Vessel Trajectory Prediction Based on Automatic Identification System Data: Multi-Gated Attention Encoder Decoder Network

Utilizing time-series data from ship trajectories to forecast their subsequent movement is crucial for enhancing the safety within maritime traffic environments. The application of deep learning techniques, leveraging Automatic Identification System (AIS) data, has emerged as a pivotal area in marit...

Full description

Saved in:
Bibliographic Details
Published in:Journal of marine science and engineering Vol. 12; no. 10; p. 1695
Main Authors: Yang, Fan, He, Chunlin, Liu, Yi, Zeng, Anping, Hu, Longhe
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.10.2024
Subjects:
ISSN:2077-1312, 2077-1312
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Utilizing time-series data from ship trajectories to forecast their subsequent movement is crucial for enhancing the safety within maritime traffic environments. The application of deep learning techniques, leveraging Automatic Identification System (AIS) data, has emerged as a pivotal area in maritime traffic studies. Within this domain, the precise forecasting of ship trajectories stands as a central challenge. In this study, we propose the multi-gated attention encoder decoder (MGAED) network, a model based on an encoder–decoder structure specialized for predicting ship trajectories in canals. The model employs a long short-term memory network (LSTM) as an encoder, combined with multiple Gated Recurrent Units (GRUs) and an attention mechanism for the decoder. Long-term dependencies in time-series data are captured through GRUs, while the attention mechanism is used to strengthen the model’s ability to capture key information, and a soft threshold residual structure is introduced to handle sparse features, thus enhancing the model’s generalization ability and robustness. The efficacy of our model is substantiated by an extensive evaluation against current deep learning benchmarks. Through comprehensive comparison experiments with existing deep learning methods, our model shows significant improvements in prediction accuracy, with an at least 9.63% reduction in the mean error (MAE) and an at least 20.0% reduction in the mean square error (MSE), providing a new solution to improve the accuracy and efficiency of ship trajectory prediction.
AbstractList Utilizing time-series data from ship trajectories to forecast their subsequent movement is crucial for enhancing the safety within maritime traffic environments. The application of deep learning techniques, leveraging Automatic Identification System (AIS) data, has emerged as a pivotal area in maritime traffic studies. Within this domain, the precise forecasting of ship trajectories stands as a central challenge. In this study, we propose the multi-gated attention encoder decoder (MGAED) network, a model based on an encoder–decoder structure specialized for predicting ship trajectories in canals. The model employs a long short-term memory network (LSTM) as an encoder, combined with multiple Gated Recurrent Units (GRUs) and an attention mechanism for the decoder. Long-term dependencies in time-series data are captured through GRUs, while the attention mechanism is used to strengthen the model’s ability to capture key information, and a soft threshold residual structure is introduced to handle sparse features, thus enhancing the model’s generalization ability and robustness. The efficacy of our model is substantiated by an extensive evaluation against current deep learning benchmarks. Through comprehensive comparison experiments with existing deep learning methods, our model shows significant improvements in prediction accuracy, with an at least 9.63% reduction in the mean error (MAE) and an at least 20.0% reduction in the mean square error (MSE), providing a new solution to improve the accuracy and efficiency of ship trajectory prediction.
Audience Academic
Author He, Chunlin
Zeng, Anping
Hu, Longhe
Yang, Fan
Liu, Yi
Author_xml – sequence: 1
  givenname: Fan
  surname: Yang
  fullname: Yang, Fan
– sequence: 2
  givenname: Chunlin
  surname: He
  fullname: He, Chunlin
– sequence: 3
  givenname: Yi
  surname: Liu
  fullname: Liu, Yi
– sequence: 4
  givenname: Anping
  surname: Zeng
  fullname: Zeng, Anping
– sequence: 5
  givenname: Longhe
  surname: Hu
  fullname: Hu, Longhe
BookMark eNptkU1v1DAQhi1UJErpjR8QiSsp_lon4ba0paxUPiQK12jWHlcOSVxsr9D-e6YbVFWo9mFGo2dej-d9yY7mOCNjrwU_U6rj74Ypo5CCC9OtnrFjyZumFkrIo0f5C3aa88DptNIIbo7Z_ifmjGN1k2BAW2LaV98SumBLiHP1ATK6ipL1rsQJSrDVxuFcgg8WDsT3fS44VRdQ4H31eTeWUF9BoaZ1KfcgIZezjQ5TdYFL_ILlT0y_XrHnHsaMp__iCfvx8fLm_FN9_fVqc76-rq3mptQODEfn0TjsuMZth7CVwq4UCtV24Dq_8kpw2eiWK02Q023Lkfagt8I2Xp2wzaLrIgz9XQoTpH0fIfSHQky3PST62Yi92irrpVwJIbkGbcBo74VQntOyNABpvVm07lL8vcNc-iHu0kzj97RdblptdEPU2ULdAomG2ceSwNJ1OAVLrvlA9XUrtDItWUcNb5cGm2LOCf3DmIL39-b2j80lXP6H21AOdtA7YXy66S-k3Knq
CitedBy_id crossref_primary_10_1007_s43926_025_00167_9
crossref_primary_10_3390_su17188466
crossref_primary_10_3390_drones8120759
Cites_doi 10.1109/TITS.2020.3040268
10.1017/S0373463307004298
10.1109/CVIDL51233.2020.00-89
10.1109/TITS.2017.2724551
10.1109/18.382009
10.23919/ChiCC.2019.8866006
10.1109/TAES.2021.3096873
10.1109/TITS.2022.3192574
10.1017/CBO9780511810633
10.1080/01441647.2019.1649315
10.3115/v1/D14-1179
10.3390/su13147961
10.1109/ACCESS.2020.3018749
10.1016/j.physd.2019.132306
10.1016/j.ress.2021.108249
10.3390/s20185133
10.1109/ICTIS.2015.7232156
10.1109/ITAIC49862.2020.9339085
10.1109/ICDIM.2018.8847003
10.1109/ACCESS.2020.3041762
10.1109/ICDEW.2018.00017
10.1007/978-3-319-60801-3_27
10.1080/20464177.2019.1665258
10.1109/ACCESS.2022.3154812
10.1016/j.oceaneng.2010.01.012
10.1016/j.jss.2016.06.016
10.1016/j.ssci.2019.09.018
10.1109/MDM48529.2020.00062
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7ST
7TN
8FE
8FG
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
GNUQQ
H96
HCIFZ
L.G
L6V
M7S
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
SOI
DOA
DOI 10.3390/jmse12101695
DatabaseName CrossRef
Environment Abstracts
Oceanic Abstracts
ProQuest SciTech Collection
ProQuest Technology Collection
SciTech Premium Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Engineering Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
Environmental Science Collection
Environment Abstracts
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Environmental Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
Environmental Science Database
ProQuest One Academic
Environment Abstracts
ProQuest One Academic (New)
DatabaseTitleList

Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Oceanography
EISSN 2077-1312
ExternalDocumentID oai_doaj_org_article_3b3cf22511204a46a64ff113f06104aa
A814368390
10_3390_jmse12101695
GroupedDBID 5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ABJCF
ADBBV
AEUYN
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
D1J
GROUPED_DOAJ
HCIFZ
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
PYCSY
7ST
7TN
ABUWG
AZQEC
C1K
DWQXO
F1W
GNUQQ
H96
L.G
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
SOI
ID FETCH-LOGICAL-c406t-da60edfe6de904eb9eab21c53e1389ad9f5f3102748034de9d4880e1014b1c7f3
IEDL.DBID M7S
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001342805700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2077-1312
IngestDate Fri Oct 03 12:50:26 EDT 2025
Fri Jul 25 11:51:33 EDT 2025
Tue Nov 04 18:15:18 EST 2025
Tue Nov 18 22:28:59 EST 2025
Sat Nov 29 07:13:34 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-da60edfe6de904eb9eab21c53e1389ad9f5f3102748034de9d4880e1014b1c7f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/3120684647?pq-origsite=%requestingapplication%
PQID 3120684647
PQPubID 2032377
ParticipantIDs doaj_primary_oai_doaj_org_article_3b3cf22511204a46a64ff113f06104aa
proquest_journals_3120684647
gale_infotracacademiconefile_A814368390
crossref_primary_10_3390_jmse12101695
crossref_citationtrail_10_3390_jmse12101695
PublicationCentury 2000
PublicationDate 2024-10-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Journal of marine science and engineering
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Mou (ref_7) 2010; 37
Wu (ref_4) 2022; 219
Tu (ref_8) 2017; 19
You (ref_30) 2020; 8
ref_14
ref_35
ref_11
Xiao (ref_12) 2020; 23
ref_33
Donoho (ref_34) 1995; 41
ref_32
ref_31
Sherstinsky (ref_26) 2020; 404
ref_18
ref_17
ref_15
Valsamis (ref_16) 2017; 127
Yang (ref_5) 2019; 39
Liu (ref_13) 2020; 8
Wall (ref_6) 2007; 60
Capobianco (ref_25) 2021; 57
Yang (ref_28) 2022; 10
ref_23
ref_22
ref_21
ref_20
Huang (ref_10) 2020; 121
ref_1
ref_3
Tang (ref_19) 2022; 21
ref_2
ref_29
ref_27
ref_9
Zhang (ref_24) 2022; 23
References_xml – volume: 23
  start-page: 3696
  year: 2020
  ident: ref_12
  article-title: Big data driven vessel trajectory and navigating state prediction with adaptive learning, motion modeling and particle filtering techniques
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2020.3040268
– volume: 60
  start-page: 373
  year: 2007
  ident: ref_6
  article-title: Automatic identification system (ais): Data reliability and human error implications
  publication-title: J. Navig.
  doi: 10.1017/S0373463307004298
– ident: ref_29
  doi: 10.1109/CVIDL51233.2020.00-89
– volume: 19
  start-page: 1559
  year: 2017
  ident: ref_8
  article-title: Exploiting ais data for intelligent maritime navigation: A comprehensive survey from data to methodology
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2017.2724551
– volume: 41
  start-page: 613
  year: 1995
  ident: ref_34
  article-title: De-noising by soft-thresholding
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/18.382009
– ident: ref_22
  doi: 10.23919/ChiCC.2019.8866006
– ident: ref_32
– volume: 57
  start-page: 4329
  year: 2021
  ident: ref_25
  article-title: Deep learning methods for vessel trajectory prediction based on recurrent neural networks
  publication-title: IEEETrans. Aerosp. Electron. Syst.
  doi: 10.1109/TAES.2021.3096873
– volume: 23
  start-page: 19980
  year: 2022
  ident: ref_24
  article-title: Vessel trajectory prediction in maritime transportation: Current approaches and beyond
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2022.3192574
– ident: ref_11
– ident: ref_23
  doi: 10.1017/CBO9780511810633
– volume: 39
  start-page: 755
  year: 2019
  ident: ref_5
  article-title: How big data enriches maritime research–a critical review of automatic identification system (ais) data applications
  publication-title: Transp. Rev.
  doi: 10.1080/01441647.2019.1649315
– ident: ref_33
  doi: 10.3115/v1/D14-1179
– ident: ref_14
– ident: ref_35
– ident: ref_1
  doi: 10.3390/su13147961
– ident: ref_21
– volume: 8
  start-page: 154727
  year: 2020
  ident: ref_13
  article-title: Online multiple outputs least-squares support vector regression model of ship trajectory prediction based on automatic information system data and selection mechanism
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3018749
– volume: 404
  start-page: 132306
  year: 2020
  ident: ref_26
  article-title: Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network
  publication-title: Phys. D Nonlinear Phenom.
  doi: 10.1016/j.physd.2019.132306
– ident: ref_31
– ident: ref_2
– volume: 219
  start-page: 108249
  year: 2022
  ident: ref_4
  article-title: Review of techniques and challenges of human and organizational factors analysis in maritime transportation
  publication-title: Reliab. Syst. Saf.
  doi: 10.1016/j.ress.2021.108249
– ident: ref_27
  doi: 10.3390/s20185133
– ident: ref_3
  doi: 10.1109/ICTIS.2015.7232156
– ident: ref_18
  doi: 10.1109/ITAIC49862.2020.9339085
– ident: ref_15
  doi: 10.1109/ICDIM.2018.8847003
– volume: 8
  start-page: 218565
  year: 2020
  ident: ref_30
  article-title: St-seq2seq: A spatio-temporal feature-optimized seq2seq model for short-term vessel trajectory prediction
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3041762
– ident: ref_9
  doi: 10.1109/ICDEW.2018.00017
– ident: ref_17
  doi: 10.1007/978-3-319-60801-3_27
– volume: 21
  start-page: 136
  year: 2022
  ident: ref_19
  article-title: A model for vessel trajectory prediction based on long short-term memory neural network
  publication-title: J. Mar. Eng. Technol.
  doi: 10.1080/20464177.2019.1665258
– volume: 10
  start-page: 24302
  year: 2022
  ident: ref_28
  article-title: Ais-based intelligent vessel trajectory prediction using bi-lstm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3154812
– volume: 37
  start-page: 483
  year: 2010
  ident: ref_7
  article-title: Study on collision avoidance in busy waterways by using ais data
  publication-title: Ocean. Eng.
  doi: 10.1016/j.oceaneng.2010.01.012
– volume: 127
  start-page: 249
  year: 2017
  ident: ref_16
  article-title: Employing traditional machine learning algorithms for big data streams analysis: The case of object trajectory prediction
  publication-title: J. Syst. Softw.
  doi: 10.1016/j.jss.2016.06.016
– volume: 121
  start-page: 451
  year: 2020
  ident: ref_10
  article-title: Ship collision avoidance methods: State-of-the-art
  publication-title: Saf. Sci.
  doi: 10.1016/j.ssci.2019.09.018
– ident: ref_20
  doi: 10.1109/MDM48529.2020.00062
SSID ssj0000826106
Score 2.2903128
Snippet Utilizing time-series data from ship trajectories to forecast their subsequent movement is crucial for enhancing the safety within maritime traffic...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 1695
SubjectTerms Accuracy
AIS data
Artificial intelligence
Benchmarks
Coders
Deep learning
Efficiency
encoder–decoder model
Energy consumption
Error reduction
Forecasting techniques
Global positioning systems
GPS
Identification systems
Kalman filters
Long short-term memory
Machine learning
Neural networks
Predictions
Sea vessels
Support vector machines
Time series
Traffic analysis
vessel trajectory prediction
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iHkQQn7i-yEHxIMWmyWa33tYXnlYPKt5CmkxA0a7sVmH_vTNJV_YiXjy1hCFNM5PMTDLzDWNHOpclaAWZUMJmCnVMVhU-z1AXO1E5WXWhH4tN9IbD_vNzeT9X6otiwhI8cJq4M1lJFwoyhItcWaWtViEIIQMqImyIplHeK-ecqbgHo9WMzk6KdJfo15-9vk-AwLKEplISczooQvX_tiFHLXOzxlZb85AP0rDW2QLUG2zlzoGtW2zpTTZ9IrzvN45q5jWeuU_5_ZjuW2iO-QWqJc_xZfDZjCIeK0_JuKE9neMJpJxf2cae85iAm9EZmueDpknBj_y6plT3Mb-C9BymYPEt9nhz_XB5m7UVFDKHirrJvNU5-ADaQ5krqEqwVSFcVwLdT1pfhm5A-w49034uFRJ5Ws9A9Xsr4XpBbrPFelTDDuPgsceiAFVa3FxlGS9ghZNWB0AjQnXY6WxOjWvhxanKxZtBN4M4YOY50GHHP9QfCVbjF7oLYs8PDYFhxwYUEdOKiPlLRDrshJhraMnikJxtMw_wxwj8ygz6gnD48dsdtj_jv2nX8sRI7FajmaZ6u_8xmj22XKBhlAIC99liM_6EA7bkvpqXyfgwivE31zf2EQ
  priority: 102
  providerName: Directory of Open Access Journals
Title Vessel Trajectory Prediction Based on Automatic Identification System Data: Multi-Gated Attention Encoder Decoder Network
URI https://www.proquest.com/docview/3120684647
https://doaj.org/article/3b3cf22511204a46a64ff113f06104aa
Volume 12
WOSCitedRecordID wos001342805700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2077-1312
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000826106
  issn: 2077-1312
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2077-1312
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000826106
  issn: 2077-1312
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Collection
  customDbUrl:
  eissn: 2077-1312
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000826106
  issn: 2077-1312
  databaseCode: PCBAR
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2077-1312
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000826106
  issn: 2077-1312
  databaseCode: M7S
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 2077-1312
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000826106
  issn: 2077-1312
  databaseCode: PATMY
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2077-1312
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000826106
  issn: 2077-1312
  databaseCode: BENPR
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2077-1312
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000826106
  issn: 2077-1312
  databaseCode: PIMPY
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELag5YCQeFcstCsfQByQ1Tj2ejdc0G67FRxYIl4qp8ixx4iqZEs2Req_Z8bxbntpL5wSOVbiaMbzjcfjbxh7aTJVgNEgpJZWaMQYUec-E4jFTtZO1SOYxGIT48VicnxclCngtkpplWubGA21XzqKke8rmWcGwVKP3539EVQ1inZXUwmN22ybWBJkTN37somxILyhd2D6fHeFq_v9k98rIMosaaigxBUkioT915nliDVHD_53lA_Z_eRl8mmvFo_YLWges3ufHNgmUVQ_YRffiTb8lCNancTQ_QUvW9q2IVHxGaKb53gzPe-WkdaV92d6Qwry8Z7rnB_azr7l8RyvoFCc59Ou63Mo-byhE_MtP4T-uuhzzp-yb0fzrwfvRSrEIBzifSe8NRn4AMZDkWmoC7B1Lt1IAW1zWl-EUUA3ERe4k0xp7OTJLACVAa6lGwe1w7aaZQPPGAePb8xz0IVFG62KuI8rnbImAPoiesDerIVSucRSTsUyTitcrZAIq6siHLBXm95nPTvHNf1mJN9NH-LUjg3L9meVpmilauVCTkuuPNNWG2t0CFKqgC4PNtgBe03aUdHMxyE5mw4w4I8Rh1Y1nUii88dvD9juWjuqZBJW1aVqPL_58Qt2N0fPqc8Y3GVbXXsOe-yO-9v9WrVDtj2bL8rPwxg8GEZ9x7byw8fyxz8ZAAln
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFAmExBsRKLAHKg7IqveRTYyEUEpaNWobciionJb1PhBVSYrjgvKn-I3M-BF6KbceOCVyVk5sf5lvdmf2-wBe6lRmQauQcMVtopBjklz4NEEudjx3Mu-FQWU20Z9MBsfH2XQNfrd7Yaitso2JVaD2c0dr5FuSi1QjWar-u7MfCblGUXW1tdCoYbEflr9wyrZ4Ox7h890UYnfn6P1e0rgKJA7Jq0y81WnwMWgfslSFPAs2F9z1ZKCanfVZ7EXMeXC2NkilwkGeMB7I0zbnrh8lnvcarCsCewfWp-PD6efVqg4SKuYjuu6wlzJLt06-LwKJdHFNFhYXuK-yCLiMCCp2273zv92Xu3C7yaPZsAb-PVgLs_tw64MLdtaIcD-A5ScSRj9lyMcnVXFiyaYFFaYIjGwb-dszfDM8L-eVcC2rdy3HZhmT1WrubGRL-4ZVO5UTWmz0bFiWdZco25mRJkDBRqF-ndRd9Q_h45Vc_CPozOaz8BhY8HhGIYLKLLKQzKpKNXfS6hgw21JdeN2CwLhGh53sQE4NzscIMuYiZLqwuRp9VuuPXDJum_C0GkOq4dWBefHVNEHIyFy6KGhSKVJllbZaxci5jJjU4QHbhVeERkOxDX-Ss80WDbwwUgkzwwEnwwL87i5stGg0TdBbmL9QfPLvj1_Ajb2jwwNzMJ7sP4WbAvPEuj9yAzplcR6ewXX3s_y2KJ43_y8GX64aun8AR7JkUA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB2VFCGExDciUGAPVByQFe9HNjESQilpRFQIPgAqJ7Ne7yKq4hTHBeWv8euYsdehl3LrgVMiZ-XYyfO82Z3Z9wCe6lgmTisXccVNpJBjolwUcYRcbHluZT5048ZsYrRYjA8Pk3QLfnd7YaitsouJTaAulpbWyAeSi1gjWarRwIe2iHQ6e3XyIyIHKaq0dnYaLUQO3PoXTt9WL-dT_K93hZjtf3j9JgoOA5FFIqujwujYFd7pwiWxcnniTC64HUpH9TtTJH7oMf_Bmds4lgoHFYR3R_62ObcjL_G8l2AbU3IlerCdzt-lnzcrPEiumJvottteyiQeHH1fORLs4prsLM7wYGMXcB4pNEw3u_E__0Y34XrIr9mkfSBuwZYrb8O199aZMohz34H1JxJMP2bI00dN0WLN0ooKVgRStoe8XjB8Mzmtl42gLWt3M_uwvMlalXc2NbV5wZodzBEtQhZsUtdt9yjbL0kroGJT174u2m77u_DxQm7-HvTKZenuA3MFnlEIpxKD7CSTpoLNrTTaO8zCVB-ed4DIbNBnJ5uQ4wznaQSf7Cx8-rC7GX3S6pKcM26PsLUZQ2rizYFl9TULwSmTubRe0GRTxMoobbTynnPpMdnDA6YPzwiZGcU8vCRrwtYNvDFSD8smY05GBvjdfdjpkJmFYLjK_sLywb8_fgJXEK_Z2_ni4CFcFZg-tm2TO9Crq1P3CC7bn_W3VfU4PGoMvlw0cv8A-ExtEA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vessel+Trajectory+Prediction+Based+on+Automatic+Identification+System+Data%3A+Multi-Gated+Attention+Encoder+Decoder+Network&rft.jtitle=Journal+of+marine+science+and+engineering&rft.au=Yang%2C+Fan&rft.au=He%2C+Chunlin&rft.au=Liu%2C+Yi&rft.au=Zeng%2C+Anping&rft.date=2024-10-01&rft.issn=2077-1312&rft.eissn=2077-1312&rft.volume=12&rft.issue=10&rft.spage=1695&rft_id=info:doi/10.3390%2Fjmse12101695&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_jmse12101695
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2077-1312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2077-1312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2077-1312&client=summon