Vessel Trajectory Prediction Based on Automatic Identification System Data: Multi-Gated Attention Encoder Decoder Network
Utilizing time-series data from ship trajectories to forecast their subsequent movement is crucial for enhancing the safety within maritime traffic environments. The application of deep learning techniques, leveraging Automatic Identification System (AIS) data, has emerged as a pivotal area in marit...
Uloženo v:
| Vydáno v: | Journal of marine science and engineering Ročník 12; číslo 10; s. 1695 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
01.10.2024
|
| Témata: | |
| ISSN: | 2077-1312, 2077-1312 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Utilizing time-series data from ship trajectories to forecast their subsequent movement is crucial for enhancing the safety within maritime traffic environments. The application of deep learning techniques, leveraging Automatic Identification System (AIS) data, has emerged as a pivotal area in maritime traffic studies. Within this domain, the precise forecasting of ship trajectories stands as a central challenge. In this study, we propose the multi-gated attention encoder decoder (MGAED) network, a model based on an encoder–decoder structure specialized for predicting ship trajectories in canals. The model employs a long short-term memory network (LSTM) as an encoder, combined with multiple Gated Recurrent Units (GRUs) and an attention mechanism for the decoder. Long-term dependencies in time-series data are captured through GRUs, while the attention mechanism is used to strengthen the model’s ability to capture key information, and a soft threshold residual structure is introduced to handle sparse features, thus enhancing the model’s generalization ability and robustness. The efficacy of our model is substantiated by an extensive evaluation against current deep learning benchmarks. Through comprehensive comparison experiments with existing deep learning methods, our model shows significant improvements in prediction accuracy, with an at least 9.63% reduction in the mean error (MAE) and an at least 20.0% reduction in the mean square error (MSE), providing a new solution to improve the accuracy and efficiency of ship trajectory prediction. |
|---|---|
| AbstractList | Utilizing time-series data from ship trajectories to forecast their subsequent movement is crucial for enhancing the safety within maritime traffic environments. The application of deep learning techniques, leveraging Automatic Identification System (AIS) data, has emerged as a pivotal area in maritime traffic studies. Within this domain, the precise forecasting of ship trajectories stands as a central challenge. In this study, we propose the multi-gated attention encoder decoder (MGAED) network, a model based on an encoder–decoder structure specialized for predicting ship trajectories in canals. The model employs a long short-term memory network (LSTM) as an encoder, combined with multiple Gated Recurrent Units (GRUs) and an attention mechanism for the decoder. Long-term dependencies in time-series data are captured through GRUs, while the attention mechanism is used to strengthen the model’s ability to capture key information, and a soft threshold residual structure is introduced to handle sparse features, thus enhancing the model’s generalization ability and robustness. The efficacy of our model is substantiated by an extensive evaluation against current deep learning benchmarks. Through comprehensive comparison experiments with existing deep learning methods, our model shows significant improvements in prediction accuracy, with an at least 9.63% reduction in the mean error (MAE) and an at least 20.0% reduction in the mean square error (MSE), providing a new solution to improve the accuracy and efficiency of ship trajectory prediction. |
| Audience | Academic |
| Author | He, Chunlin Zeng, Anping Hu, Longhe Yang, Fan Liu, Yi |
| Author_xml | – sequence: 1 givenname: Fan surname: Yang fullname: Yang, Fan – sequence: 2 givenname: Chunlin surname: He fullname: He, Chunlin – sequence: 3 givenname: Yi surname: Liu fullname: Liu, Yi – sequence: 4 givenname: Anping surname: Zeng fullname: Zeng, Anping – sequence: 5 givenname: Longhe surname: Hu fullname: Hu, Longhe |
| BookMark | eNptkU1v1DAQhi1UJErpjR8QiSsp_lon4ba0paxUPiQK12jWHlcOSVxsr9D-e6YbVFWo9mFGo2dej-d9yY7mOCNjrwU_U6rj74Ypo5CCC9OtnrFjyZumFkrIo0f5C3aa88DptNIIbo7Z_ifmjGN1k2BAW2LaV98SumBLiHP1ATK6ipL1rsQJSrDVxuFcgg8WDsT3fS44VRdQ4H31eTeWUF9BoaZ1KfcgIZezjQ5TdYFL_ILlT0y_XrHnHsaMp__iCfvx8fLm_FN9_fVqc76-rq3mptQODEfn0TjsuMZth7CVwq4UCtV24Dq_8kpw2eiWK02Q023Lkfagt8I2Xp2wzaLrIgz9XQoTpH0fIfSHQky3PST62Yi92irrpVwJIbkGbcBo74VQntOyNABpvVm07lL8vcNc-iHu0kzj97RdblptdEPU2ULdAomG2ceSwNJ1OAVLrvlA9XUrtDItWUcNb5cGm2LOCf3DmIL39-b2j80lXP6H21AOdtA7YXy66S-k3Knq |
| CitedBy_id | crossref_primary_10_1007_s43926_025_00167_9 crossref_primary_10_3390_su17188466 crossref_primary_10_3390_drones8120759 |
| Cites_doi | 10.1109/TITS.2020.3040268 10.1017/S0373463307004298 10.1109/CVIDL51233.2020.00-89 10.1109/TITS.2017.2724551 10.1109/18.382009 10.23919/ChiCC.2019.8866006 10.1109/TAES.2021.3096873 10.1109/TITS.2022.3192574 10.1017/CBO9780511810633 10.1080/01441647.2019.1649315 10.3115/v1/D14-1179 10.3390/su13147961 10.1109/ACCESS.2020.3018749 10.1016/j.physd.2019.132306 10.1016/j.ress.2021.108249 10.3390/s20185133 10.1109/ICTIS.2015.7232156 10.1109/ITAIC49862.2020.9339085 10.1109/ICDIM.2018.8847003 10.1109/ACCESS.2020.3041762 10.1109/ICDEW.2018.00017 10.1007/978-3-319-60801-3_27 10.1080/20464177.2019.1665258 10.1109/ACCESS.2022.3154812 10.1016/j.oceaneng.2010.01.012 10.1016/j.jss.2016.06.016 10.1016/j.ssci.2019.09.018 10.1109/MDM48529.2020.00062 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7ST 7TN 8FE 8FG ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W GNUQQ H96 HCIFZ L.G L6V M7S PATMY PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY SOI DOA |
| DOI | 10.3390/jmse12101695 |
| DatabaseName | CrossRef Environment Abstracts Oceanic Abstracts ProQuest SciTech Collection ProQuest Technology Collection ProQuest MSED ProQuest Central (Alumni) One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials - QC ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Engineering Database Environmental Science Database Earth, Atmospheric & Aquatic Science Database Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection Environment Abstracts DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Oceanic Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) Engineering Collection Engineering Database ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Environmental Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection Environmental Science Database ProQuest One Academic Environment Abstracts ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Oceanography |
| EISSN | 2077-1312 |
| ExternalDocumentID | oai_doaj_org_article_3b3cf22511204a46a64ff113f06104aa A814368390 10_3390_jmse12101695 |
| GroupedDBID | 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ABJCF ADBBV AEUYN AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ATCPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION D1J GROUPED_DOAJ HCIFZ IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 PATMY PCBAR PHGZM PHGZT PIMPY PQGLB PROAC PTHSS PYCSY 7ST 7TN ABUWG AZQEC C1K DWQXO F1W GNUQQ H96 L.G PKEHL PQEST PQQKQ PQUKI PRINS SOI |
| ID | FETCH-LOGICAL-c406t-da60edfe6de904eb9eab21c53e1389ad9f5f3102748034de9d4880e1014b1c7f3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001342805700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2077-1312 |
| IngestDate | Fri Oct 03 12:50:26 EDT 2025 Fri Jul 25 11:51:33 EDT 2025 Tue Nov 04 18:15:18 EST 2025 Tue Nov 18 22:28:59 EST 2025 Sat Nov 29 07:13:34 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c406t-da60edfe6de904eb9eab21c53e1389ad9f5f3102748034de9d4880e1014b1c7f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://doaj.org/article/3b3cf22511204a46a64ff113f06104aa |
| PQID | 3120684647 |
| PQPubID | 2032377 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_3b3cf22511204a46a64ff113f06104aa proquest_journals_3120684647 gale_infotracacademiconefile_A814368390 crossref_primary_10_3390_jmse12101695 crossref_citationtrail_10_3390_jmse12101695 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-10-01 |
| PublicationDateYYYYMMDD | 2024-10-01 |
| PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Journal of marine science and engineering |
| PublicationYear | 2024 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Mou (ref_7) 2010; 37 Wu (ref_4) 2022; 219 Tu (ref_8) 2017; 19 You (ref_30) 2020; 8 ref_14 ref_35 ref_11 Xiao (ref_12) 2020; 23 ref_33 Donoho (ref_34) 1995; 41 ref_32 ref_31 Sherstinsky (ref_26) 2020; 404 ref_18 ref_17 ref_15 Valsamis (ref_16) 2017; 127 Yang (ref_5) 2019; 39 Liu (ref_13) 2020; 8 Wall (ref_6) 2007; 60 Capobianco (ref_25) 2021; 57 Yang (ref_28) 2022; 10 ref_23 ref_22 ref_21 ref_20 Huang (ref_10) 2020; 121 ref_1 ref_3 Tang (ref_19) 2022; 21 ref_2 ref_29 ref_27 ref_9 Zhang (ref_24) 2022; 23 |
| References_xml | – volume: 23 start-page: 3696 year: 2020 ident: ref_12 article-title: Big data driven vessel trajectory and navigating state prediction with adaptive learning, motion modeling and particle filtering techniques publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2020.3040268 – volume: 60 start-page: 373 year: 2007 ident: ref_6 article-title: Automatic identification system (ais): Data reliability and human error implications publication-title: J. Navig. doi: 10.1017/S0373463307004298 – ident: ref_29 doi: 10.1109/CVIDL51233.2020.00-89 – volume: 19 start-page: 1559 year: 2017 ident: ref_8 article-title: Exploiting ais data for intelligent maritime navigation: A comprehensive survey from data to methodology publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2017.2724551 – volume: 41 start-page: 613 year: 1995 ident: ref_34 article-title: De-noising by soft-thresholding publication-title: IEEE Trans. Inf. Theory doi: 10.1109/18.382009 – ident: ref_22 doi: 10.23919/ChiCC.2019.8866006 – ident: ref_32 – volume: 57 start-page: 4329 year: 2021 ident: ref_25 article-title: Deep learning methods for vessel trajectory prediction based on recurrent neural networks publication-title: IEEETrans. Aerosp. Electron. Syst. doi: 10.1109/TAES.2021.3096873 – volume: 23 start-page: 19980 year: 2022 ident: ref_24 article-title: Vessel trajectory prediction in maritime transportation: Current approaches and beyond publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2022.3192574 – ident: ref_11 – ident: ref_23 doi: 10.1017/CBO9780511810633 – volume: 39 start-page: 755 year: 2019 ident: ref_5 article-title: How big data enriches maritime research–a critical review of automatic identification system (ais) data applications publication-title: Transp. Rev. doi: 10.1080/01441647.2019.1649315 – ident: ref_33 doi: 10.3115/v1/D14-1179 – ident: ref_14 – ident: ref_35 – ident: ref_1 doi: 10.3390/su13147961 – ident: ref_21 – volume: 8 start-page: 154727 year: 2020 ident: ref_13 article-title: Online multiple outputs least-squares support vector regression model of ship trajectory prediction based on automatic information system data and selection mechanism publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3018749 – volume: 404 start-page: 132306 year: 2020 ident: ref_26 article-title: Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network publication-title: Phys. D Nonlinear Phenom. doi: 10.1016/j.physd.2019.132306 – ident: ref_31 – ident: ref_2 – volume: 219 start-page: 108249 year: 2022 ident: ref_4 article-title: Review of techniques and challenges of human and organizational factors analysis in maritime transportation publication-title: Reliab. Syst. Saf. doi: 10.1016/j.ress.2021.108249 – ident: ref_27 doi: 10.3390/s20185133 – ident: ref_3 doi: 10.1109/ICTIS.2015.7232156 – ident: ref_18 doi: 10.1109/ITAIC49862.2020.9339085 – ident: ref_15 doi: 10.1109/ICDIM.2018.8847003 – volume: 8 start-page: 218565 year: 2020 ident: ref_30 article-title: St-seq2seq: A spatio-temporal feature-optimized seq2seq model for short-term vessel trajectory prediction publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3041762 – ident: ref_9 doi: 10.1109/ICDEW.2018.00017 – ident: ref_17 doi: 10.1007/978-3-319-60801-3_27 – volume: 21 start-page: 136 year: 2022 ident: ref_19 article-title: A model for vessel trajectory prediction based on long short-term memory neural network publication-title: J. Mar. Eng. Technol. doi: 10.1080/20464177.2019.1665258 – volume: 10 start-page: 24302 year: 2022 ident: ref_28 article-title: Ais-based intelligent vessel trajectory prediction using bi-lstm publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3154812 – volume: 37 start-page: 483 year: 2010 ident: ref_7 article-title: Study on collision avoidance in busy waterways by using ais data publication-title: Ocean. Eng. doi: 10.1016/j.oceaneng.2010.01.012 – volume: 127 start-page: 249 year: 2017 ident: ref_16 article-title: Employing traditional machine learning algorithms for big data streams analysis: The case of object trajectory prediction publication-title: J. Syst. Softw. doi: 10.1016/j.jss.2016.06.016 – volume: 121 start-page: 451 year: 2020 ident: ref_10 article-title: Ship collision avoidance methods: State-of-the-art publication-title: Saf. Sci. doi: 10.1016/j.ssci.2019.09.018 – ident: ref_20 doi: 10.1109/MDM48529.2020.00062 |
| SSID | ssj0000826106 |
| Score | 2.2904093 |
| Snippet | Utilizing time-series data from ship trajectories to forecast their subsequent movement is crucial for enhancing the safety within maritime traffic... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 1695 |
| SubjectTerms | Accuracy AIS data Artificial intelligence Benchmarks Coders Deep learning Efficiency encoder–decoder model Energy consumption Error reduction Forecasting techniques Global positioning systems GPS Identification systems Kalman filters Long short-term memory Machine learning Neural networks Predictions Sea vessels Support vector machines Time series Traffic analysis vessel trajectory prediction |
| SummonAdditionalLinks | – databaseName: Engineering Database dbid: M7S link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagcEBIvBELBfkA4oCi2rHjxFzQlrbigJZKPNSb5fiBqEq2zaaV-u-Zsb1LL-XCKZEzUhLNeF6e-YaQ10533IrWVV7pvpI24iD3zlZoLqPk3LI2NQp_bheL7uhIH5aE26qUVa51YlLUfukwR74jeM0UGEvZfjg9q3BqFJ6ulhEaN8ktREngqXTv6ybHAuYNvAOV690FRPc7x79XASGzuMKBElcsUQLsv04tJ1tzcP9_v_IBuVe8TDrPYvGQ3AjDI3L3iwt2KBDVj8nlD4QNP6FgrY5T6v6SHo54bIOsortg3TyFm_n5tEywrjT39MaS5KMZ65zu2cm-p6mPt8JUnKfzaco1lHR_wI75ke6FfF3kmvMn5PvB_rePn6oyiKFyYO-nylvFgo9B-aCZDL0Otq-5a0TAY07rdWwiuIkQ4HZMSCDyqBYCjgHuuWujeEq2huUQnhHaeNZ0tvbMRyEb7jRjQalGa_BcfNv7GXm3ZopxBaUch2WcGIhWkIXmKgtn5M2G-jSjc1xDt4v83dAgpnZaWI4_TdmiRvTCxRpDrppJK5VVMkbORQSxhQU7I29ROgzufPgkZ0sDA_wYYmiZeccRzh_ePSPba-kwRSWszF_ReP7vxy_InRo8p1wxuE22pvE8vCS33cX0azW-ShL-B7PYBck priority: 102 providerName: ProQuest |
| Title | Vessel Trajectory Prediction Based on Automatic Identification System Data: Multi-Gated Attention Encoder Decoder Network |
| URI | https://www.proquest.com/docview/3120684647 https://doaj.org/article/3b3cf22511204a46a64ff113f06104aa |
| Volume | 12 |
| WOSCitedRecordID | wos001342805700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2077-1312 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000826106 issn: 2077-1312 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2077-1312 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000826106 issn: 2077-1312 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 2077-1312 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000826106 issn: 2077-1312 databaseCode: PCBAR dateStart: 20130101 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2077-1312 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000826106 issn: 2077-1312 databaseCode: M7S dateStart: 20130101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database customDbUrl: eissn: 2077-1312 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000826106 issn: 2077-1312 databaseCode: PATMY dateStart: 20130101 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2077-1312 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000826106 issn: 2077-1312 databaseCode: BENPR dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2077-1312 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000826106 issn: 2077-1312 databaseCode: PIMPY dateStart: 20130101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYhyaEUQvqim6aLDi09FBPJkmWrt91mQwvJ1vRFehKyHtCQOmXXKeTfd0Zywl5CLz3ZiEGWNSPNjDTzDSGvnG64FbUrvNJdIW3EQu6NLVBdRsm5ZXVKFD6tl8vm_Fy3G6W-MCYswwPniTsSnXCxREO4ZNJKZZWMkXMRoTNoSKYRq_WGM5X2YLCawdnJke4C_Pqji1_rgGBZXGEpiQ0dlKD679uQk5Y52Sd7o3lIZ3lYj8hW6B-Th59csP2ILf2E3HxHvO9LCmrmIp2539B2hfctOMd0DmrJU3iZXQ9XCY-V5mTcOJ7O0QxSTo_tYN_RlIBb4Bmap7NhyMGPdNFjqvuKHof8XOZg8afk28ni6_sPxVhBoXCgqIfCW8WCj0H5oJkMnQ62K7mrRMD7Set1rCLYd-CZNkxIIPK4ngPW7-24q6N4Rrb7qz48J7TyrGps6ZmPQlbcacaCUpXWYHL4uvMT8vZ2To0b4cWxysWlATcDOWA2OTAhr--of2dYjXvo5sieOxoEw04NICJmFBHzLxGZkDfIXINLFobk7Jh5AD-G4Fdm1nDE4YdvT8jhLf_NuJbXRkC3Csw0WR_8j9G8IA9KMIxyQOAh2R5W1-El2XV_hp_r1ZTszBfL9vM0ifMUI1G_QFv78az98Rd81vr4 |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFIkKiTciUGAPVByQ1V3v-oWEUEpaNWoaciionMx6HxVVSYrjgvKn-I3M-BF6KbceOCVyVklsf55vdnfm-wBemSwVWiYmsHFWBEp7MnJPdUB06ZUQmid1o_A4mUzS4-Nsuga_u14YKqvsYmIdqO3c0Br5thQhj5EsVfL-_EdArlG0u9pZaDSwOHDLXzhlW7wbDfH-boXh3u7Rh_2gdRUIDJJXFVgdc2e9i63LuHJF5nQRChNJR3t22mY-8pjz4Gwt5VLhIEsYd-RpWwiTeInfewPWFYG9B-vT0eH0y2pVBwkV85G4qbCXMuPbp98XjkS6REwWFpe4r7YIuIoIanbbu_u_XZd7cKfNo9mgAf59WHOzB3D7o3F61opwP4TlZxJGP2PIx6f15sSSTUvamCIwsh3kb8vwzeCimtfCtazpWvbtMiZr1NzZUFf6Las7lQNabLRsUFVNlSjbnZEmQMmGrnmdNFX1j-DTtZz8Y-jN5jP3BFhkeZTq0HLrpYqEyTh3cRxlGeZmNilsH950IMhNq8NOdiBnOc7HCDL5Zcj0YWs1-rzRH7li3A7haTWGVMPrA_PyJG-DUC4LaXxIk8qQK61iHSvvhZAeH0w8oPvwmtCYU2zDv2R026KBJ0YqYfkgFWRYgL_dh80OjXkb9Bb5Xyg-_ffHL-HW_tHhOB-PJgfPYCPEPLGpj9yEXlVeuOdw0_ysvi3KF-3zxeDrdUP3D_YJZPM |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFCGExBsRKLAHKg7Iyq7XTySEUtKIqCX4AKg9mfU-qlbFKY4Lyl_j1zHjR-il3HrglMhZJXHy7XyzuzPfB_BSp4lQMtaeidLCC5QjI_dEeUSXLhBC8bhpFN6P5_Pk4CDNNuB33wtDZZV9TGwCtVlo2iMfSeHzCMkyiEeuK4vIJtN3Zz88cpCik9beTqOFyJ5d_cLl2_LtbIL_9bbvT3c_v__gdQ4DnkYiqz2jIm6Ns5GxKQ9skVpV-EKH0tL5nTKpCx3mP7hyS7gMcJAhvFvyty2Ejp3E970Gm5iSB_4ANrPZx-xwvcOD5Iq5SdRW20uZ8tHJ96UlwS4RkZ3FBR5s7AIuI4WG6aZ3_uff6C7c7vJrNm4nxD3YsOV9uPVJW1V24twPYPWVBNNPGfL0SXNosWJZRQdWBFK2g7xuGD4Zn9eLRtCWtd3MrtveZK3KO5uoWr1hTQezR5uQho3ruq0eZbslaQVUbGLbx3lbbf8QvlzJzT-CQbko7WNgoeFhonzDjZNBKHTKuY2iME0xZzNxYYbwugdErjt9drIJOc1xnUbwyS_CZwjb69FnrS7JJeN2CFvrMaQm3lxYVEd5F5xyWUjtfFps-jxQQaSiwDkhpMMJixfUEF4RMnOKefiVtOpaN_DGSD0sHyeCjAzws4ew1SMz74LhMv8Lyyf_fvkF3EC85vuz-d5TuOlj-tiWTW7BoK7O7TO4rn_Wx8vqeTfVGHy7auT-AarXbbM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vessel+Trajectory+Prediction+Based+on+Automatic+Identification+System+Data%3A+Multi-Gated+Attention+Encoder+Decoder+Network&rft.jtitle=Journal+of+marine+science+and+engineering&rft.au=Yang%2C+Fan&rft.au=He%2C+Chunlin&rft.au=Liu%2C+Yi&rft.au=Zeng%2C+Anping&rft.date=2024-10-01&rft.pub=MDPI+AG&rft.issn=2077-1312&rft.eissn=2077-1312&rft.volume=12&rft.issue=10&rft_id=info:doi/10.3390%2Fjmse12101695&rft.externalDocID=A814368390 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2077-1312&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2077-1312&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2077-1312&client=summon |