mixed-model assembly line balancing using particle swarm optimisation with negative knowledge
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2011.08.015
– volume: 1
  start-page: 315
  year: 1985
  ident: ref_1
  article-title: An integrated apporach to process planning and scheduling
  publication-title: CIRP Ann.
– volume: 29
  start-page: 2716
  year: 2018
  ident: ref_33
  article-title: Two-stage Hybrid Algorithm for Integrated Process Planning and Scheduling Problems
  publication-title: China Mech. Eng.
– volume: 155
  start-page: 107194
  year: 2021
  ident: ref_10
  article-title: Two layered approaches integrating harmony search with genetic algorithm for the integrated process planning and scheduling problem
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2021.107194
– volume: 43
  start-page: 156
  year: 2022
  ident: ref_19
  article-title: Resource allocation strategies for improved mayfly algorithm in cognitive heterogeneous cellular network
  publication-title: J. Commun.
– volume: 50
  start-page: 31
  year: 2022
  ident: ref_18
  article-title: Optimal location and sizing of battery energy storage systems in a distribution network based on a modified multiobjective mayfly algorithm
  publication-title: Power Syst. Prot. Control
– volume: 167
  start-page: 665
  year: 2017
  ident: ref_30
  article-title: Game theory based real-time multi-objective flexible job shop scheduling considering environmental impact
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2017.08.068
– volume: 11
  start-page: 51
  year: 2000
  ident: ref_2
  article-title: Integration of process planning and scheduling—A review
  publication-title: J. Intell. Manuf.
  doi: 10.1023/A:1008952024606
SSID ssj0000913849
Score 2.2546787
Snippet The type-2 multi-objective integrated process planning and scheduling problem, as an NP-hard problem, is required to deal with both process planning and job...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 4384
SubjectTerms Algorithms
Analysis
Coding
Combinatorial analysis
Decoding
Genetic algorithms
Job shop scheduling
Machining
Manufacturing
Mathematical optimization
multi-objective optimization
Multiple objective analysis
neighborhood structure
Optimization
Optimization algorithms
Process planning
Scheduling
shop scheduling
Workpieces
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6keNCD-MT6Yg-KBwnGbJLdOUZR9NBWUMHbsk-rtKnYKvTfO5ukpR7Ei6eQsIfNzOzMfMnMN4Qc2yTlOssCFWIKgVTbR5A6dIYYXjB6MJOBqYZN8G5XPD_D_cKor1ATVtMD14I7BxsrzpUBg9HEWA9a5TZPc7wB7qrm6STmsACmKh8MF0ykUFe6M8T155j_9TG3CD--0h8xqKLq_80hV1HmZp2sNekhLeptbZAlV26S1c6cW3W8RUZFSetPAc7Sjpr6wZT28OAPm45KWgxeRgj5-0OKCSkNQDNKaNVoG_X0W-3g6N2MJsLSpleAzuYXUVVa-oDKtKFK_WWbPN1cP17dRs3YhMhgdJ5E1plYg3AhNlnwmnMLDrOi2CW58MYzzzLNjMqdB4-O0nNvtVUswwsq9ILtkFY5Kt0uoVYLcIxry5RIMZpiNuUEiAAbRW4y3SZnM0FK03CKh9EWA4nYIohdLoq9TU7mq99rLo1f1l0GnczXBAbs6gHahWzsQv5lF21yGjQqwznFLRnVtBvgiwXGK1kgrIhBoIm2ycFM6bI5wGOZIPLIEO3xeO8_drNPVsKc-roK8IC0Jh-f7pAsm6_J6_jjqLLdb9gP9cs
  priority: 102
  providerName: Directory of Open Access Journals
Title An Improved Mayfly Optimization Algorithm for Type-2 Multi-Objective Integrated Process Planning and Scheduling
URI https://www.proquest.com/docview/2882586270
https://doaj.org/article/9d0a77ac9c024cdf9ba6d64624c97e51
Volume 11
WOSCitedRecordID wos001089982600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Computer Science Database (ProQuest)
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: K7-
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: M7S
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: BENPR
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: PIMPY
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB5BywEOvCsCJfIBxAGtuol31_YJpSgVFUoaUZDKyVq_UlC6KUlA6oXfzozXG-BQLlx2tWtr5ZXHM9-Mx98AvHDDQpiyJCrEQhGpdshU4VEZonlB68FtqWwsNiGmU3l2pmYp4LZOaZWdToyK2i0txcgPhggFS4TfIn9z-S2jqlG0u5pKaNyEXWJJGMTUvdNtjIU4L2Wh2nx3jt79AaLAc0QYtP1V_GWJImH_dWo52pqje_87yvtwN6FMNmrF4gHc8M1DuDPZUrSuH8Fy1LA2ouAdm9RXYXHFTlB_XKSDmWy0mOOXN-cXDHEtI381G7J4Xjc7MV9bPcmOO7YJx9KRA9aVQWJ149gpyoSjZPf5Y_h0NP749l2Wqi9kFo38JnPe5kZJTybOqWCEcMojuMr9sJLBBh54abitKx9UQH0bRHDG1bzEG8rFgO_BTrNs_BNgzkjluTCO17JAo4ygzEslyfuUlS1ND153M6FtoianChkLjS4KzZv-c9568HLb-7Kl5Lim3yFN6rYPEWnHF8vVXKd1qZXLayFqqyyCFeuCMnXlqqLCByV8OejBKxIJTcsdh2TrdGoBf4yIs_QIvZNcSZT0Hux3IqGTHljr3_Lw9N_Nz-A2FbJv0wT3YWez-u6fwy37Y_NlverD7uF4OvvQjxEDvL4XWT-KOl1_jrF9djyZff4FHEUJvQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VggQceCMCBXyg4oBW3a531_YBofCoGqVJkShSb8bPFJRuShJA-VP8Rmb2EeBQbj1wipJYUbz7-ZtvvJ5vAJ75LBe2KMgKMVdkqh0TlQckQwwvGD24K5Srm02I8VgeH6v3G_Czq4WhY5UdJ9ZE7WeO9sh3MpSCBcpvkb46-5pQ1yh6utq10GhgMQyrH5iyLV4O3uL93c6yvXdHb_aTtqtA4jB4LRMfXGqVDETdXkUrhFcBRUMaslJGF3nkheXOlCGqiDwSRfTWG17gC853l-PvXoLLOZeC1tVQJOs9HfLYlLlqztdzrtIdVJ0nqGjocVv-V-SrGwScFwbq2LZ383-7KrfgRquiWb-B_W3YCNUduD5aW9Au7sKsX7FmxyR4NjKrOF2xQ-TH07bwlPWnE5zJ8uSUoW5nlI8nGavrkZND-6WJA2zQuWl41pZUsK7NEzOVZx8Q854O80_uwccLmfF92KxmVXgAzFupAhfWcyNzFB0oOoNUkrJrWbrC9uBFd-e1a63XqQPIVGMKRjjRf-KkB9vr0WeN5cg5414TiNZjyCi8_mA2n-iWd7TyqRHCOOVQjDkflTWlL_MS3ygRit0ePCcIaqIz_EvOtFUZODEyBtN9zL5SJXEl92Crg6BueW6hf-Pv4b-_fgpX949GB_pgMB4-gmsZSsXmSOQWbC7n38JjuOK-Lz8v5k_qJcXg00Wj9RdkiWUT
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NbxMxEB2VFCE48I0IFPCBigNaZbveXdsHhAIlIipJIwFSObn-TEHppiQBlL_Gr2O86w1wKLceOK12Y0Vx9nnmjT3zBuCpzXKmiyJIIeYiiGr7ROQOjSG6F_Qe1BTC1M0m2HjMj47EZAt-trUwIa2ytYm1obZzE_bIexlSwQLpN0t7PqZFTPYHL8--JqGDVDhpbdtpNBA5cOsfGL4tXwz38V3vZtngzYfXb5PYYSAx6MhWiXUm1YK7YMat8JoxKxwSiNRlJffGU08LTY0qnRcebYpn3mqraIEXnPsexe-9BNtIyfOsA9uT4WjyabPDExQ3eS6abHtKRdpDDnqC_CYcvuV_-cG6XcB5TqH2dIMb__N_dBOuR35N-s2CuAVbrroN10YbcdrlHZj3K9LspThLRmrtZ2tyiJbzNJakkv5sijNZnZwSZPQkROpJRupK5eRQf2k8BBm2OhuWxGIL0jaAIqqy5D2uBhvS_Kd34eOFzPgedKp55e4DsZoLR5m2VPEc6QjSUccFD3E3L02hu_C8RYE0UZQ99AaZSQzOAmbkn5jpwu5m9FkjRnLOuFcBUJsxQUK8fjBfTGW0SFLYVDGmjDBI04z1QqvSlnmJN4K5Yq8LzwIcZTB0-JOMivUaOLEgGSb7GJelguMa78JOC0cZLeBS_sbig39__ASuIEjlu-H44CFczZBDNrmSO9BZLb65R3DZfF99Xi4ex_VF4Pii4foLaYhvlA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Improved+Mayfly+Optimization+Algorithm+for+Type-2+Multi-Objective+Integrated+Process+Planning+and+Scheduling&rft.jtitle=Mathematics+%28Basel%29&rft.au=Yang%2C+Ke&rft.au=Pan%2C+Dazhi&rft.date=2023-10-01&rft.issn=2227-7390&rft.eissn=2227-7390&rft.volume=11&rft.issue=20&rft.spage=4384&rft_id=info:doi/10.3390%2Fmath11204384&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_math11204384
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon