Real-time solving of computationally hard problems using optimal algorithm portfolios
Various hard real-time systems have a desired requirement which is impossible to fulfill: to solve a computationally hard optimization problem within a short and fixed amount of time T , e.g., T = 0.5 seconds. For such a task, the exact, exponential algorithms, as well as various Polynomial-Time App...
Saved in:
| Published in: | Annals of mathematics and artificial intelligence Vol. 89; no. 7; pp. 693 - 710 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Cham
Springer International Publishing
01.07.2021
Springer Springer Nature B.V |
| Subjects: | |
| ISSN: | 1012-2443, 1573-7470 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Various hard real-time systems have a desired requirement which is impossible to fulfill: to solve a computationally hard optimization problem within a short and fixed amount of time
T
, e.g.,
T
= 0.5 seconds. For such a task, the exact, exponential algorithms, as well as various Polynomial-Time Approximation Schemes, are irrelevant because they can exceed
T
. What is left in practice is to combine various anytime algorithms in a parallel portfolio. The question is how to build such an optimal portfolio, given a budget of
K
computing cores. It is certainly not as simple as choosing the
K
best performing algorithms, because their results are possibly correlated (e.g., there is no point in choosing two good algorithm for the portfolio if they win on a similar set of instances). We prove that the decision variant of this problem is NP-complete, and furthermore that the optimization problem is approximable. On the practical side, our main contribution is a solution of the optimization problem of choosing
K
algorithms out of
n
, for a machine with
K
computing cores, and the related problem of detecting the minimum number of required cores to achieve an optimal portfolio, with respect to a given training set of instances. As a benchmark, we took instances of a hard optimization problem that is prevalent in the real-time industry, in which the challenge is to decide on the best
action
within time
T
. We include the results of numerous experiments that compare the various methods. Hence, a side effect of our tests is that it gives the first systematic empirical evaluation of the relative success of various known stochastic-search algorithms in coping with a hard combinatorial optimization problems under a very short and fixed timeout. |
|---|---|
| AbstractList | Various hard real-time systems have a desired requirement which is impossible to fulfill: to solve a computationally hard optimization problem within a short and fixed amount of time T, e.g., T = 0.5 seconds. For such a task, the exact, exponential algorithms, as well as various Polynomial-Time Approximation Schemes, are irrelevant because they can exceed T. What is left in practice is to combine various anytime algorithms in a parallel portfolio. The question is how to build such an optimal portfolio, given a budget of K computing cores. It is certainly not as simple as choosing the K best performing algorithms, because their results are possibly correlated (e.g., there is no point in choosing two good algorithm for the portfolio if they win on a similar set of instances). We prove that the decision variant of this problem is NP-complete, and furthermore that the optimization problem is approximable. On the practical side, our main contribution is a solution of the optimization problem of choosing K algorithms out of n, for a machine with K computing cores, and the related problem of detecting the minimum number of required cores to achieve an optimal portfolio, with respect to a given training set of instances. As a benchmark, we took instances of a hard optimization problem that is prevalent in the real-time industry, in which the challenge is to decide on the best action within time T. We include the results of numerous experiments that compare the various methods. Hence, a side effect of our tests is that it gives the first systematic empirical evaluation of the relative success of various known stochastic-search algorithms in coping with a hard combinatorial optimization problems under a very short and fixed timeout. Keywords Algorithm portfolios * NP-optimization * Real-time Mathematics Subject Classification (2010) 68T20 Various hard real-time systems have a desired requirement which is impossible to fulfill: to solve a computationally hard optimization problem within a short and fixed amount of time T, e.g., T = 0.5 seconds. For such a task, the exact, exponential algorithms, as well as various Polynomial-Time Approximation Schemes, are irrelevant because they can exceed T. What is left in practice is to combine various anytime algorithms in a parallel portfolio. The question is how to build such an optimal portfolio, given a budget of K computing cores. It is certainly not as simple as choosing the K best performing algorithms, because their results are possibly correlated (e.g., there is no point in choosing two good algorithm for the portfolio if they win on a similar set of instances). We prove that the decision variant of this problem is NP-complete, and furthermore that the optimization problem is approximable. On the practical side, our main contribution is a solution of the optimization problem of choosing K algorithms out of n, for a machine with K computing cores, and the related problem of detecting the minimum number of required cores to achieve an optimal portfolio, with respect to a given training set of instances. As a benchmark, we took instances of a hard optimization problem that is prevalent in the real-time industry, in which the challenge is to decide on the best action within time T. We include the results of numerous experiments that compare the various methods. Hence, a side effect of our tests is that it gives the first systematic empirical evaluation of the relative success of various known stochastic-search algorithms in coping with a hard combinatorial optimization problems under a very short and fixed timeout. Various hard real-time systems have a desired requirement which is impossible to fulfill: to solve a computationally hard optimization problem within a short and fixed amount of time T , e.g., T = 0.5 seconds. For such a task, the exact, exponential algorithms, as well as various Polynomial-Time Approximation Schemes, are irrelevant because they can exceed T . What is left in practice is to combine various anytime algorithms in a parallel portfolio. The question is how to build such an optimal portfolio, given a budget of K computing cores. It is certainly not as simple as choosing the K best performing algorithms, because their results are possibly correlated (e.g., there is no point in choosing two good algorithm for the portfolio if they win on a similar set of instances). We prove that the decision variant of this problem is NP-complete, and furthermore that the optimization problem is approximable. On the practical side, our main contribution is a solution of the optimization problem of choosing K algorithms out of n , for a machine with K computing cores, and the related problem of detecting the minimum number of required cores to achieve an optimal portfolio, with respect to a given training set of instances. As a benchmark, we took instances of a hard optimization problem that is prevalent in the real-time industry, in which the challenge is to decide on the best action within time T . We include the results of numerous experiments that compare the various methods. Hence, a side effect of our tests is that it gives the first systematic empirical evaluation of the relative success of various known stochastic-search algorithms in coping with a hard combinatorial optimization problems under a very short and fixed timeout. |
| Audience | Academic |
| Author | Strichman, Ofer Nof, Yair |
| Author_xml | – sequence: 1 givenname: Yair orcidid: 0000-0002-1923-358X surname: Nof fullname: Nof, Yair email: yair.nof@gmail.com organization: Information Systems Engineering, Technion – sequence: 2 givenname: Ofer surname: Strichman fullname: Strichman, Ofer organization: Information Systems Engineering, Technion |
| BookMark | eNp9kE1LxDAQhoMoqKt_wFPBc9ZJmjbNURa_QBBEzyFNk91I2tSkK-y_N2sFwcOSQ8IwT-ad5xwdD2EwCF0RWBIAfpMIME4xUMAgODDMjtAZqXiJOeNwnN9AKKaMlafoPKUPABB1U5-h91ejPJ5cb4oU_Jcb1kWwhQ79uJ3U5MKgvN8VGxW7Yoyh9aZPxTb9tI2ZUr5Qfh2imzZ9MYY42eBdSBfoxCqfzOXvvUDv93dvq0f8_PLwtLp9xppBPeFOWMN5VSlmalaDqjraNtxUdVnlqIy1otak07TtCLdgDDTWUtoKXopOaELLBbqe_83ZPrcmTfIjbGPOnCQVpKFQlmzftZy71sob6QYbpqh0Pp3pnc4ircv1W04q0TBoRAboDOgYUorGyjHmXeNOEpB733L2LbNv-eNbsgw1_yDtZoV5mvOH0XJGU54zrE38W-MA9Q1DLJcv |
| CitedBy_id | crossref_primary_10_1007_s12293_022_00367_8 |
| Cites_doi | 10.1007/BFb0017443 10.1016/S0004-3702(00)00081-3 10.1007/978-1-4684-2001-2_9 10.1007/978-3-642-17511-4_20 10.1145/1831708.1831716 10.1007/11817963_11 10.1007/978-3-642-04244-7_14 10.1007/978-3-642-25566-3_40 10.1007/978-3-540-78800-3_24 10.1007/s10472-007-9050-9 10.1007/978-3-642-03359-9_2 10.1002/spe.524 10.1007/978-3-642-29828-8_16 10.1287/opre.6.2.244 10.1007/BF01588971 10.1017/CBO9780511921735 10.1613/jair.2861 10.1007/978-1-4757-4321-0 10.1016/0305-0548(86)90048-1 10.1126/science.275.5296.51 10.1126/science.220.4598.671 10.1016/j.orp.2016.09.002 |
| ContentType | Journal Article |
| Copyright | Springer Nature Switzerland AG 2020 COPYRIGHT 2021 Springer Springer Nature Switzerland AG 2020. |
| Copyright_xml | – notice: Springer Nature Switzerland AG 2020 – notice: COPYRIGHT 2021 Springer – notice: Springer Nature Switzerland AG 2020. |
| DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS |
| DOI | 10.1007/s10472-020-09704-4 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition Engineering Collection |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Computer Science Database |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics Computer Science |
| EISSN | 1573-7470 |
| EndPage | 710 |
| ExternalDocumentID | A715984089 10_1007_s10472_020_09704_4 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 23M 28- 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IAO IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV KOW LAK LLZTM M4Y M7S MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9O PF0 PT4 PT5 PTHSS QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z81 Z83 Z88 Z92 ZMTXR ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 8FE 8FG AZQEC DWQXO GNUQQ JQ2 L6V P62 PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c406t-d9fe7755a4e6460a5d2b87e563524444b96c1dc2bd17f0ee08ff22b9739d9c123 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000563828000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1012-2443 |
| IngestDate | Wed Nov 05 14:59:43 EST 2025 Sat Nov 29 09:58:59 EST 2025 Sat Nov 29 05:14:37 EST 2025 Tue Nov 18 21:49:59 EST 2025 Fri Feb 21 02:49:06 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | Algorithm portfolios NP-optimization 68T20 Real-time |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c406t-d9fe7755a4e6460a5d2b87e563524444b96c1dc2bd17f0ee08ff22b9739d9c123 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-1923-358X |
| PQID | 2918203342 |
| PQPubID | 2043872 |
| PageCount | 18 |
| ParticipantIDs | proquest_journals_2918203342 gale_infotracacademiconefile_A715984089 crossref_primary_10_1007_s10472_020_09704_4 crossref_citationtrail_10_1007_s10472_020_09704_4 springer_journals_10_1007_s10472_020_09704_4 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-07-01 |
| PublicationDateYYYYMMDD | 2021-07-01 |
| PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: Dordrecht |
| PublicationTitle | Annals of mathematics and artificial intelligence |
| PublicationTitleAbbrev | Ann Math Artif Intell |
| PublicationYear | 2021 |
| Publisher | Springer International Publishing Springer Springer Nature B.V |
| Publisher_xml | – name: Springer International Publishing – name: Springer – name: Springer Nature B.V |
| References | CohenEDahlweidMHillebrandMLeinenbachDMoskalMSantenTSchulteWTobiesSVCC: a Practical System for Verifying Concurrent C2009BerlinSpringer2342https://doi.org/10.1007/978-3-642-03359-9_2 Nof, Y.: Real time solving of discrete optimization problems. Master’s thesis, Technion, Israel Institute of Technology. Available online in https://ie.technion.ac.il/~ofers/publications/theses/yair_nof.pdf (2017) KirkpatrickSGelattCDJrVecchiMPOptimization by simulated annealingScience198322067168070248510.1126/science.220.4598.671 SinzCTowards an optimal cnf encoding of boolean cardinality constraintsCP200537098278311153.68488 Di GasperoLSchaerfAEasylocal++: an object-oriented framework for flexible design of local search algorithmsSoftware — Practice & Experience200333873376510.1002/spe.524 HentenryckPVMichelLConstraint-Based Local Search2005CambridgeMIT Press1160.68556 Hoos, H., Leyton-Brown, K., Schaub, T., Schneider, M.: Algorithm configuration for portfolio-based parallel sat-solving. In: Workshop on Combining Constraint Solving with Mining and Learning (2012) Crescenzi, P., Kann, V.: A compendium of NP optimization problems. In: WWW Spring 1994 (1994) Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Computer Computations. Springer, US (1972) Dutertre, B., de Moura, L.M.: A fast linear-arithmetic solver for DPLL(T). In: Ball, T., Jones, R.B. (eds.) Computer Aided Verification, 18th International Conference, CAV 2006, Seattle, WA, USA, August 17-20, 2006, Proceedings, Lecture Notes in Computer Science, vol. 4144, pp 81–94. Springer (2006). https://doi.org/10.1007/11817963_11 HubermanBALukoseRMHoggTAn economics approach to hard computational problemsScience19972755296515410.1126/science.275.5296.51 Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness. In: International Conference on Logic for Programming Artificial Intelligence and Reasoning, pp 348–370. Springer (2010) NemhauserGLWolseyLAFisherMLAn analysis of approximations for maximizing submodular set functions - IMath. Program.197814126529450386610.1007/BF01588971 PetrikMZilbersteinSLearning parallel portfolios of algorithmsAnn. Math. Artif. Intell.20064818510623371521121.68095 HutterFHoosHHLeyton-BrownKStützleTParamILS: an automatic algorithm configuration frameworkJ. Artif. Intell. Res.20093626730610.1613/jair.2861 RubinsteinRKroeseDThe Cross-Entropy Method: a Unified Approach to Combinatorial Optimization, Monte-Carlo Simulation, and Machine Learning2004New YorkSpringer10.1007/978-1-4757-4321-0 Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for general algorithm configuration. In: International Conference on Learning and Intelligent Optimization, pp 507–523. Springer (2011) YangXSNature-Inspired Metaheuristic Algorithms20102nd edn.United KingdomLuniver Press1213 Wei, Y., Pei, Y., Furia, C.A., Silva, L.S., Buchholz, S., Meyer, B., Zeller, A.: Automated fixing of programs with contracts. In: Proceedings of the 19th International Symposium on Software Testing and Analysis, pp 61–72. ACM (2010) GomesCPSelmanBAlgorithm portfoliosArtif. Intell.20011261-24362181548910.1016/S0004-3702(00)00081-3 Ansótegui, C., Sellmann, M., Tierney, K.: A gender-based genetic algorithm for the automatic configuration of algorithms. In: International Conference on Principles and Practice of Constraint Programming, pp 142–157. Springer, Berlin (2009) HoosHHStutzleTStochastic Local Search: Foundations and Applications2004BurlingtonMorgan Kaufmann Massachusetts1126.68032 Malitsky, Y., Sellmann, M.: Instance-specific algorithm configuration as a method for non-model-based portfolio generation. Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimzation Problems.7298 244–259 GloverFFuture paths for integer programming and links to artificial intelligenceComput. Oper. Res.198613553354986890810.1016/0305-0548(86)90048-1 DechterRConstraints Processing. The Morgan Kaufmann Series in Artificial Intelligence2003BurlingtonMorgan Kaufmann BrooksSHA discussion of random methods for seeking maximaOper. Res.1958624425110.1287/opre.6.2.244 WilliamsonDPShmoysDBThe Design of Approximation Algorithms2011CambridgeCambridge University Press10.1017/CBO9780511921735 de MouraLBjørnerNZ3: an Efficient SMT Solver2008BerlinSpringer337340https://doi.org/10.1007/978-3-540-78800-3_24 Michel, L., Van Hentenryck, P.: Localizer a modeling language for local search. In: Smolka, G. (ed.) Principles and Practice of Constraint Programming-CP97, pp 237–251. Springer, Berlin (1997) López-IbáñezMDubois-LacosteJCáceresLPBirattariMStützleTThe irace package: iterated racing for automatic algorithm configurationOperations Research Perspectives201634358357917510.1016/j.orp.2016.09.002 ForrestSMitchellMRelative Building-Block fitness and the Building-Block hypothesisFoundations of Genetic Algorithms19932109126 KroeningDStrichmanODecision Procedures: an Algorithmic Point of View. Texts in Theoretical Computer Science. An EATCS Series2010BerlinSpringerhttp://www.decision-procedures.org 9704_CR7 XS Yang (9704_CR32) 2010 SH Brooks (9704_CR2) 1958; 6 E Cohen (9704_CR3) 2009 BA Huberman (9704_CR14) 1997; 275 9704_CR4 D Kroening (9704_CR19) 2010 L Di Gaspero (9704_CR6) 2003; 33 R Rubinstein (9704_CR28) 2004 R Dechter (9704_CR5) 2003 C Sinz (9704_CR29) 2005; 3709 9704_CR18 9704_CR1 9704_CR15 9704_CR12 M Petrik (9704_CR27) 2006; 48 9704_CR30 M López-Ibáñez (9704_CR21) 2016; 3 F Hutter (9704_CR16) 2009; 36 L de Moura (9704_CR24) 2008 9704_CR26 DP Williamson (9704_CR31) 2011 9704_CR22 PV Hentenryck (9704_CR11) 2005 9704_CR23 9704_CR20 S Kirkpatrick (9704_CR17) 1983; 220 S Forrest (9704_CR8) 1993; 2 HH Hoos (9704_CR13) 2004 F Glover (9704_CR9) 1986; 13 CP Gomes (9704_CR10) 2001; 126 GL Nemhauser (9704_CR25) 1978; 14 |
| References_xml | – reference: Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness. In: International Conference on Logic for Programming Artificial Intelligence and Reasoning, pp 348–370. Springer (2010) – reference: López-IbáñezMDubois-LacosteJCáceresLPBirattariMStützleTThe irace package: iterated racing for automatic algorithm configurationOperations Research Perspectives201634358357917510.1016/j.orp.2016.09.002 – reference: Michel, L., Van Hentenryck, P.: Localizer a modeling language for local search. In: Smolka, G. (ed.) Principles and Practice of Constraint Programming-CP97, pp 237–251. Springer, Berlin (1997) – reference: KirkpatrickSGelattCDJrVecchiMPOptimization by simulated annealingScience198322067168070248510.1126/science.220.4598.671 – reference: Crescenzi, P., Kann, V.: A compendium of NP optimization problems. In: WWW Spring 1994 (1994) – reference: Di GasperoLSchaerfAEasylocal++: an object-oriented framework for flexible design of local search algorithmsSoftware — Practice & Experience200333873376510.1002/spe.524 – reference: ForrestSMitchellMRelative Building-Block fitness and the Building-Block hypothesisFoundations of Genetic Algorithms19932109126 – reference: GomesCPSelmanBAlgorithm portfoliosArtif. Intell.20011261-24362181548910.1016/S0004-3702(00)00081-3 – reference: Wei, Y., Pei, Y., Furia, C.A., Silva, L.S., Buchholz, S., Meyer, B., Zeller, A.: Automated fixing of programs with contracts. In: Proceedings of the 19th International Symposium on Software Testing and Analysis, pp 61–72. ACM (2010) – reference: Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Computer Computations. Springer, US (1972) – reference: PetrikMZilbersteinSLearning parallel portfolios of algorithmsAnn. Math. Artif. Intell.20064818510623371521121.68095 – reference: KroeningDStrichmanODecision Procedures: an Algorithmic Point of View. Texts in Theoretical Computer Science. An EATCS Series2010BerlinSpringerhttp://www.decision-procedures.org – reference: RubinsteinRKroeseDThe Cross-Entropy Method: a Unified Approach to Combinatorial Optimization, Monte-Carlo Simulation, and Machine Learning2004New YorkSpringer10.1007/978-1-4757-4321-0 – reference: YangXSNature-Inspired Metaheuristic Algorithms20102nd edn.United KingdomLuniver Press1213 – reference: Ansótegui, C., Sellmann, M., Tierney, K.: A gender-based genetic algorithm for the automatic configuration of algorithms. In: International Conference on Principles and Practice of Constraint Programming, pp 142–157. Springer, Berlin (2009) – reference: de MouraLBjørnerNZ3: an Efficient SMT Solver2008BerlinSpringer337340https://doi.org/10.1007/978-3-540-78800-3_24 – reference: Hoos, H., Leyton-Brown, K., Schaub, T., Schneider, M.: Algorithm configuration for portfolio-based parallel sat-solving. In: Workshop on Combining Constraint Solving with Mining and Learning (2012) – reference: NemhauserGLWolseyLAFisherMLAn analysis of approximations for maximizing submodular set functions - IMath. Program.197814126529450386610.1007/BF01588971 – reference: SinzCTowards an optimal cnf encoding of boolean cardinality constraintsCP200537098278311153.68488 – reference: HubermanBALukoseRMHoggTAn economics approach to hard computational problemsScience19972755296515410.1126/science.275.5296.51 – reference: HentenryckPVMichelLConstraint-Based Local Search2005CambridgeMIT Press1160.68556 – reference: GloverFFuture paths for integer programming and links to artificial intelligenceComput. Oper. Res.198613553354986890810.1016/0305-0548(86)90048-1 – reference: HoosHHStutzleTStochastic Local Search: Foundations and Applications2004BurlingtonMorgan Kaufmann Massachusetts1126.68032 – reference: Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for general algorithm configuration. In: International Conference on Learning and Intelligent Optimization, pp 507–523. Springer (2011) – reference: DechterRConstraints Processing. The Morgan Kaufmann Series in Artificial Intelligence2003BurlingtonMorgan Kaufmann – reference: HutterFHoosHHLeyton-BrownKStützleTParamILS: an automatic algorithm configuration frameworkJ. Artif. Intell. Res.20093626730610.1613/jair.2861 – reference: CohenEDahlweidMHillebrandMLeinenbachDMoskalMSantenTSchulteWTobiesSVCC: a Practical System for Verifying Concurrent C2009BerlinSpringer2342https://doi.org/10.1007/978-3-642-03359-9_2 – reference: Dutertre, B., de Moura, L.M.: A fast linear-arithmetic solver for DPLL(T). In: Ball, T., Jones, R.B. (eds.) Computer Aided Verification, 18th International Conference, CAV 2006, Seattle, WA, USA, August 17-20, 2006, Proceedings, Lecture Notes in Computer Science, vol. 4144, pp 81–94. Springer (2006). https://doi.org/10.1007/11817963_11 – reference: WilliamsonDPShmoysDBThe Design of Approximation Algorithms2011CambridgeCambridge University Press10.1017/CBO9780511921735 – reference: Nof, Y.: Real time solving of discrete optimization problems. Master’s thesis, Technion, Israel Institute of Technology. Available online in https://ie.technion.ac.il/~ofers/publications/theses/yair_nof.pdf (2017) – reference: BrooksSHA discussion of random methods for seeking maximaOper. Res.1958624425110.1287/opre.6.2.244 – reference: Malitsky, Y., Sellmann, M.: Instance-specific algorithm configuration as a method for non-model-based portfolio generation. Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimzation Problems.7298 244–259 – ident: 9704_CR23 doi: 10.1007/BFb0017443 – volume: 126 start-page: 43 issue: 1-2 year: 2001 ident: 9704_CR10 publication-title: Artif. Intell. doi: 10.1016/S0004-3702(00)00081-3 – ident: 9704_CR4 – ident: 9704_CR18 doi: 10.1007/978-1-4684-2001-2_9 – ident: 9704_CR20 doi: 10.1007/978-3-642-17511-4_20 – ident: 9704_CR30 doi: 10.1145/1831708.1831716 – ident: 9704_CR7 doi: 10.1007/11817963_11 – ident: 9704_CR1 doi: 10.1007/978-3-642-04244-7_14 – ident: 9704_CR15 doi: 10.1007/978-3-642-25566-3_40 – volume-title: Constraint-Based Local Search year: 2005 ident: 9704_CR11 – start-page: 337 volume-title: Z3: an Efficient SMT Solver year: 2008 ident: 9704_CR24 doi: 10.1007/978-3-540-78800-3_24 – volume: 3709 start-page: 827 year: 2005 ident: 9704_CR29 publication-title: CP – volume: 48 start-page: 85 issue: 1 year: 2006 ident: 9704_CR27 publication-title: Ann. Math. Artif. Intell. doi: 10.1007/s10472-007-9050-9 – start-page: 23 volume-title: VCC: a Practical System for Verifying Concurrent C year: 2009 ident: 9704_CR3 doi: 10.1007/978-3-642-03359-9_2 – volume: 33 start-page: 733 issue: 8 year: 2003 ident: 9704_CR6 publication-title: Software — Practice & Experience doi: 10.1002/spe.524 – ident: 9704_CR22 doi: 10.1007/978-3-642-29828-8_16 – ident: 9704_CR12 – volume-title: Decision Procedures: an Algorithmic Point of View. Texts in Theoretical Computer Science. An EATCS Series year: 2010 ident: 9704_CR19 – volume: 6 start-page: 244 year: 1958 ident: 9704_CR2 publication-title: Oper. Res. doi: 10.1287/opre.6.2.244 – volume: 14 start-page: 265 issue: 1 year: 1978 ident: 9704_CR25 publication-title: Math. Program. doi: 10.1007/BF01588971 – volume-title: The Design of Approximation Algorithms year: 2011 ident: 9704_CR31 doi: 10.1017/CBO9780511921735 – volume: 36 start-page: 267 year: 2009 ident: 9704_CR16 publication-title: J. Artif. Intell. Res. doi: 10.1613/jair.2861 – volume: 2 start-page: 109 year: 1993 ident: 9704_CR8 publication-title: Foundations of Genetic Algorithms – volume-title: Constraints Processing. The Morgan Kaufmann Series in Artificial Intelligence year: 2003 ident: 9704_CR5 – volume-title: The Cross-Entropy Method: a Unified Approach to Combinatorial Optimization, Monte-Carlo Simulation, and Machine Learning year: 2004 ident: 9704_CR28 doi: 10.1007/978-1-4757-4321-0 – volume: 13 start-page: 533 issue: 5 year: 1986 ident: 9704_CR9 publication-title: Comput. Oper. Res. doi: 10.1016/0305-0548(86)90048-1 – start-page: 12 volume-title: Nature-Inspired Metaheuristic Algorithms year: 2010 ident: 9704_CR32 – volume-title: Stochastic Local Search: Foundations and Applications year: 2004 ident: 9704_CR13 – volume: 275 start-page: 51 issue: 5296 year: 1997 ident: 9704_CR14 publication-title: Science doi: 10.1126/science.275.5296.51 – volume: 220 start-page: 671 year: 1983 ident: 9704_CR17 publication-title: Science doi: 10.1126/science.220.4598.671 – volume: 3 start-page: 43 year: 2016 ident: 9704_CR21 publication-title: Operations Research Perspectives doi: 10.1016/j.orp.2016.09.002 – ident: 9704_CR26 |
| SSID | ssj0009686 |
| Score | 2.256307 |
| Snippet | Various hard real-time systems have a desired requirement which is impossible to fulfill: to solve a computationally hard optimization problem within a short... |
| SourceID | proquest gale crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 693 |
| SubjectTerms | Algorithms Artificial Intelligence Combinatorial analysis Complex Systems Computation Computer Science Investment analysis Mathematics Optimization Polynomials Real time Search algorithms |
| SummonAdditionalLinks | – databaseName: Computer Science Database dbid: K7- link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NSx0xEB9a9dAe1GpLnx8lh0IPGtzNZjebk4goQlsppRZvIckmVni-VfdZ6H_vzJr1oaKXnjcfw_4mM5PJfAB8rp0U0paBZ856LoWruc1tzWO0eSFt3vj-xfT3N3V8XJ-e6h_J4dalsMpBJvaCumk9-ch3hKZS40Uhxe7lFaeuUfS6mlpovIb5XIic-Pyr4rOiu1Xf6ZFKWHFUY0VKmkmpc1IJTpenTKtMcvlAMT0Wz0_eSXv1c7j0v4Qvw2IyPNneHae8g1dhsgJLQ1MHls74Crz9fl_ItVuFk59oSHJqQM-QScn5wNrIfD8ruRHH_xhlbrHUmqZjFEqPw1AWXeCGdnyG1Ez_XDCy9GM7Pm-793ByePBr_4inTgzco8Kf8kbHoFRZWhkqWWW2bBBUFUq0VvC_Sul05RFW4ZpcxSyErI5RCKdVoRvtUTl-gLlJOwkfgfmsEnkUzpVOyCB8TQZb7fGGnimrvR5BPsBgfCpTTt0yxmZWYJmgMwid6aEzcgRb93Mu74p0vDj6C6Fr6ATjyt6mRASkj2phmT2FJh7ee2ukZWOA1KSj3ZkZniPYHphi9vn5fddeXm0d3giKl-lDgTdgbnp9EzZhwf-dnnfXn3rGvgVZ9vy2 priority: 102 providerName: ProQuest |
| Title | Real-time solving of computationally hard problems using optimal algorithm portfolios |
| URI | https://link.springer.com/article/10.1007/s10472-020-09704-4 https://www.proquest.com/docview/2918203342 |
| Volume | 89 |
| WOSCitedRecordID | wos000563828000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1573-7470 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0009686 issn: 1012-2443 databaseCode: K7- dateStart: 19970301 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1573-7470 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0009686 issn: 1012-2443 databaseCode: M7S dateStart: 19970301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest advanced technologies & aerospace journals customDbUrl: eissn: 1573-7470 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0009686 issn: 1012-2443 databaseCode: P5Z dateStart: 19970301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1573-7470 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0009686 issn: 1012-2443 databaseCode: BENPR dateStart: 19970301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-7470 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009686 issn: 1012-2443 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB71wQEOtBQQC2XlAxIHsJQ4TmwfC2qF1LJabWlVcbFsx4aVthu02Vbi3zNOnW55VWovucQvzXg8Y8_MNwBvpOWMm9LTzBpHObOSmtxIGoLJC27y2nUe09MjMRrJszM1TklhbR_t3rsku5P6RrIbF4zG606mRMYpX4dNVHcyiuPk-HQFtVt19R0jcBVF5VWkVJl_j_GbOvrzUP7LO9opnYOt-y13Gx4nI5PsXe2KJ7Dm5zuw1RdwIEmed-DR52vQ1vYpnEzQaKSx2DzBDRkfGkgTiOt6pSfD2U8Ss7RIKkPTkhg2j83w3DnHCc3sW7OYLr-fk2jVh2Y2bdpncHKw_-XjJ5qqLlCHyn1JaxW8EGVpuK94lZmyRgYKX6JlgtTk3KrKIQuZrXMRMu8zGQJjVolC1cqhInwOG_Nm7l8AcVnF8sCsLS3jnjkZjTPp8DaeCaOcGkDeE1-7BEkeK2PM9ApMOVJRIxV1R0XNB_Duus-PK0COW1u_jTzVUVpxZGdS0gGuL-Je6T2B5hzecSWuZbdnu05i3GqmIr59UXA2gPc9m1e__z_vy7s1fwUPWYyV6cKAd2Fjubjwr-GBu1xO28UQNj_sj8aTIawfCjqM0anH-B2XX4fdxv8F9X33bA |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VBQk4UCgglhbwAcQBrCaOE8eHClVA1Wq3K4Ra1JtxHAdW2t2UJhT1T_EbO5N1ugJEbz1wjh_j-PPM-DHfALzICymkTT2PCuu4FEXObWxzXlU2TqSNS9fdmH4eqfE4Pz7WH1fgVx8LQ88qe53YKeqydnRGviU0UY0niRRvT75zyhpFt6t9Co0FLIb-_Cdu2Zrt_fc4vy-F2P1w-G6Ph6wC3KHxanmpK69UmlrpM5lFNi1RQOVTtLxo6qQsdOZQRFGUsaoi76O8qoQotEp0qV1MRAeo8m_IJFfE1T9UfEnym3WZJYkyi2NbSQjSCaF6UglOm7VIq0hy-Zsh_NMc_HUv25m73bX_7Ufdg7vBsWY7i5VwH1b8fB3W-qQVLOiwdbhzcElU2zyAo0_oKPN2MvMMFyEdrrC6Yq6rFY5Jp-eMItNYSL3TMAoVwGKoa2fYoZ1-xdG332aMdjJVPZ3UzUM4upahPoLVeT33j4G5KBNxJYoiLYT0wuXkkOZOSREpq50eQNxPu3GBhp2ygUzNkkCaoGIQKqaDipEDeH1Z52RBQnJl6VeEJkMaClt2NgRaoHzE9WV2FLqwuK_PUZbNHkImqK7GLPEzgDc9CJef_93vk6tbew639g4PRma0Px5uwG1Bb4O6Z8-bsNqe_vBP4aY7ayfN6bNuUTH4ct3gvABpWVkM |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9QwDLdgIDQeGIxN3DYgD0g8QLQ2TZvmcWI7gRinCdi0tyhNEzjpdp2uBYn_HruX7sanhHjOp2wnthP7Z4BnZSWFtLnnSWUdl6IquU1tyUOwaSZtWrv-x_TsWE0m5fm5PrmWxd9Huw9fksucBkJpmnf7l3XYv5b4JpXg5PokWiWSy5twS1LRIPLXP5ytYHeLvtYjgVhxVGRZTJv5_Rw_qKafL-hffkp7BTTe-P-t34d70fhkB0tpeQA3_HwTNobCDiye8024--4KzLV9CKfv0ZjkVISeoaDSAwRrAnP9qPiUOPvGKHuLxfI0LaNweuyG99EFLmhnn5rFtPt8wcjaD81s2rRbcDo--vjqNY_VGLhDpd_xWgevVJ5b6QtZJDavkbHK52ixIGWlrHThkLWiqlMVEu-TMgQhKq0yXWuHCnIb1ubN3D8C5pJCpEFUVV4J6YUryWgrHXrpibLa6RGkAyOMi1DlVDFjZlYgy0RFg1Q0PRWNHMGLqzGXS6COv_Z-Tvw1dIpxZmdjMgLuj_CwzIFCMw993xL3sjeIgInHuzVCE-59lkkxgpcDy1fNf15359-6P4U7J4djc_xm8nYX1gWF0_SRwnuw1i2--Mdw233tpu3iSS_13wFCl_7S |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-time+solving+of+computationally+hard+problems+using+optimal+algorithm+portfolios&rft.jtitle=Annals+of+mathematics+and+artificial+intelligence&rft.au=Nof%2C+Yair&rft.au=Strichman%2C+Ofer&rft.date=2021-07-01&rft.pub=Springer&rft.issn=1012-2443&rft.volume=89&rft.issue=7&rft.spage=693&rft_id=info:doi/10.1007%2Fs10472-020-09704-4&rft.externalDocID=A715984089 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1012-2443&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1012-2443&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1012-2443&client=summon |