Minimizing quadratic functions with semidefinite Hessian subject to bound constraints

The MPRGP (modified proportioning with reduced gradient projections) algorithm for minimization of the strictly convex quadratic function subject to bound constraints is adapted to the solution of problems with a semidefinite Hessian A. The adapted algorithm accepts the decrease directions that belo...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computers & mathematics with applications (1987) Ročník 70; číslo 8; s. 2014 - 2028
Hlavní autoři: Dostal, Zdenk, Pospisil, Lukas
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.10.2015
Témata:
ISSN:0898-1221, 1873-7668
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The MPRGP (modified proportioning with reduced gradient projections) algorithm for minimization of the strictly convex quadratic function subject to bound constraints is adapted to the solution of problems with a semidefinite Hessian A. The adapted algorithm accepts the decrease directions that belong to the null space of A and generates the iterates that are proved to minimize the cost function. The paper examines specific features of the solution of the problems with convex, but not necessarily strictly convex Hessian. The performance of the algorithm is demonstrated by the solution of a semi-coercive contact problem of elasticity and a 3D particle dynamics problem. The results are compared with those obtained by the spectral projected gradient method and the projected-Jacobi method.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0898-1221
1873-7668
DOI:10.1016/j.camwa.2015.08.015