Real-time solving of computationally hard problems using optimal algorithm portfolios

Various hard real-time systems have a desired requirement which is impossible to fulfill: to solve a computationally hard optimization problem within a short and fixed amount of time T , e.g., T = 0.5 seconds. For such a task, the exact, exponential algorithms, as well as various Polynomial-Time App...

Full description

Saved in:
Bibliographic Details
Published in:Annals of mathematics and artificial intelligence Vol. 89; no. 7; pp. 693 - 710
Main Authors: Nof, Yair, Strichman, Ofer
Format: Journal Article
Language:English
Published: Cham Springer International Publishing 01.07.2021
Springer
Springer Nature B.V
Subjects:
ISSN:1012-2443, 1573-7470
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Various hard real-time systems have a desired requirement which is impossible to fulfill: to solve a computationally hard optimization problem within a short and fixed amount of time T , e.g., T = 0.5 seconds. For such a task, the exact, exponential algorithms, as well as various Polynomial-Time Approximation Schemes, are irrelevant because they can exceed T . What is left in practice is to combine various anytime algorithms in a parallel portfolio. The question is how to build such an optimal portfolio, given a budget of K computing cores. It is certainly not as simple as choosing the K best performing algorithms, because their results are possibly correlated (e.g., there is no point in choosing two good algorithm for the portfolio if they win on a similar set of instances). We prove that the decision variant of this problem is NP-complete, and furthermore that the optimization problem is approximable. On the practical side, our main contribution is a solution of the optimization problem of choosing K algorithms out of n , for a machine with K computing cores, and the related problem of detecting the minimum number of required cores to achieve an optimal portfolio, with respect to a given training set of instances. As a benchmark, we took instances of a hard optimization problem that is prevalent in the real-time industry, in which the challenge is to decide on the best action within time T . We include the results of numerous experiments that compare the various methods. Hence, a side effect of our tests is that it gives the first systematic empirical evaluation of the relative success of various known stochastic-search algorithms in coping with a hard combinatorial optimization problems under a very short and fixed timeout.
AbstractList Various hard real-time systems have a desired requirement which is impossible to fulfill: to solve a computationally hard optimization problem within a short and fixed amount of time T, e.g., T = 0.5 seconds. For such a task, the exact, exponential algorithms, as well as various Polynomial-Time Approximation Schemes, are irrelevant because they can exceed T. What is left in practice is to combine various anytime algorithms in a parallel portfolio. The question is how to build such an optimal portfolio, given a budget of K computing cores. It is certainly not as simple as choosing the K best performing algorithms, because their results are possibly correlated (e.g., there is no point in choosing two good algorithm for the portfolio if they win on a similar set of instances). We prove that the decision variant of this problem is NP-complete, and furthermore that the optimization problem is approximable. On the practical side, our main contribution is a solution of the optimization problem of choosing K algorithms out of n, for a machine with K computing cores, and the related problem of detecting the minimum number of required cores to achieve an optimal portfolio, with respect to a given training set of instances. As a benchmark, we took instances of a hard optimization problem that is prevalent in the real-time industry, in which the challenge is to decide on the best action within time T. We include the results of numerous experiments that compare the various methods. Hence, a side effect of our tests is that it gives the first systematic empirical evaluation of the relative success of various known stochastic-search algorithms in coping with a hard combinatorial optimization problems under a very short and fixed timeout. Keywords Algorithm portfolios * NP-optimization * Real-time Mathematics Subject Classification (2010) 68T20
Various hard real-time systems have a desired requirement which is impossible to fulfill: to solve a computationally hard optimization problem within a short and fixed amount of time T, e.g., T = 0.5 seconds. For such a task, the exact, exponential algorithms, as well as various Polynomial-Time Approximation Schemes, are irrelevant because they can exceed T. What is left in practice is to combine various anytime algorithms in a parallel portfolio. The question is how to build such an optimal portfolio, given a budget of K computing cores. It is certainly not as simple as choosing the K best performing algorithms, because their results are possibly correlated (e.g., there is no point in choosing two good algorithm for the portfolio if they win on a similar set of instances). We prove that the decision variant of this problem is NP-complete, and furthermore that the optimization problem is approximable. On the practical side, our main contribution is a solution of the optimization problem of choosing K algorithms out of n, for a machine with K computing cores, and the related problem of detecting the minimum number of required cores to achieve an optimal portfolio, with respect to a given training set of instances. As a benchmark, we took instances of a hard optimization problem that is prevalent in the real-time industry, in which the challenge is to decide on the best action within time T. We include the results of numerous experiments that compare the various methods. Hence, a side effect of our tests is that it gives the first systematic empirical evaluation of the relative success of various known stochastic-search algorithms in coping with a hard combinatorial optimization problems under a very short and fixed timeout.
Various hard real-time systems have a desired requirement which is impossible to fulfill: to solve a computationally hard optimization problem within a short and fixed amount of time T , e.g., T = 0.5 seconds. For such a task, the exact, exponential algorithms, as well as various Polynomial-Time Approximation Schemes, are irrelevant because they can exceed T . What is left in practice is to combine various anytime algorithms in a parallel portfolio. The question is how to build such an optimal portfolio, given a budget of K computing cores. It is certainly not as simple as choosing the K best performing algorithms, because their results are possibly correlated (e.g., there is no point in choosing two good algorithm for the portfolio if they win on a similar set of instances). We prove that the decision variant of this problem is NP-complete, and furthermore that the optimization problem is approximable. On the practical side, our main contribution is a solution of the optimization problem of choosing K algorithms out of n , for a machine with K computing cores, and the related problem of detecting the minimum number of required cores to achieve an optimal portfolio, with respect to a given training set of instances. As a benchmark, we took instances of a hard optimization problem that is prevalent in the real-time industry, in which the challenge is to decide on the best action within time T . We include the results of numerous experiments that compare the various methods. Hence, a side effect of our tests is that it gives the first systematic empirical evaluation of the relative success of various known stochastic-search algorithms in coping with a hard combinatorial optimization problems under a very short and fixed timeout.
Audience Academic
Author Strichman, Ofer
Nof, Yair
Author_xml – sequence: 1
  givenname: Yair
  orcidid: 0000-0002-1923-358X
  surname: Nof
  fullname: Nof, Yair
  email: yair.nof@gmail.com
  organization: Information Systems Engineering, Technion
– sequence: 2
  givenname: Ofer
  surname: Strichman
  fullname: Strichman, Ofer
  organization: Information Systems Engineering, Technion
BookMark eNp9kE1LxDAQhoMoqKt_wFPBc9ZJmjbNURa_QBBEzyFNk91I2tSkK-y_N2sFwcOSQ8IwT-ad5xwdD2EwCF0RWBIAfpMIME4xUMAgODDMjtAZqXiJOeNwnN9AKKaMlafoPKUPABB1U5-h91ejPJ5cb4oU_Jcb1kWwhQ79uJ3U5MKgvN8VGxW7Yoyh9aZPxTb9tI2ZUr5Qfh2imzZ9MYY42eBdSBfoxCqfzOXvvUDv93dvq0f8_PLwtLp9xppBPeFOWMN5VSlmalaDqjraNtxUdVnlqIy1otak07TtCLdgDDTWUtoKXopOaELLBbqe_83ZPrcmTfIjbGPOnCQVpKFQlmzftZy71sob6QYbpqh0Pp3pnc4ircv1W04q0TBoRAboDOgYUorGyjHmXeNOEpB733L2LbNv-eNbsgw1_yDtZoV5mvOH0XJGU54zrE38W-MA9Q1DLJcv
CitedBy_id crossref_primary_10_1007_s12293_022_00367_8
Cites_doi 10.1007/BFb0017443
10.1016/S0004-3702(00)00081-3
10.1007/978-1-4684-2001-2_9
10.1007/978-3-642-17511-4_20
10.1145/1831708.1831716
10.1007/11817963_11
10.1007/978-3-642-04244-7_14
10.1007/978-3-642-25566-3_40
10.1007/978-3-540-78800-3_24
10.1007/s10472-007-9050-9
10.1007/978-3-642-03359-9_2
10.1002/spe.524
10.1007/978-3-642-29828-8_16
10.1287/opre.6.2.244
10.1007/BF01588971
10.1017/CBO9780511921735
10.1613/jair.2861
10.1007/978-1-4757-4321-0
10.1016/0305-0548(86)90048-1
10.1126/science.275.5296.51
10.1126/science.220.4598.671
10.1016/j.orp.2016.09.002
ContentType Journal Article
Copyright Springer Nature Switzerland AG 2020
COPYRIGHT 2021 Springer
Springer Nature Switzerland AG 2020.
Copyright_xml – notice: Springer Nature Switzerland AG 2020
– notice: COPYRIGHT 2021 Springer
– notice: Springer Nature Switzerland AG 2020.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
DOI 10.1007/s10472-020-09704-4
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Engineering Collection
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Computer Science Database

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1573-7470
EndPage 710
ExternalDocumentID A715984089
10_1007_s10472_020_09704_4
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23M
28-
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KOW
LAK
LLZTM
M4Y
M7S
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z81
Z83
Z88
Z92
ZMTXR
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c406t-d9fe7755a4e6460a5d2b87e563524444b96c1dc2bd17f0ee08ff22b9739d9c123
IEDL.DBID RSV
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000563828000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1012-2443
IngestDate Wed Nov 05 14:59:43 EST 2025
Sat Nov 29 09:58:59 EST 2025
Sat Nov 29 05:14:37 EST 2025
Tue Nov 18 21:49:59 EST 2025
Fri Feb 21 02:49:06 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Algorithm portfolios
NP-optimization
68T20
Real-time
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-d9fe7755a4e6460a5d2b87e563524444b96c1dc2bd17f0ee08ff22b9739d9c123
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1923-358X
PQID 2918203342
PQPubID 2043872
PageCount 18
ParticipantIDs proquest_journals_2918203342
gale_infotracacademiconefile_A715984089
crossref_primary_10_1007_s10472_020_09704_4
crossref_citationtrail_10_1007_s10472_020_09704_4
springer_journals_10_1007_s10472_020_09704_4
PublicationCentury 2000
PublicationDate 2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Dordrecht
PublicationTitle Annals of mathematics and artificial intelligence
PublicationTitleAbbrev Ann Math Artif Intell
PublicationYear 2021
Publisher Springer International Publishing
Springer
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer
– name: Springer Nature B.V
References CohenEDahlweidMHillebrandMLeinenbachDMoskalMSantenTSchulteWTobiesSVCC: a Practical System for Verifying Concurrent C2009BerlinSpringer2342https://doi.org/10.1007/978-3-642-03359-9_2
Nof, Y.: Real time solving of discrete optimization problems. Master’s thesis, Technion, Israel Institute of Technology. Available online in https://ie.technion.ac.il/~ofers/publications/theses/yair_nof.pdf (2017)
KirkpatrickSGelattCDJrVecchiMPOptimization by simulated annealingScience198322067168070248510.1126/science.220.4598.671
SinzCTowards an optimal cnf encoding of boolean cardinality constraintsCP200537098278311153.68488
Di GasperoLSchaerfAEasylocal++: an object-oriented framework for flexible design of local search algorithmsSoftware — Practice & Experience200333873376510.1002/spe.524
HentenryckPVMichelLConstraint-Based Local Search2005CambridgeMIT Press1160.68556
Hoos, H., Leyton-Brown, K., Schaub, T., Schneider, M.: Algorithm configuration for portfolio-based parallel sat-solving. In: Workshop on Combining Constraint Solving with Mining and Learning (2012)
Crescenzi, P., Kann, V.: A compendium of NP optimization problems. In: WWW Spring 1994 (1994)
Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Computer Computations. Springer, US (1972)
Dutertre, B., de Moura, L.M.: A fast linear-arithmetic solver for DPLL(T). In: Ball, T., Jones, R.B. (eds.) Computer Aided Verification, 18th International Conference, CAV 2006, Seattle, WA, USA, August 17-20, 2006, Proceedings, Lecture Notes in Computer Science, vol. 4144, pp 81–94. Springer (2006). https://doi.org/10.1007/11817963_11
HubermanBALukoseRMHoggTAn economics approach to hard computational problemsScience19972755296515410.1126/science.275.5296.51
Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness. In: International Conference on Logic for Programming Artificial Intelligence and Reasoning, pp 348–370. Springer (2010)
NemhauserGLWolseyLAFisherMLAn analysis of approximations for maximizing submodular set functions - IMath. Program.197814126529450386610.1007/BF01588971
PetrikMZilbersteinSLearning parallel portfolios of algorithmsAnn. Math. Artif. Intell.20064818510623371521121.68095
HutterFHoosHHLeyton-BrownKStützleTParamILS: an automatic algorithm configuration frameworkJ. Artif. Intell. Res.20093626730610.1613/jair.2861
RubinsteinRKroeseDThe Cross-Entropy Method: a Unified Approach to Combinatorial Optimization, Monte-Carlo Simulation, and Machine Learning2004New YorkSpringer10.1007/978-1-4757-4321-0
Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for general algorithm configuration. In: International Conference on Learning and Intelligent Optimization, pp 507–523. Springer (2011)
YangXSNature-Inspired Metaheuristic Algorithms20102nd edn.United KingdomLuniver Press1213
Wei, Y., Pei, Y., Furia, C.A., Silva, L.S., Buchholz, S., Meyer, B., Zeller, A.: Automated fixing of programs with contracts. In: Proceedings of the 19th International Symposium on Software Testing and Analysis, pp 61–72. ACM (2010)
GomesCPSelmanBAlgorithm portfoliosArtif. Intell.20011261-24362181548910.1016/S0004-3702(00)00081-3
Ansótegui, C., Sellmann, M., Tierney, K.: A gender-based genetic algorithm for the automatic configuration of algorithms. In: International Conference on Principles and Practice of Constraint Programming, pp 142–157. Springer, Berlin (2009)
HoosHHStutzleTStochastic Local Search: Foundations and Applications2004BurlingtonMorgan Kaufmann Massachusetts1126.68032
Malitsky, Y., Sellmann, M.: Instance-specific algorithm configuration as a method for non-model-based portfolio generation. Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimzation Problems.7298 244–259
GloverFFuture paths for integer programming and links to artificial intelligenceComput. Oper. Res.198613553354986890810.1016/0305-0548(86)90048-1
DechterRConstraints Processing. The Morgan Kaufmann Series in Artificial Intelligence2003BurlingtonMorgan Kaufmann
BrooksSHA discussion of random methods for seeking maximaOper. Res.1958624425110.1287/opre.6.2.244
WilliamsonDPShmoysDBThe Design of Approximation Algorithms2011CambridgeCambridge University Press10.1017/CBO9780511921735
de MouraLBjørnerNZ3: an Efficient SMT Solver2008BerlinSpringer337340https://doi.org/10.1007/978-3-540-78800-3_24
Michel, L., Van Hentenryck, P.: Localizer a modeling language for local search. In: Smolka, G. (ed.) Principles and Practice of Constraint Programming-CP97, pp 237–251. Springer, Berlin (1997)
López-IbáñezMDubois-LacosteJCáceresLPBirattariMStützleTThe irace package: iterated racing for automatic algorithm configurationOperations Research Perspectives201634358357917510.1016/j.orp.2016.09.002
ForrestSMitchellMRelative Building-Block fitness and the Building-Block hypothesisFoundations of Genetic Algorithms19932109126
KroeningDStrichmanODecision Procedures: an Algorithmic Point of View. Texts in Theoretical Computer Science. An EATCS Series2010BerlinSpringerhttp://www.decision-procedures.org
9704_CR7
XS Yang (9704_CR32) 2010
SH Brooks (9704_CR2) 1958; 6
E Cohen (9704_CR3) 2009
BA Huberman (9704_CR14) 1997; 275
9704_CR4
D Kroening (9704_CR19) 2010
L Di Gaspero (9704_CR6) 2003; 33
R Rubinstein (9704_CR28) 2004
R Dechter (9704_CR5) 2003
C Sinz (9704_CR29) 2005; 3709
9704_CR18
9704_CR1
9704_CR15
9704_CR12
M Petrik (9704_CR27) 2006; 48
9704_CR30
M López-Ibáñez (9704_CR21) 2016; 3
F Hutter (9704_CR16) 2009; 36
L de Moura (9704_CR24) 2008
9704_CR26
DP Williamson (9704_CR31) 2011
9704_CR22
PV Hentenryck (9704_CR11) 2005
9704_CR23
9704_CR20
S Kirkpatrick (9704_CR17) 1983; 220
S Forrest (9704_CR8) 1993; 2
HH Hoos (9704_CR13) 2004
F Glover (9704_CR9) 1986; 13
CP Gomes (9704_CR10) 2001; 126
GL Nemhauser (9704_CR25) 1978; 14
References_xml – reference: Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness. In: International Conference on Logic for Programming Artificial Intelligence and Reasoning, pp 348–370. Springer (2010)
– reference: López-IbáñezMDubois-LacosteJCáceresLPBirattariMStützleTThe irace package: iterated racing for automatic algorithm configurationOperations Research Perspectives201634358357917510.1016/j.orp.2016.09.002
– reference: Michel, L., Van Hentenryck, P.: Localizer a modeling language for local search. In: Smolka, G. (ed.) Principles and Practice of Constraint Programming-CP97, pp 237–251. Springer, Berlin (1997)
– reference: KirkpatrickSGelattCDJrVecchiMPOptimization by simulated annealingScience198322067168070248510.1126/science.220.4598.671
– reference: Crescenzi, P., Kann, V.: A compendium of NP optimization problems. In: WWW Spring 1994 (1994)
– reference: Di GasperoLSchaerfAEasylocal++: an object-oriented framework for flexible design of local search algorithmsSoftware — Practice & Experience200333873376510.1002/spe.524
– reference: ForrestSMitchellMRelative Building-Block fitness and the Building-Block hypothesisFoundations of Genetic Algorithms19932109126
– reference: GomesCPSelmanBAlgorithm portfoliosArtif. Intell.20011261-24362181548910.1016/S0004-3702(00)00081-3
– reference: Wei, Y., Pei, Y., Furia, C.A., Silva, L.S., Buchholz, S., Meyer, B., Zeller, A.: Automated fixing of programs with contracts. In: Proceedings of the 19th International Symposium on Software Testing and Analysis, pp 61–72. ACM (2010)
– reference: Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Computer Computations. Springer, US (1972)
– reference: PetrikMZilbersteinSLearning parallel portfolios of algorithmsAnn. Math. Artif. Intell.20064818510623371521121.68095
– reference: KroeningDStrichmanODecision Procedures: an Algorithmic Point of View. Texts in Theoretical Computer Science. An EATCS Series2010BerlinSpringerhttp://www.decision-procedures.org
– reference: RubinsteinRKroeseDThe Cross-Entropy Method: a Unified Approach to Combinatorial Optimization, Monte-Carlo Simulation, and Machine Learning2004New YorkSpringer10.1007/978-1-4757-4321-0
– reference: YangXSNature-Inspired Metaheuristic Algorithms20102nd edn.United KingdomLuniver Press1213
– reference: Ansótegui, C., Sellmann, M., Tierney, K.: A gender-based genetic algorithm for the automatic configuration of algorithms. In: International Conference on Principles and Practice of Constraint Programming, pp 142–157. Springer, Berlin (2009)
– reference: de MouraLBjørnerNZ3: an Efficient SMT Solver2008BerlinSpringer337340https://doi.org/10.1007/978-3-540-78800-3_24
– reference: Hoos, H., Leyton-Brown, K., Schaub, T., Schneider, M.: Algorithm configuration for portfolio-based parallel sat-solving. In: Workshop on Combining Constraint Solving with Mining and Learning (2012)
– reference: NemhauserGLWolseyLAFisherMLAn analysis of approximations for maximizing submodular set functions - IMath. Program.197814126529450386610.1007/BF01588971
– reference: SinzCTowards an optimal cnf encoding of boolean cardinality constraintsCP200537098278311153.68488
– reference: HubermanBALukoseRMHoggTAn economics approach to hard computational problemsScience19972755296515410.1126/science.275.5296.51
– reference: HentenryckPVMichelLConstraint-Based Local Search2005CambridgeMIT Press1160.68556
– reference: GloverFFuture paths for integer programming and links to artificial intelligenceComput. Oper. Res.198613553354986890810.1016/0305-0548(86)90048-1
– reference: HoosHHStutzleTStochastic Local Search: Foundations and Applications2004BurlingtonMorgan Kaufmann Massachusetts1126.68032
– reference: Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for general algorithm configuration. In: International Conference on Learning and Intelligent Optimization, pp 507–523. Springer (2011)
– reference: DechterRConstraints Processing. The Morgan Kaufmann Series in Artificial Intelligence2003BurlingtonMorgan Kaufmann
– reference: HutterFHoosHHLeyton-BrownKStützleTParamILS: an automatic algorithm configuration frameworkJ. Artif. Intell. Res.20093626730610.1613/jair.2861
– reference: CohenEDahlweidMHillebrandMLeinenbachDMoskalMSantenTSchulteWTobiesSVCC: a Practical System for Verifying Concurrent C2009BerlinSpringer2342https://doi.org/10.1007/978-3-642-03359-9_2
– reference: Dutertre, B., de Moura, L.M.: A fast linear-arithmetic solver for DPLL(T). In: Ball, T., Jones, R.B. (eds.) Computer Aided Verification, 18th International Conference, CAV 2006, Seattle, WA, USA, August 17-20, 2006, Proceedings, Lecture Notes in Computer Science, vol. 4144, pp 81–94. Springer (2006). https://doi.org/10.1007/11817963_11
– reference: WilliamsonDPShmoysDBThe Design of Approximation Algorithms2011CambridgeCambridge University Press10.1017/CBO9780511921735
– reference: Nof, Y.: Real time solving of discrete optimization problems. Master’s thesis, Technion, Israel Institute of Technology. Available online in https://ie.technion.ac.il/~ofers/publications/theses/yair_nof.pdf (2017)
– reference: BrooksSHA discussion of random methods for seeking maximaOper. Res.1958624425110.1287/opre.6.2.244
– reference: Malitsky, Y., Sellmann, M.: Instance-specific algorithm configuration as a method for non-model-based portfolio generation. Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimzation Problems.7298 244–259
– ident: 9704_CR23
  doi: 10.1007/BFb0017443
– volume: 126
  start-page: 43
  issue: 1-2
  year: 2001
  ident: 9704_CR10
  publication-title: Artif. Intell.
  doi: 10.1016/S0004-3702(00)00081-3
– ident: 9704_CR4
– ident: 9704_CR18
  doi: 10.1007/978-1-4684-2001-2_9
– ident: 9704_CR20
  doi: 10.1007/978-3-642-17511-4_20
– ident: 9704_CR30
  doi: 10.1145/1831708.1831716
– ident: 9704_CR7
  doi: 10.1007/11817963_11
– ident: 9704_CR1
  doi: 10.1007/978-3-642-04244-7_14
– ident: 9704_CR15
  doi: 10.1007/978-3-642-25566-3_40
– volume-title: Constraint-Based Local Search
  year: 2005
  ident: 9704_CR11
– start-page: 337
  volume-title: Z3: an Efficient SMT Solver
  year: 2008
  ident: 9704_CR24
  doi: 10.1007/978-3-540-78800-3_24
– volume: 3709
  start-page: 827
  year: 2005
  ident: 9704_CR29
  publication-title: CP
– volume: 48
  start-page: 85
  issue: 1
  year: 2006
  ident: 9704_CR27
  publication-title: Ann. Math. Artif. Intell.
  doi: 10.1007/s10472-007-9050-9
– start-page: 23
  volume-title: VCC: a Practical System for Verifying Concurrent C
  year: 2009
  ident: 9704_CR3
  doi: 10.1007/978-3-642-03359-9_2
– volume: 33
  start-page: 733
  issue: 8
  year: 2003
  ident: 9704_CR6
  publication-title: Software — Practice & Experience
  doi: 10.1002/spe.524
– ident: 9704_CR22
  doi: 10.1007/978-3-642-29828-8_16
– ident: 9704_CR12
– volume-title: Decision Procedures: an Algorithmic Point of View. Texts in Theoretical Computer Science. An EATCS Series
  year: 2010
  ident: 9704_CR19
– volume: 6
  start-page: 244
  year: 1958
  ident: 9704_CR2
  publication-title: Oper. Res.
  doi: 10.1287/opre.6.2.244
– volume: 14
  start-page: 265
  issue: 1
  year: 1978
  ident: 9704_CR25
  publication-title: Math. Program.
  doi: 10.1007/BF01588971
– volume-title: The Design of Approximation Algorithms
  year: 2011
  ident: 9704_CR31
  doi: 10.1017/CBO9780511921735
– volume: 36
  start-page: 267
  year: 2009
  ident: 9704_CR16
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.2861
– volume: 2
  start-page: 109
  year: 1993
  ident: 9704_CR8
  publication-title: Foundations of Genetic Algorithms
– volume-title: Constraints Processing. The Morgan Kaufmann Series in Artificial Intelligence
  year: 2003
  ident: 9704_CR5
– volume-title: The Cross-Entropy Method: a Unified Approach to Combinatorial Optimization, Monte-Carlo Simulation, and Machine Learning
  year: 2004
  ident: 9704_CR28
  doi: 10.1007/978-1-4757-4321-0
– volume: 13
  start-page: 533
  issue: 5
  year: 1986
  ident: 9704_CR9
  publication-title: Comput. Oper. Res.
  doi: 10.1016/0305-0548(86)90048-1
– start-page: 12
  volume-title: Nature-Inspired Metaheuristic Algorithms
  year: 2010
  ident: 9704_CR32
– volume-title: Stochastic Local Search: Foundations and Applications
  year: 2004
  ident: 9704_CR13
– volume: 275
  start-page: 51
  issue: 5296
  year: 1997
  ident: 9704_CR14
  publication-title: Science
  doi: 10.1126/science.275.5296.51
– volume: 220
  start-page: 671
  year: 1983
  ident: 9704_CR17
  publication-title: Science
  doi: 10.1126/science.220.4598.671
– volume: 3
  start-page: 43
  year: 2016
  ident: 9704_CR21
  publication-title: Operations Research Perspectives
  doi: 10.1016/j.orp.2016.09.002
– ident: 9704_CR26
SSID ssj0009686
Score 2.256307
Snippet Various hard real-time systems have a desired requirement which is impossible to fulfill: to solve a computationally hard optimization problem within a short...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 693
SubjectTerms Algorithms
Artificial Intelligence
Combinatorial analysis
Complex Systems
Computation
Computer Science
Investment analysis
Mathematics
Optimization
Polynomials
Real time
Search algorithms
SummonAdditionalLinks – databaseName: Computer Science Database
  dbid: K7-
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NSx0xEB9a9dAe1GpLnx8lh0IPGtzNZjebk4goQlsppRZvIckmVni-VfdZ6H_vzJr1oaKXnjcfw_4mM5PJfAB8rp0U0paBZ856LoWruc1tzWO0eSFt3vj-xfT3N3V8XJ-e6h_J4dalsMpBJvaCumk9-ch3hKZS40Uhxe7lFaeuUfS6mlpovIb5XIic-Pyr4rOiu1Xf6ZFKWHFUY0VKmkmpc1IJTpenTKtMcvlAMT0Wz0_eSXv1c7j0v4Qvw2IyPNneHae8g1dhsgJLQ1MHls74Crz9fl_ItVuFk59oSHJqQM-QScn5wNrIfD8ruRHH_xhlbrHUmqZjFEqPw1AWXeCGdnyG1Ez_XDCy9GM7Pm-793ByePBr_4inTgzco8Kf8kbHoFRZWhkqWWW2bBBUFUq0VvC_Sul05RFW4ZpcxSyErI5RCKdVoRvtUTl-gLlJOwkfgfmsEnkUzpVOyCB8TQZb7fGGnimrvR5BPsBgfCpTTt0yxmZWYJmgMwid6aEzcgRb93Mu74p0vDj6C6Fr6ATjyt6mRASkj2phmT2FJh7ee2ukZWOA1KSj3ZkZniPYHphi9vn5fddeXm0d3giKl-lDgTdgbnp9EzZhwf-dnnfXn3rGvgVZ9vy2
  priority: 102
  providerName: ProQuest
Title Real-time solving of computationally hard problems using optimal algorithm portfolios
URI https://link.springer.com/article/10.1007/s10472-020-09704-4
https://www.proquest.com/docview/2918203342
Volume 89
WOSCitedRecordID wos000563828000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1573-7470
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0009686
  issn: 1012-2443
  databaseCode: K7-
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1573-7470
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0009686
  issn: 1012-2443
  databaseCode: M7S
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest advanced technologies & aerospace journals
  customDbUrl:
  eissn: 1573-7470
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0009686
  issn: 1012-2443
  databaseCode: P5Z
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-7470
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0009686
  issn: 1012-2443
  databaseCode: BENPR
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-7470
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009686
  issn: 1012-2443
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB71wQEOtBQQC2XlAxIHsJQ4TmwfC2qF1LJabWlVcbFsx4aVthu02Vbi3zNOnW55VWovucQvzXg8Y8_MNwBvpOWMm9LTzBpHObOSmtxIGoLJC27y2nUe09MjMRrJszM1TklhbR_t3rsku5P6RrIbF4zG606mRMYpX4dNVHcyiuPk-HQFtVt19R0jcBVF5VWkVJl_j_GbOvrzUP7LO9opnYOt-y13Gx4nI5PsXe2KJ7Dm5zuw1RdwIEmed-DR52vQ1vYpnEzQaKSx2DzBDRkfGkgTiOt6pSfD2U8Ss7RIKkPTkhg2j83w3DnHCc3sW7OYLr-fk2jVh2Y2bdpncHKw_-XjJ5qqLlCHyn1JaxW8EGVpuK94lZmyRgYKX6JlgtTk3KrKIQuZrXMRMu8zGQJjVolC1cqhInwOG_Nm7l8AcVnF8sCsLS3jnjkZjTPp8DaeCaOcGkDeE1-7BEkeK2PM9ApMOVJRIxV1R0XNB_Duus-PK0COW1u_jTzVUVpxZGdS0gGuL-Je6T2B5hzecSWuZbdnu05i3GqmIr59UXA2gPc9m1e__z_vy7s1fwUPWYyV6cKAd2Fjubjwr-GBu1xO28UQNj_sj8aTIawfCjqM0anH-B2XX4fdxv8F9X33bA
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VBQk4UCgglhbwAcQBrCaOE8eHClVA1Wq3K4Ra1JtxHAdW2t2UJhT1T_EbO5N1ugJEbz1wjh_j-PPM-DHfALzICymkTT2PCuu4FEXObWxzXlU2TqSNS9fdmH4eqfE4Pz7WH1fgVx8LQ88qe53YKeqydnRGviU0UY0niRRvT75zyhpFt6t9Co0FLIb-_Cdu2Zrt_fc4vy-F2P1w-G6Ph6wC3KHxanmpK69UmlrpM5lFNi1RQOVTtLxo6qQsdOZQRFGUsaoi76O8qoQotEp0qV1MRAeo8m_IJFfE1T9UfEnym3WZJYkyi2NbSQjSCaF6UglOm7VIq0hy-Zsh_NMc_HUv25m73bX_7Ufdg7vBsWY7i5VwH1b8fB3W-qQVLOiwdbhzcElU2zyAo0_oKPN2MvMMFyEdrrC6Yq6rFY5Jp-eMItNYSL3TMAoVwGKoa2fYoZ1-xdG332aMdjJVPZ3UzUM4upahPoLVeT33j4G5KBNxJYoiLYT0wuXkkOZOSREpq50eQNxPu3GBhp2ygUzNkkCaoGIQKqaDipEDeH1Z52RBQnJl6VeEJkMaClt2NgRaoHzE9WV2FLqwuK_PUZbNHkImqK7GLPEzgDc9CJef_93vk6tbew639g4PRma0Px5uwG1Bb4O6Z8-bsNqe_vBP4aY7ayfN6bNuUTH4ct3gvABpWVkM
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9QwDLdgIDQeGIxN3DYgD0g8QLQ2TZvmcWI7gRinCdi0tyhNEzjpdp2uBYn_HruX7sanhHjOp2wnthP7Z4BnZSWFtLnnSWUdl6IquU1tyUOwaSZtWrv-x_TsWE0m5fm5PrmWxd9Huw9fksucBkJpmnf7l3XYv5b4JpXg5PokWiWSy5twS1LRIPLXP5ytYHeLvtYjgVhxVGRZTJv5_Rw_qKafL-hffkp7BTTe-P-t34d70fhkB0tpeQA3_HwTNobCDiye8024--4KzLV9CKfv0ZjkVISeoaDSAwRrAnP9qPiUOPvGKHuLxfI0LaNweuyG99EFLmhnn5rFtPt8wcjaD81s2rRbcDo--vjqNY_VGLhDpd_xWgevVJ5b6QtZJDavkbHK52ixIGWlrHThkLWiqlMVEu-TMgQhKq0yXWuHCnIb1ubN3D8C5pJCpEFUVV4J6YUryWgrHXrpibLa6RGkAyOMi1DlVDFjZlYgy0RFg1Q0PRWNHMGLqzGXS6COv_Z-Tvw1dIpxZmdjMgLuj_CwzIFCMw993xL3sjeIgInHuzVCE-59lkkxgpcDy1fNf15359-6P4U7J4djc_xm8nYX1gWF0_SRwnuw1i2--Mdw233tpu3iSS_13wFCl_7S
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-time+solving+of+computationally+hard+problems+using+optimal+algorithm+portfolios&rft.jtitle=Annals+of+mathematics+and+artificial+intelligence&rft.au=Nof%2C+Yair&rft.au=Strichman%2C+Ofer&rft.date=2021-07-01&rft.pub=Springer&rft.issn=1012-2443&rft.volume=89&rft.issue=7&rft.spage=693&rft_id=info:doi/10.1007%2Fs10472-020-09704-4&rft.externalDocID=A715984089
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1012-2443&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1012-2443&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1012-2443&client=summon