On Two Multigrid Algorithms for Modeling Variational Multiphase Image Segmentation

In this paper, we present two related multigrid algorithms for multiphase image segmentation. Algorithm I solves the model by Vese-Chan. We first generalize our recently developed multigrid method to this multiphase segmentation model (MG1); we also give a local Fourier analysis for the local smooth...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on image processing Ročník 18; číslo 5; s. 1097 - 1106
Hlavní autoři: Badshah, N., Ke Chen
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York, NY IEEE 01.05.2009
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1057-7149, 1941-0042
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we present two related multigrid algorithms for multiphase image segmentation. Algorithm I solves the model by Vese-Chan. We first generalize our recently developed multigrid method to this multiphase segmentation model (MG1); we also give a local Fourier analysis for the local smoother which leads to a new and more effective smoother. Although MG1 is found many magnitudes faster than the fast method of additive operator splitting (AOS), both algorithms are not robust with regard to the initial guess. To overcome this dependence on the initial guess, we consider a hierarchical segmentation model which achieves multiphase segmentation by repeated use of the Chan-Vese two-phase model; our algorithm II solves this model by a multigrid algorithm (MG2). Numerical experiments show that both algorithms are efficient and in particular MG2 is more robust than MG1 with respect to initial guesses. AMS subject classifications : 68U10, 65F10, 65K10.
Bibliografie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:1057-7149
1941-0042
DOI:10.1109/TIP.2009.2014260