Automated System-Level Malware Detection Using Machine Learning: A Comprehensive Review

Malware poses a significant threat to computer systems and networks. This necessitates the development of effective detection mechanisms. Detection mechanisms dependent on signatures for attack detection perform poorly due to high false negatives. This limitation is attributed to the inability to de...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences Vol. 13; no. 21; p. 11908
Main Authors: Gyamfi, Nana Kwame, Goranin, Nikolaj, Ceponis, Dainius, Čenys, Habil Antanas
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.11.2023
Subjects:
ISSN:2076-3417, 2076-3417
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Malware poses a significant threat to computer systems and networks. This necessitates the development of effective detection mechanisms. Detection mechanisms dependent on signatures for attack detection perform poorly due to high false negatives. This limitation is attributed to the inability to detect zero-day attacks, polymorphic malware, increasing signature base, and detection speed. To achieve rapid detection, automated system-level malware detection using machine learning approaches, leveraging the power of artificial intelligence to identify and mitigate malware attacks, has emerged as a promising solution. This comprehensive review aims to provides a detailed analysis of the status quo in malware detection by exploring the fundamentals of machine learning techniques for malware detection. The review is largely based on the PRISMA approach for article search methods and selection from four databases. Keywords were identified together with inclusion and exclusion criteria. The review seeks feature extraction and selection methods that enhance the accuracy and precision of detection algorithms. Evaluation metrics and common datasets were used to assess the performance of the system-level malware detection techniques. A comparative analysis of different machine learning approaches, emphasizing their strengths, weaknesses, and performance in detecting system-level malware is presented together with the limitations of the detection techniques. The paper concludes with future research opportunities, particularly in applying artificial intelligence, and provides a resource for researchers and cybersecurity professionals seeking to understand and advance automated system-level malware detection using machine learning.
AbstractList Malware poses a significant threat to computer systems and networks. This necessitates the development of effective detection mechanisms. Detection mechanisms dependent on signatures for attack detection perform poorly due to high false negatives. This limitation is attributed to the inability to detect zero-day attacks, polymorphic malware, increasing signature base, and detection speed. To achieve rapid detection, automated system-level malware detection using machine learning approaches, leveraging the power of artificial intelligence to identify and mitigate malware attacks, has emerged as a promising solution. This comprehensive review aims to provides a detailed analysis of the status quo in malware detection by exploring the fundamentals of machine learning techniques for malware detection. The review is largely based on the PRISMA approach for article search methods and selection from four databases. Keywords were identified together with inclusion and exclusion criteria. The review seeks feature extraction and selection methods that enhance the accuracy and precision of detection algorithms. Evaluation metrics and common datasets were used to assess the performance of the system-level malware detection techniques. A comparative analysis of different machine learning approaches, emphasizing their strengths, weaknesses, and performance in detecting system-level malware is presented together with the limitations of the detection techniques. The paper concludes with future research opportunities, particularly in applying artificial intelligence, and provides a resource for researchers and cybersecurity professionals seeking to understand and advance automated system-level malware detection using machine learning.
Audience Academic
Author Gyamfi, Nana Kwame
Goranin, Nikolaj
Ceponis, Dainius
Čenys, Habil Antanas
Author_xml – sequence: 1
  givenname: Nana Kwame
  orcidid: 0000-0002-3249-4493
  surname: Gyamfi
  fullname: Gyamfi, Nana Kwame
– sequence: 2
  givenname: Nikolaj
  orcidid: 0000-0002-2263-3947
  surname: Goranin
  fullname: Goranin, Nikolaj
– sequence: 3
  givenname: Dainius
  orcidid: 0000-0002-2796-9001
  surname: Ceponis
  fullname: Ceponis, Dainius
– sequence: 4
  givenname: Habil Antanas
  orcidid: 0000-0002-0208-7176
  surname: Čenys
  fullname: Čenys, Habil Antanas
BookMark eNptUV1rFDEUDVLBWvvmDxjw1an5mnz4tqxfhRVBLT6GNLnZZpmZjEl2S_-9WVekiLmQGw7nnFzueY7O5jQDQi8JvmJM4zd2WQijhBCN1RN0TrEUPeNEnj16P0OXpexwO5owRfA5-rHa1zTZCr779lAqTP0GDjB2n-14bzN076CCqzHN3U2J87bh7i7O0G3A5rkBb7tVt07TkuEO5hIP0H2FQ4T7F-hpsGOByz_9At18eP99_anffPl4vV5tesexqL3HjHFPtZaBWmUHrzHVkgwgrGRUWyZupQtCce4HMehApJDSewFDIIEBYRfo-uTrk92ZJcfJ5geTbDS_gZS3xuYa3QiGY6awahe79ZxTb7XmzIXgguKghWher05eS04_91Cq2aV9ntv4hiql2moF4411dWJtbTONc0g1W9fKwxRdyyTEhq-kpAMjjB8Fr08Cl1MpGcLfMQk2x-jM4-ganf5Dd7HaYwTtnzj-X_QLe_mbmA
CitedBy_id crossref_primary_10_3390_app14114645
crossref_primary_10_3390_app15179830
crossref_primary_10_1051_e3sconf_202455601008
crossref_primary_10_48084_etasr_10420
crossref_primary_10_3390_info15010025
crossref_primary_10_3390_info16060458
Cites_doi 10.1016/j.eswa.2016.07.036
10.1109/ICSCN.2008.4447167
10.1016/j.ifacol.2015.09.589
10.1017/S0373463316000850
10.1007/s10994-021-06047-x
10.1007/s11227-009-0338-x
10.36001/phme.2014.v2i1.1554
10.1109/UBMK50275.2020.9219391
10.1109/CLOUD53861.2021.00043
10.1109/TCE.2015.7150594
10.1109/ICTAI.2019.00028
10.1016/j.future.2007.05.003
10.1155/2021/2459628
10.1109/CICYBS.2011.5949392
10.1109/ICODSE.2017.8285847
10.1016/j.cose.2011.08.009
10.1016/j.agrformet.2017.04.011
10.1109/IJCNN.2014.6889841
10.1007/978-3-642-40409-2_19
10.1109/MINES.2012.146
10.1109/ICDCSW.2013.40
10.1109/SAI.2014.6918242
10.1109/SPACES.2015.7058223
10.1109/ICONSIP.2016.7857445
10.1016/S0167-4048(03)00112-3
10.1109/ICPECTS.2018.8521623
10.1109/45.969588
10.1109/ICDM.2018.00088
10.1016/j.eswa.2010.08.137
10.1016/j.ymssp.2019.106495
10.1109/ICTEE.2012.6208614
10.1007/978-3-030-65414-6_11
10.1021/acs.jctc.5b01157
10.1016/j.mex.2019.100777
10.1109/CC.2014.6880464
10.1016/j.eswa.2017.09.013
10.1109/GLOCOMW.2015.7414141
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/app132111908
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_4038080383bd442da9943cffcf84e966
A772531344
10_3390_app132111908
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c406t-d0334d2997f2a8a5d9029715e6a7329a36b7cf6844d5659f17677dd6e5f1f3e13
IEDL.DBID DOA
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001100279900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2076-3417
IngestDate Tue Oct 14 19:05:29 EDT 2025
Mon Jun 30 05:29:41 EDT 2025
Tue Nov 04 18:38:20 EST 2025
Sat Nov 29 07:18:50 EST 2025
Tue Nov 18 21:59:34 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-d0334d2997f2a8a5d9029715e6a7329a36b7cf6844d5659f17677dd6e5f1f3e13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3249-4493
0000-0002-2796-9001
0000-0002-0208-7176
0000-0002-2263-3947
OpenAccessLink https://doaj.org/article/4038080383bd442da9943cffcf84e966
PQID 2888111634
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_4038080383bd442da9943cffcf84e966
proquest_journals_2888111634
gale_infotracacademiconefile_A772531344
crossref_primary_10_3390_app132111908
crossref_citationtrail_10_3390_app132111908
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Lakshminarasimhan (ref_18) 2001; 20
Chen (ref_35) 2016; 12
ref_14
Vargaftik (ref_17) 2021; 110
ref_13
Forestiero (ref_39) 2008; 24
ref_11
Sarmadi (ref_12) 2019; 140
ref_33
Sukhwani (ref_36) 2014; 93
ref_10
ref_32
Yang (ref_29) 2021; 2021
ref_31
ref_30
Kolias (ref_37) 2011; 30
Mengist (ref_1) 2020; 7
ref_16
ref_15
Su (ref_44) 2011; 38
Abadi (ref_38) 2006; 2
Franco (ref_40) 2016; 12
Swarnkar (ref_4) 2016; 64
Puggini (ref_21) 2015; 48
ref_25
ref_23
ref_45
Zhen (ref_2) 2017; 70
ref_22
ref_20
ref_42
Cho (ref_34) 2003; 22
ref_3
Usman (ref_24) 2015; 61
ref_27
Yao (ref_6) 2017; 242
Salem (ref_9) 2017; 40
Yasami (ref_19) 2010; 53
ref_26
Wei (ref_43) 2014; 11
ref_8
ref_5
Hamamoto (ref_28) 2018; 92
ref_7
Goranin (ref_41) 2018; 6
References_xml – volume: 64
  start-page: 330
  year: 2016
  ident: ref_4
  article-title: OCPAD: One class Naive Bayes classifier for payload based anomaly detection
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2016.07.036
– ident: ref_22
  doi: 10.1109/ICSCN.2008.4447167
– volume: 48
  start-page: 583
  year: 2015
  ident: ref_21
  article-title: Fault Detection using Random Forest Similarity Distance
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2015.09.589
– volume: 93
  start-page: 26
  year: 2014
  ident: ref_36
  article-title: A Survey of Anomaly Detection Techniques and Hidden Markov Model
  publication-title: Int. J. Comput. Appl.
– volume: 70
  start-page: 648
  year: 2017
  ident: ref_2
  article-title: Maritime Anomaly Detection within Coastal Waters Based on Vessel Trajectory Clustering and Naïve Bayes Classifier
  publication-title: J. Navig.
  doi: 10.1017/S0373463316000850
– volume: 110
  start-page: 2835
  year: 2021
  ident: ref_17
  article-title: RADE: Resource-efficient supervised anomaly detection using decision tree-based ensemble methods
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-021-06047-x
– volume: 53
  start-page: 231
  year: 2010
  ident: ref_19
  article-title: A novel unsupervised classification approach for network anomaly detection by k-means clustering and id3 decision tree learning methods
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-009-0338-x
– ident: ref_10
  doi: 10.36001/phme.2014.v2i1.1554
– ident: ref_11
– ident: ref_7
  doi: 10.1109/UBMK50275.2020.9219391
– volume: 40
  start-page: 75
  year: 2017
  ident: ref_9
  article-title: Brain tumor type classification based on support vector machine in magnetic resonance images
  publication-title: Ann. “Dunarea De Jos” Univ. Galati Math. Phys. Theor. Mech. Fascicle II
– ident: ref_27
  doi: 10.1109/CLOUD53861.2021.00043
– volume: 61
  start-page: 197
  year: 2015
  ident: ref_24
  article-title: Mobile agent-based cross-layer anomaly detection in smart home sensor networks using fuzzy logic
  publication-title: IEEE Trans. Consum. Electron.
  doi: 10.1109/TCE.2015.7150594
– volume: 6
  start-page: 217
  year: 2018
  ident: ref_41
  article-title: Towards a Robust Method of Dataset Generation of Malicious Activity for Anomaly-Based HIDS Training and Presentation of AWSCTD Dataset
  publication-title: Balt. J. Mod. Comput.
– ident: ref_31
  doi: 10.1109/ICTAI.2019.00028
– volume: 24
  start-page: 235
  year: 2008
  ident: ref_39
  article-title: QoS-based dissemination of content in Grids
  publication-title: Futur. Gener. Comput. Syst.
  doi: 10.1016/j.future.2007.05.003
– volume: 2021
  start-page: 1
  year: 2021
  ident: ref_29
  article-title: An anomaly detection algorithm selection service for IoT stream data based on fresh tool and genetic algorithm
  publication-title: Secur. Commun. Netw.
  doi: 10.1155/2021/2459628
– ident: ref_26
  doi: 10.1109/CICYBS.2011.5949392
– ident: ref_20
  doi: 10.1109/ICODSE.2017.8285847
– volume: 30
  start-page: 625
  year: 2011
  ident: ref_37
  article-title: Swarm intelligence in intrusion detection: A survey
  publication-title: Comput. Secur.
  doi: 10.1016/j.cose.2011.08.009
– volume: 242
  start-page: 55
  year: 2017
  ident: ref_6
  article-title: Improving global terrestrial evapotranspiration estimation using support vector machine by integrating three process-based algorithms
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2017.04.011
– volume: 2
  start-page: 106
  year: 2006
  ident: ref_38
  article-title: An ant colony optimization algorithm for network vulnerability analysis
  publication-title: Iran. J. Electr. Electron. Eng.
– ident: ref_5
  doi: 10.1109/IJCNN.2014.6889841
– ident: ref_25
  doi: 10.1007/978-3-642-40409-2_19
– ident: ref_23
  doi: 10.1109/MINES.2012.146
– ident: ref_14
  doi: 10.1109/ICDCSW.2013.40
– ident: ref_30
  doi: 10.1109/SAI.2014.6918242
– ident: ref_8
– ident: ref_13
  doi: 10.1109/SPACES.2015.7058223
– ident: ref_16
  doi: 10.1109/ICONSIP.2016.7857445
– volume: 22
  start-page: 45
  year: 2003
  ident: ref_34
  article-title: Efficient anomaly detection by modeling privilege flows using hidden Markov model
  publication-title: Comput. Secur.
  doi: 10.1016/S0167-4048(03)00112-3
– ident: ref_15
  doi: 10.1109/ICPECTS.2018.8521623
– volume: 20
  start-page: 16
  year: 2001
  ident: ref_18
  article-title: Computer viruses
  publication-title: IEEE Potentials
  doi: 10.1109/45.969588
– ident: ref_33
  doi: 10.1109/ICDM.2018.00088
– volume: 38
  start-page: 3492
  year: 2011
  ident: ref_44
  article-title: Real-time anomaly detection systems for Denial-of-Service attacks by weighted k-nearest-neighbor classifiers
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2010.08.137
– volume: 140
  start-page: 106495
  year: 2019
  ident: ref_12
  article-title: A novel anomaly detection method based on adaptive Mahalanobis-squared distance and one-class kNN rule for structural health monitoring under environmental effects
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2019.106495
– ident: ref_3
  doi: 10.1109/ICTEE.2012.6208614
– ident: ref_32
  doi: 10.1007/978-3-030-65414-6_11
– volume: 12
  start-page: 3416
  year: 2016
  ident: ref_40
  article-title: Firefly algorithm for structural search
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.5b01157
– ident: ref_45
– volume: 7
  start-page: 100777
  year: 2020
  ident: ref_1
  article-title: Method for conducting systematic literature review and meta-analysis for environmental science research
  publication-title: MethodsX
  doi: 10.1016/j.mex.2019.100777
– volume: 11
  start-page: 91
  year: 2014
  ident: ref_43
  article-title: A digital evidence fusion method in network forensics systems with Dempster-shafer theory
  publication-title: China Commun.
  doi: 10.1109/CC.2014.6880464
– volume: 12
  start-page: 569
  year: 2016
  ident: ref_35
  article-title: Anomaly network intrusion detection using hidden Markov model
  publication-title: Int. J. Innov. Comput. Inf. Control
– volume: 92
  start-page: 390
  year: 2018
  ident: ref_28
  article-title: Network Anomaly Detection System using Genetic Algorithm and Fuzzy Logic
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.09.013
– ident: ref_42
  doi: 10.1109/GLOCOMW.2015.7414141
SSID ssj0000913810
Score 2.3113468
SecondaryResourceType review_article
Snippet Malware poses a significant threat to computer systems and networks. This necessitates the development of effective detection mechanisms. Detection mechanisms...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 11908
SubjectTerms Algorithms
Analysis
anomaly detection
Artificial intelligence
automated system classification
Automation
Bibliometrics
Classification
Cybersecurity
cybersecurity machine learning
Cyberterrorism
Decision trees
Fuzzy logic
Genetic algorithms
Keywords
Linear programming
Literature reviews
Machine learning
Malware
malware detection
Neural networks
Research methodology
Spyware
Support vector machines
Systematic review
Technology application
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT9RAFH_BxYMeRFDiKpo5SNCYhunOtNPhQhaBeIANMRq5TabzASZkF7tF_33fa2eXveDFaztppnmfv3lvfg_gPWbgRe2iyDz3ZYZ4w2e100UmaxW5toGHwnbDJtRkUl1e6ot04DZPbZULn9g5aj9zdEa-P0KohnZZCnl4-yujqVFUXU0jNB7BOjGVyQGsH51MLr4uT1mI9bLKed_xLhDfU10YARh-SdNEyZVY1FH2P-SYu2hzuvG_-3wOz1Keyca9YmzCWphuwdMV9sEt2Ex2PWcfEvn0xxfwY3zXzjCLDZ71ZObZGbUVsXN788c2gR2HtmvemrKu2QCfUzNmYImn9eqAjRn5mCZc963xrK8-vITvpyffPn_J0vCFzGGMb1F2QkiPwUrFka1s4TWNucqLUFolRtqKslYulpWUHnNCHXNVKuV9GYqYRxFysQ2D6WwaXgGzPqdiYcF5XUihfF1zF6tSOW4rBGh2CJ8WYjAuMZPTgIwbgwiFhGZWhTaE3eXq256R44F1RyTR5Rri0e4ezJork8zSSC6IWBNheu2lHHmrtRQuRtyfDIgEh7BH-mDI2nFLzqZLC_hjxJtlxghO0IsJKYews9AHk9zA3Nwrw-t_v34DT2iOfX_JcQcGbXMX3sJj97v9OW_eJa3-CxWB_2U
  priority: 102
  providerName: ProQuest
Title Automated System-Level Malware Detection Using Machine Learning: A Comprehensive Review
URI https://www.proquest.com/docview/2888111634
https://doaj.org/article/4038080383bd442da9943cffcf84e966
Volume 13
WOSCitedRecordID wos001100279900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB5V0AMcKqCt2Ha78qGorVDUZO3EMbelBRWprFZVEfRkOX7QSmi32s3C32cmNigX1EuPSXyYjOf1yeNvAN5jBV42NvDM5a7KEG-4rLGqzEQjQ66Mz31pumETcjqtr67UrDfqi3rCIj1wVNxnkXOiPkQg1Tghxs4oJbgNwYZaeKzVKfri9x6Y6mKwKoi6Kna6c8T1dB6MwAs9W9EkyV4O6qj6nwrIXZY53YEXqTxkkyjWLjzz8z3Y7pEG7sFucscV-5g4oz-9hMvJul1g8ekdixzk2XfqBmLn5ubOLD376tuu52rOuh4BfE89lJ4letXrIzZhFBqW_nfsaGfx0OAVXJye_PzyLUszEzKLqblFlXMuHOYYGcamNqVTNJ2qKH1lJB8rw6tG2lDVQjgs5VQoZCWlc5UvQxG4L_hr2Jgv5n4fmHEFnfGVed6UgkvXNDkqvZI2NzXiKjOAwwctapsIxWmuxY1GYEE6132dD-DgcfXfSKTxxLpj2pDHNUR_3b1Ao9DJKPS_jGIAH2g7NTkpimRNumuAP0Z0V3qCmAKDDxdiAMOHHdfJe1d6XNc1SlNx8eZ_SPMWtmhIfbzBOISNdrn27-C5vW3_rJYj2Dw-mc5-jDoDxqfZ2fns1z0hV_K_
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VFgk4AC0gFgr4QAUIRTixE8dICG1pq1bdripU1N6M44-CVO2WbErFn-I3Mk6cZS_l1gPXxIrs-Pl5xjN-A_ASLfC8Mp4lltoiQX_DJpWRecIr4anUjrpct8UmxHhcnpzIwyX43d-FCWmVPSe2RG2nJpyRv8vQVcN1WTD-8fxHEqpGhehqX0Kjg8W--3WJLtvsw94Wzu9Glu1sH33aTWJVgcTg5tVgpxjjFllY-EyXOrcy1G9Kc1dowTKpWVEJ44uSc4vGjvSpKISwtnC5Tz1zKcPv3oAVzrjAdbWyuT0-_Dw_1Qkqm2VKuwx7xiQNcWh0-LDnMlSwXNj72hIBV20E7e62c-9_-y_34W60o8mwA_4qLLnJGtxZUFdcg9XIWzPyOoprv3kAx8OLZopWurOkE2tPRiFtihzos0tdO7LlmjY5bULaZAp8HpJNHYk6tKfvyZAEDq3dty71n3TRlYfw5VqG-wiWJ9OJewxE2zQEQ3NKq5wzYauKGl8WwlBdogOqB_C2n3ZlovJ6KAByptADCyBRiyAZwMa89XmnOHJFu82AoHmboBPePpjWpyrSjuKUBeFQVrLKcp5ZLSVnxnvsH3fo6Q7gVcCfCmyGXTI6XsrAgQVdMDVE5wtZmnE-gPUefyrS3Ez9Bd-Tf79-Abd2jw5GarQ33n8KtzO0FLsLneuw3NQX7hncND-b77P6eVxRBL5eN1j_ACOjWjc
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VFiE4AC2gLhTwgQoQiurEThwjIbSwrFi1Xe0BRDkZxx8tUrVbsikVf41fxzjxLnsptx64OlZkJ8_PM57xG4BnaIHnlfEssdQWCfobNqmMzBNeCU-ldtTlui02Icbj8uhITtbg9-IuTEirXHBiS9R2ZsIZ-V6Grhquy4LxPR_TIiaD4duzH0moIBUirYtyGh1E9t2vC3Tf5m9GA_zXu1k2_PDp_cckVhhIDG5kDQ6QMW6RkYXPdKlzK0MtpzR3hRYsk5oVlTC-KDm3aPhIn4pCCGsLl_vUM5cyfO812ECTnOMa25iMDidflyc8QXGzTGmXbc-YpCEmjc4fzkKGapYr-2BbLuCyTaHd6YZ3_udvdBduR_ua9LsFsQlrbroFt1ZUF7dgM_LZnLyIotsv78GX_nkzQ-vdWdKJuCcHIZ2KHOrTC107MnBNm7Q2JW2SBbaHJFRHoj7t8WvSJ4Fba3fSXQkgXdTlPny-kuk-gPXpbOq2gWibhiBpTmmVcyZsVVHjy0IYqkt0THUPXi0goExUZA-FQU4VemYBMGoVMD3YXfY-65RILun3LqBp2Sfoh7cNs_pYRTpSnLIgKMpKVlnOM6ul5Mx4j-PjDj3gHjwPWFSB5XBIRsfLGjixoBem-uiUIXszznuws8CiivQ3V3-B-PDfj5_CDUSoOhiN9x_BzQwNyO6e5w6sN_W5ewzXzc_m-7x-EhcXgW9XjdU_zFRjKQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+System-Level+Malware+Detection+Using+Machine+Learning%3A+A+Comprehensive+Review&rft.jtitle=Applied+sciences&rft.au=Gyamfi%2C+Nana+Kwame&rft.au=Goranin%2C+Nikolaj&rft.au=Ceponis%2C+Dainius&rft.au=%C4%8Cenys%2C+Habil+Antanas&rft.date=2023-11-01&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=13&rft.issue=21&rft.spage=11908&rft_id=info:doi/10.3390%2Fapp132111908&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_app132111908
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon