Experimentally fitted biodynamic models for pedestrian–structure interaction in walking situations
The interaction between moving humans and structures usually occurs in slender structures in which the level of vibration is potentially high. Furthermore, there is the addition of mass to the structural system due to the presence of people and an increase in damping due to the human body´s ability...
Gespeichert in:
| Veröffentlicht in: | Mechanical systems and signal processing Jg. 72-73; S. 590 - 606 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
01.05.2016
|
| Schlagworte: | |
| ISSN: | 0888-3270, 1096-1216 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The interaction between moving humans and structures usually occurs in slender structures in which the level of vibration is potentially high. Furthermore, there is the addition of mass to the structural system due to the presence of people and an increase in damping due to the human body´s ability to absorb vibrational energy. In this paper, a test campaign is presented to obtain parameters for a single degree of freedom (SDOF) biodynamic model that represents the action of a walking pedestrian in the vertical direction. The parameters of this model are the mass (m), damping (c) and stiffness (k). The measurements were performed on a force platform, and the inputs were the spectral acceleration amplitudes of the first three harmonics at the waist level of the test subjects and the corresponding amplitudes of the first three harmonics of the vertical ground reaction force. This leads to a system of nonlinear equations that is solved using a gradient-based optimization algorithm. A set of individuals took part in the tests to ensure inter-subject variability, and, regression expressions and an artificial neural network (ANN) were used to relate the biodynamic parameters to the pacing rate and the body mass of the pedestrians. The results showed some scatter in damping and stiffness that could not be precisely correlated with the masses and pacing rates of the subjects. The use of the ANN resulted in significant improvements in the parameter expressions with a low uncertainty. Finally, the measured vertical accelerations on a prototype footbridge show the adequacy of the numerical model for the representation of the effects of walking pedestrians on a structure. The results are consistent for many crowd densities.
•It is presented a test campaign on pedestrians to fit a SDOF biodynamic model.•Measurements are performed on a force platform considering several individuals.•Regression functions and neural networks are used to relate biodynamic parameters.•Accelerations are measured on a prototype footbridge crossed by pedestrians.•The numerical model results are in agreement with the experimental measurements. |
|---|---|
| AbstractList | The interaction between moving humans and structures usually occurs in slender structures in which the level of vibration is potentially high. Furthermore, there is the addition of mass to the structural system due to the presence of people and an increase in damping due to the human body´s ability to absorb vibrational energy. In this paper, a test campaign is presented to obtain parameters for a single degree of freedom (SDOF) biodynamic model that represents the action of a walking pedestrian in the vertical direction. The parameters of this model are the mass (m), damping (c) and stiffness (k). The measurements were performed on a force platform, and the inputs were the spectral acceleration amplitudes of the first three harmonics at the waist level of the test subjects and the corresponding amplitudes of the first three harmonics of the vertical ground reaction force. This leads to a system of nonlinear equations that is solved using a gradient-based optimization algorithm. A set of individuals took part in the tests to ensure inter-subject variability, and, regression expressions and an artificial neural network (ANN) were used to relate the biodynamic parameters to the pacing rate and the body mass of the pedestrians. The results showed some scatter in damping and stiffness that could not be precisely correlated with the masses and pacing rates of the subjects. The use of the ANN resulted in significant improvements in the parameter expressions with a low uncertainty. Finally, the measured vertical accelerations on a prototype footbridge show the adequacy of the numerical model for the representation of the effects of walking pedestrians on a structure. The results are consistent for many crowd densities.
•It is presented a test campaign on pedestrians to fit a SDOF biodynamic model.•Measurements are performed on a force platform considering several individuals.•Regression functions and neural networks are used to relate biodynamic parameters.•Accelerations are measured on a prototype footbridge crossed by pedestrians.•The numerical model results are in agreement with the experimental measurements. The interaction between moving humans and structures usually occurs in slender structures in which the level of vibration is potentially high. Furthermore, there is the addition of mass to the structural system due to the presence of people and an increase in damping due to the human bodys ability to absorb vibrational energy. In this paper, a test campaign is presented to obtain parameters for a single degree of freedom (SDOF) biodynamic model that represents the action of a walking pedestrian in the vertical direction. The parameters of this model are the mass (m), damping (c) and stiffness (k). The measurements were performed on a force platform, and the inputs were the spectral acceleration amplitudes of the first three harmonics at the waist level of the test subjects and the corresponding amplitudes of the first three harmonics of the vertical ground reaction force. This leads to a system of nonlinear equations that is solved using a gradient-based optimization algorithm. A set of individuals took part in the tests to ensure inter-subject variability, and, regression expressions and an artificial neural network (ANN) were used to relate the biodynamic parameters to the pacing rate and the body mass of the pedestrians. The results showed some scatter in damping and stiffness that could not be precisely correlated with the masses and pacing rates of the subjects. The use of the ANN resulted in significant improvements in the parameter expressions with a low uncertainty. Finally, the measured vertical accelerations on a prototype footbridge show the adequacy of the numerical model for the representation of the effects of walking pedestrians on a structure. The results are consistent for many crowd densities. |
| Author | Gomes, Herbert Martins Pimentel, Roberto Leal Toso, Marcelo André da Silva, Felipe Tavares |
| Author_xml | – sequence: 1 givenname: Marcelo André surname: Toso fullname: Toso, Marcelo André email: marcelo.toso@yahoo.com.br organization: Mechanical Engineering Department, Federal University of Rio Grande do Sul, Sarmento Leite, 425, 90050-170 Porto Alegre, RS, Brazil – sequence: 2 givenname: Herbert Martins surname: Gomes fullname: Gomes, Herbert Martins email: herbert@mecanica.ufrgs.br organization: Mechanical Engineering Department, Federal University of Rio Grande do Sul, Sarmento Leite, 425, 90050-170 Porto Alegre, RS, Brazil – sequence: 3 givenname: Felipe Tavares surname: da Silva fullname: da Silva, Felipe Tavares email: felipe.estruturas@gmail.com organization: Faculty of Architecture and Urban Studies, Federal University of Bahia, Caetano Moura, 121-Federação, 40210-905 Salvador, BA, Brazil – sequence: 4 givenname: Roberto Leal surname: Pimentel fullname: Pimentel, Roberto Leal email: r.pimentel@uol.com.br organization: Civil Engineering Department, Federal University of Paraíba, Campus Universitário, s/n-Castelo Branco, 58051-900 João Pessoa, PB, Brazil |
| BookMark | eNqFkL9OwzAQhy1UJNrCE7BkZEmw4yRNBgZUlT9SJRaYLde-IBfHDrYDdOMdeEOeBIcyMYBk6U4_3WfdfTM0MdYAQqcEZwST6nyb7Trv-yzHpIxJhvPmAE0JbqqU5KSaoCmu6zql-QIfoZn3W4xxU-BqiuTqrQenOjCBa71LWhUCyGSjrNwZ3imRdFaC9klrXdKDBB-c4ubz_SM2gwiDg0SZAI6LoKyJffLK9ZMyj4lXYeBj6I_RYcu1h5OfOkcPV6v75U26vru-XV6uUxF3CanAVLQVFeMjtJJlC03RbnLCucx53haSxis4wXhRCropgRaYyFLySkaeV3SOzvb_9s4-D3FV1ikvQGtuwA6ekTovi6IpaxJH6X5UOOu9g5b10QJ3O0YwG52yLft2ykanYxidRqr5RQkVvm8Mjiv9D3uxZ6NNeFHgmBcKjACpHIjApFV_8l9Auppw |
| CitedBy_id | crossref_primary_10_1016_j_jsv_2017_11_057 crossref_primary_10_1061_JBENF2_BEENG_7155 crossref_primary_10_1016_j_measurement_2023_113258 crossref_primary_10_1061_JBENF2_BEENG_6344 crossref_primary_10_1016_j_proeng_2017_09_565 crossref_primary_10_1016_j_proeng_2017_09_588 crossref_primary_10_3390_app13064023 crossref_primary_10_3390_app9091936 crossref_primary_10_1007_s43452_025_01117_6 crossref_primary_10_1016_j_proeng_2017_09_584 crossref_primary_10_3390_app14167257 crossref_primary_10_3390_s25051387 crossref_primary_10_1016_j_engstruct_2018_09_033 crossref_primary_10_1016_j_jsv_2020_115237 crossref_primary_10_1080_10168664_2021_1982661 crossref_primary_10_1177_1461348418756025 crossref_primary_10_1016_j_istruc_2024_106885 crossref_primary_10_26417_ejef_v4i1_p64_74 crossref_primary_10_3390_vibration5040052 crossref_primary_10_1016_j_ymssp_2017_10_028 crossref_primary_10_1007_s13296_022_00640_z crossref_primary_10_1061__ASCE_CF_1943_5509_0001688 crossref_primary_10_1016_j_jsv_2023_117750 crossref_primary_10_1680_jstbu_19_00184 crossref_primary_10_1016_j_engstruct_2018_08_055 crossref_primary_10_1007_s42417_021_00292_z crossref_primary_10_1155_2016_3430285 crossref_primary_10_3390_vibration5010008 crossref_primary_10_1016_j_engstruct_2023_117343 crossref_primary_10_1080_15732479_2023_2230567 crossref_primary_10_1016_j_proeng_2017_09_556 crossref_primary_10_1016_j_ymssp_2021_108513 crossref_primary_10_3390_vibration4010015 crossref_primary_10_1016_j_ymssp_2021_108511 crossref_primary_10_1002_stc_2466 crossref_primary_10_1007_s42417_020_00197_3 crossref_primary_10_1016_j_engstruct_2022_114330 crossref_primary_10_1016_j_istruc_2023_105160 crossref_primary_10_1061_JPCFEV_CFENG_4659 crossref_primary_10_1007_s00419_019_01569_2 crossref_primary_10_1155_stc_3296513 |
| Cites_doi | 10.1139/l85-069 10.1016/j.jsv.2014.05.022 10.1242/jeb.201.21.2935 10.1016/j.jsv.2003.08.052 10.1016/j.jsv.2004.01.019 10.1016/j.compstruc.2012.03.006 10.1139/cjce-2011-0587 10.1016/j.jsv.2009.04.020 10.1177/0583102403035001624 10.2749/sed003e 10.1016/j.jsv.2010.02.021 10.1061/(ASCE)ST.1943-541X.0000226 10.1061/(ASCE)BE.1943-5592.0000347 10.1098/rspb.2006.3637 |
| ContentType | Journal Article |
| Copyright | 2015 Elsevier Ltd |
| Copyright_xml | – notice: 2015 Elsevier Ltd |
| DBID | AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
| DOI | 10.1016/j.ymssp.2015.10.029 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1096-1216 |
| EndPage | 606 |
| ExternalDocumentID | 10_1016_j_ymssp_2015_10_029 S0888327015004896 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABEFU ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADFGL ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CAG COF CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG5 LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SPD SST SSV SSZ T5K WUQ XPP ZMT ZU3 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c406t-c03cf63c63c6136d5fe94fb21aad2a2f4d3888a10075c3b5e3401d5da6d406a63 |
| ISICitedReferencesCount | 57 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000369196200036&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0888-3270 |
| IngestDate | Thu Oct 02 19:59:49 EDT 2025 Sat Nov 29 02:08:09 EST 2025 Tue Nov 18 21:33:05 EST 2025 Fri Feb 23 02:25:12 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Footbridge vibrations Biodynamic model Force platform |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c406t-c03cf63c63c6136d5fe94fb21aad2a2f4d3888a10075c3b5e3401d5da6d406a63 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1825449581 |
| PQPubID | 23500 |
| PageCount | 17 |
| ParticipantIDs | proquest_miscellaneous_1825449581 crossref_primary_10_1016_j_ymssp_2015_10_029 crossref_citationtrail_10_1016_j_ymssp_2015_10_029 elsevier_sciencedirect_doi_10_1016_j_ymssp_2015_10_029 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-05-01 |
| PublicationDateYYYYMMDD | 2016-05-01 |
| PublicationDate_xml | – month: 05 year: 2016 text: 2016-05-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Mechanical systems and signal processing |
| PublicationYear | 2016 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Ohlsson (bib18) 1982 P. Young, Improved Floor Vibration Prediction Methodologies, In: Proceedings of the Arup Vibration Seminar on Engineering for Structural Vibration-Current Developments in Research and Practice, 2001. Sachse, Pavic, Reynolds (bib20) 2004; 274 Hamill, Knutzen (bib37) 2012 Triola (bib39) 2008 Winter (bib36) 2009 Vaughan, Davis, O’Connor (bib35) 1992 MATLAB version 7.11.0. Natick, Massachusetts: The MathWorks Inc., 2011. ISO 5982, International Organization for Standardization, Bases for design of structures vibration and shock-mechanical driving point impedance of the human body, 1981. Van Nimmen, Lombaert, Jonkers, De Roeck, Van den Broeck (bib24) 2014; 333 Kerr (bib40) 1998 Caprani, Keogh, Archbold, Fanning (bib15) 2012 Sachse, Pavic, Reynolds (bib22) 2003; 35 C. Barker, D. Mackenzie, Calibration of the UK National Annex, in: Proceedings of the International Conference-Footbridge, 2008. Toso (bib14) 2012 H. Geyer, A. Seyfarth, R. Blickhan, Compliant leg behaviour explains basic dynamics of walking and running, In: Proceeding of the Royal Society B: Biological Sciences, 2006. Kim, Cho, Choi, Lim (bib6) 2008; 8 Dallard, Fitzpatrick, Flint, Le Bourva, Low, Ridsdill-Smith, Willford (bib4) 2001; 79 Dang, Zivanovic (bib1) 2013; 41 M. Willford, Dynamic actions and reactions of pedestrians, in: Proceedings Footbridge Conference, 2002. Shahabpoor (bib28) 2014 Zivanovic, Pavic, Ingólfsson (bib9) 2010; 136 Zivanovic, Pavic, Reynolds (bib31) 2005; 158 UK-NA to BS EN 1991-2:2003-British Standards Institute, UK National Annex to Eurocode 1: actions on structures – Part 2: Traffic loads on bridges. London: BSI; 2008. Toso, Gomes (bib33) 2014; 30 M.A. Toso, H.M. Gomes, Dynamic validation of a numerical model of force platform for human gait analysis, in: Proceedings of the International Congress of Mechanical Engineering (COBEM), 2013. Kala, Salajka, Hradil (bib17) 2009; 5 C.C. Caprani, J. Keogh, P. Archbold, P. Fanning, Characteristic vertical response of a footbridge due to crowd loading, In: Proceedings of the Eurodyn International Conference on Structural Dynamics, 2011. Haykin (bib41) 1999 M.A. Toso, H.M. Gomes, F.T. Silva, R.L. Pimentel, A biodynamic model fit for vibration serviceability in footbridges using experimental measurements in a designed force platform for vertical load gait analysis, In: Proceedings of the International Conference on Experimental Mechanics (ICEM), 2012. Racic, Brownjohn, Pavic (bib23) 2010; 329 Rose, Gamble (bib38) 1994 Racic, Pavic, Brownjohn (bib21) 2009; 326 F.T. Silva, R.L. Pimentel, Biodynamic walking model for vibration serviceability of footbridges in vertical direction, In: Proceedings of the Eurodyn International Conference on Structural Dynamics, 2011. ANSYS. 2010. ANSYS v. 12.1 Reference Manual. ISO 10137, International Organization for Standardization. Bases for Design of Structures-Serviceability of Buildings and Walkways against Vibrations, 2012. H. Bachmann, W. Ammann, Vibrations in structures induced by man and machines, structural engineering documents, In: Proceedings of the International Association of Bridge and Structural Engineering (IABSE), 1987. Allemang (bib44) 2003; 37 Lee, Farley (bib25) 1998; 201 Silva, Brito, Pimentel (bib13) 2013; 40 Zivanovic, Pavic, Reynolds (bib8) 2005; 279 Y. Miyamori, T. Obata, T. Hayashikawa, K. Sato, Study on identification of human walking model based on dynamic response characteristics of pedestrian bridges, in: Proceedings of the East Asia-Pacific Conference on Structural Engineering and Construction (EASEC), 2001. SETRA-Service d׳Études techniques des routes et autoroutes. Footbridges. Assessment of vibrational behaviour of footbridges under pedestrian loading, 2006. Allen, Rainer, Pernica (bib19) 1985; 12 Pimentel, Araújo, Brito, Vital de Brito (bib30) 2013; 18 Kim (10.1016/j.ymssp.2015.10.029_bib6) 2008; 8 Kerr (10.1016/j.ymssp.2015.10.029_bib40) 1998 10.1016/j.ymssp.2015.10.029_bib45 Silva (10.1016/j.ymssp.2015.10.029_bib13) 2013; 40 Allen (10.1016/j.ymssp.2015.10.029_bib19) 1985; 12 10.1016/j.ymssp.2015.10.029_bib43 Rose (10.1016/j.ymssp.2015.10.029_bib38) 1994 10.1016/j.ymssp.2015.10.029_bib42 Racic (10.1016/j.ymssp.2015.10.029_bib23) 2010; 329 Zivanovic (10.1016/j.ymssp.2015.10.029_bib8) 2005; 279 Dang (10.1016/j.ymssp.2015.10.029_bib1) 2013; 41 Zivanovic (10.1016/j.ymssp.2015.10.029_bib9) 2010; 136 Triola (10.1016/j.ymssp.2015.10.029_bib39) 2008 Zivanovic (10.1016/j.ymssp.2015.10.029_bib31) 2005; 158 Lee (10.1016/j.ymssp.2015.10.029_bib25) 1998; 201 Winter (10.1016/j.ymssp.2015.10.029_bib36) 2009 Sachse (10.1016/j.ymssp.2015.10.029_bib20) 2004; 274 10.1016/j.ymssp.2015.10.029_bib16 Racic (10.1016/j.ymssp.2015.10.029_bib21) 2009; 326 Dallard (10.1016/j.ymssp.2015.10.029_bib4) 2001; 79 Kala (10.1016/j.ymssp.2015.10.029_bib17) 2009; 5 10.1016/j.ymssp.2015.10.029_bib12 10.1016/j.ymssp.2015.10.029_bib34 10.1016/j.ymssp.2015.10.029_bib11 Allemang (10.1016/j.ymssp.2015.10.029_bib44) 2003; 37 10.1016/j.ymssp.2015.10.029_bib10 10.1016/j.ymssp.2015.10.029_bib32 Sachse (10.1016/j.ymssp.2015.10.029_bib22) 2003; 35 Toso (10.1016/j.ymssp.2015.10.029_bib33) 2014; 30 Ohlsson (10.1016/j.ymssp.2015.10.029_bib18) 1982 Haykin (10.1016/j.ymssp.2015.10.029_bib41) 1999 Hamill (10.1016/j.ymssp.2015.10.029_bib37) 2012 Shahabpoor (10.1016/j.ymssp.2015.10.029_bib28) 2014 10.1016/j.ymssp.2015.10.029_bib7 Toso (10.1016/j.ymssp.2015.10.029_bib14) 2012 Vaughan (10.1016/j.ymssp.2015.10.029_bib35) 1992 10.1016/j.ymssp.2015.10.029_bib5 Van Nimmen (10.1016/j.ymssp.2015.10.029_bib24) 2014; 333 10.1016/j.ymssp.2015.10.029_bib2 10.1016/j.ymssp.2015.10.029_bib29 10.1016/j.ymssp.2015.10.029_bib3 Caprani (10.1016/j.ymssp.2015.10.029_bib15) 2012 10.1016/j.ymssp.2015.10.029_bib27 10.1016/j.ymssp.2015.10.029_bib26 Pimentel (10.1016/j.ymssp.2015.10.029_bib30) 2013; 18 |
| References_xml | – year: 1992 ident: bib35 article-title: Dynamics of Human Gait – year: 1982 ident: bib18 article-title: Floor vibrations and human discomfort (Ph.D. thesis) – reference: Y. Miyamori, T. Obata, T. Hayashikawa, K. Sato, Study on identification of human walking model based on dynamic response characteristics of pedestrian bridges, in: Proceedings of the East Asia-Pacific Conference on Structural Engineering and Construction (EASEC), 2001. – year: 2012 ident: bib37 article-title: Biomechanical basis of Human Movement – reference: SETRA-Service d׳Études techniques des routes et autoroutes. Footbridges. Assessment of vibrational behaviour of footbridges under pedestrian loading, 2006. – reference: ISO 10137, International Organization for Standardization. Bases for Design of Structures-Serviceability of Buildings and Walkways against Vibrations, 2012. – start-page: 87 year: 2012 end-page: 96 ident: bib15 article-title: Enhancement factors for the vertical response of footbridges subjected to stochastic crowd loading publication-title: Comput. Struct. 102-103 – volume: 41 start-page: 271 year: 2013 end-page: 278 ident: bib1 article-title: Modelling pedestrian interaction with perceptibly vibrating footbridges publication-title: FME Trans. – reference: H. Bachmann, W. Ammann, Vibrations in structures induced by man and machines, structural engineering documents, In: Proceedings of the International Association of Bridge and Structural Engineering (IABSE), 1987. – volume: 40 start-page: 1196 year: 2013 end-page: 1204 ident: bib13 article-title: Modelling of crowd load in vertical direction using biodynamic model for pedestrians crossing footbridges publication-title: Can. J. Civil Eng. – volume: 18 start-page: 400 year: 2013 end-page: 408 ident: bib30 article-title: Synchronization among pedestrians in footbridges due to crowd density publication-title: J. Bridge Eng. – reference: M.A. Toso, H.M. Gomes, Dynamic validation of a numerical model of force platform for human gait analysis, in: Proceedings of the International Congress of Mechanical Engineering (COBEM), 2013. – reference: C. Barker, D. Mackenzie, Calibration of the UK National Annex, in: Proceedings of the International Conference-Footbridge, 2008. – volume: 158 start-page: 165 year: 2005 end-page: 177 ident: bib31 article-title: Human-structure dynamic interaction in footbridges publication-title: Bridge Eng. – reference: UK-NA to BS EN 1991-2:2003-British Standards Institute, UK National Annex to Eurocode 1: actions on structures – Part 2: Traffic loads on bridges. London: BSI; 2008. – year: 2012 ident: bib14 article-title: Development of a force platform for measuring and analysing the vertical loads in biodynamic modelling of human gait (in Portuguese) – volume: 5 start-page: 269 year: 2009 end-page: 280 ident: bib17 article-title: Footbridge response on single pedestrian induced vibration analysis publication-title: Int. J. Eng. Appl. Sci. – volume: 326 start-page: 1 year: 2009 end-page: 49 ident: bib21 article-title: Experimental identification and analytical modelling of human walking forces: Literature review publication-title: J. Sound Vib. – volume: 274 start-page: 461 year: 2004 end-page: 480 ident: bib20 article-title: Parametric study of modal properties of damped two-degree-of-freedom crowd–structure dynamic systems publication-title: J. Sound Vib. – reference: M.A. Toso, H.M. Gomes, F.T. Silva, R.L. Pimentel, A biodynamic model fit for vibration serviceability in footbridges using experimental measurements in a designed force platform for vertical load gait analysis, In: Proceedings of the International Conference on Experimental Mechanics (ICEM), 2012. – reference: MATLAB version 7.11.0. Natick, Massachusetts: The MathWorks Inc., 2011. – reference: C.C. Caprani, J. Keogh, P. Archbold, P. Fanning, Characteristic vertical response of a footbridge due to crowd loading, In: Proceedings of the Eurodyn International Conference on Structural Dynamics, 2011. – reference: M. Willford, Dynamic actions and reactions of pedestrians, in: Proceedings Footbridge Conference, 2002. – reference: F.T. Silva, R.L. Pimentel, Biodynamic walking model for vibration serviceability of footbridges in vertical direction, In: Proceedings of the Eurodyn International Conference on Structural Dynamics, 2011. – year: 1998 ident: bib40 article-title: Human Induced Loading on Staircases (Ph.D. thesis) – volume: 79 start-page: 17 year: 2001 end-page: 33 ident: bib4 article-title: The London millennium footbridge publication-title: J. Struct. Eng. – year: 1999 ident: bib41 article-title: Neural Networks: A Comprehensive Foundation – reference: ISO 5982, International Organization for Standardization, Bases for design of structures vibration and shock-mechanical driving point impedance of the human body, 1981. – year: 2008 ident: bib39 article-title: Elementary Statistics – reference: P. Young, Improved Floor Vibration Prediction Methodologies, In: Proceedings of the Arup Vibration Seminar on Engineering for Structural Vibration-Current Developments in Research and Practice, 2001. – year: 1994 ident: bib38 article-title: Human Walking – volume: 329 start-page: 3397 year: 2010 end-page: 3416 ident: bib23 article-title: Reproduction and application of human bouncing and jumping forces from visual marker data publication-title: J. Sound Vib. – year: 2014 ident: bib28 article-title: Dynamic Interaction of Walking Humans with Pedestrian Structures in Vertical Direction-Experimentally Based Probabilistic Modelling (Ph.D. thesis) – reference: ANSYS. 2010. ANSYS v. 12.1 Reference Manual. – year: 2009 ident: bib36 article-title: Biomechanics and Motor Control of Human Movement – volume: 8 start-page: 333 year: 2008 end-page: 345 ident: bib6 article-title: Development of human body model for the dynamic analysis of footbridges under pedestrian induced excitation publication-title: Int. J. Steel Struct. – volume: 35 start-page: 3 year: 2003 end-page: 18 ident: bib22 article-title: Human–Structure Dynamic Interaction in Civil Engineering Dynamics: A Literature Review publication-title: The Shock Vib. Digest – volume: 333 start-page: 5212 year: 2014 end-page: 5226 ident: bib24 article-title: Characterization of walking loads by 3D inertial motion tracking publication-title: J. Sound Vib. – reference: H. Geyer, A. Seyfarth, R. Blickhan, Compliant leg behaviour explains basic dynamics of walking and running, In: Proceeding of the Royal Society B: Biological Sciences, 2006. – volume: 12 start-page: 617 year: 1985 end-page: 623 ident: bib19 article-title: Vibration criteria for assembly occupancies publication-title: Can. J. Civil Eng. – volume: 201 start-page: 2935 year: 1998 end-page: 2944 ident: bib25 article-title: Determinants of the centre of mass trajectory in human walking and running publication-title: J. Exp. Biol. – volume: 136 start-page: 1296 year: 2010 end-page: 1308 ident: bib9 article-title: Modelling spatially unrestricted pedestrian traffic on footbridges publication-title: J. Struct. Eng. – volume: 279 start-page: 1 year: 2005 end-page: 74 ident: bib8 article-title: Vibration serviceability of footbridges under human-induced excitation: a literature review publication-title: J. Sound Vib. – volume: 30 start-page: 404 year: 2014 end-page: 411 ident: bib33 article-title: Vertical force calibration of smart force platform using artificial neural networks, Braz publication-title: J. Biom. Eng – volume: 37 start-page: 14 year: 2003 end-page: 21 ident: bib44 article-title: The modal assurance criterion: twenty years of use and abuse publication-title: J. Sound Vib. – volume: 12 start-page: 617 issue: 3 year: 1985 ident: 10.1016/j.ymssp.2015.10.029_bib19 article-title: Vibration criteria for assembly occupancies publication-title: Can. J. Civil Eng. doi: 10.1139/l85-069 – volume: 333 start-page: 5212 year: 2014 ident: 10.1016/j.ymssp.2015.10.029_bib24 article-title: Characterization of walking loads by 3D inertial motion tracking publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2014.05.022 – volume: 201 start-page: 2935 year: 1998 ident: 10.1016/j.ymssp.2015.10.029_bib25 article-title: Determinants of the centre of mass trajectory in human walking and running publication-title: J. Exp. Biol. doi: 10.1242/jeb.201.21.2935 – ident: 10.1016/j.ymssp.2015.10.029_bib12 – ident: 10.1016/j.ymssp.2015.10.029_bib43 – volume: 274 start-page: 461 year: 2004 ident: 10.1016/j.ymssp.2015.10.029_bib20 article-title: Parametric study of modal properties of damped two-degree-of-freedom crowd–structure dynamic systems publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2003.08.052 – volume: 30 start-page: 404 issue: 4 year: 2014 ident: 10.1016/j.ymssp.2015.10.029_bib33 article-title: Vertical force calibration of smart force platform using artificial neural networks, Braz publication-title: J. Biom. Eng – ident: 10.1016/j.ymssp.2015.10.029_bib10 – year: 1998 ident: 10.1016/j.ymssp.2015.10.029_bib40 – ident: 10.1016/j.ymssp.2015.10.029_bib45 – year: 2014 ident: 10.1016/j.ymssp.2015.10.029_bib28 – volume: 37 start-page: 14 year: 2003 ident: 10.1016/j.ymssp.2015.10.029_bib44 article-title: The modal assurance criterion: twenty years of use and abuse publication-title: J. Sound Vib. – ident: 10.1016/j.ymssp.2015.10.029_bib7 – ident: 10.1016/j.ymssp.2015.10.029_bib27 – volume: 279 start-page: 1 year: 2005 ident: 10.1016/j.ymssp.2015.10.029_bib8 article-title: Vibration serviceability of footbridges under human-induced excitation: a literature review publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2004.01.019 – year: 1999 ident: 10.1016/j.ymssp.2015.10.029_bib41 – ident: 10.1016/j.ymssp.2015.10.029_bib29 – ident: 10.1016/j.ymssp.2015.10.029_bib5 – start-page: 87 year: 2012 ident: 10.1016/j.ymssp.2015.10.029_bib15 article-title: Enhancement factors for the vertical response of footbridges subjected to stochastic crowd loading publication-title: Comput. Struct. 102-103 doi: 10.1016/j.compstruc.2012.03.006 – ident: 10.1016/j.ymssp.2015.10.029_bib3 – year: 2008 ident: 10.1016/j.ymssp.2015.10.029_bib39 – year: 1982 ident: 10.1016/j.ymssp.2015.10.029_bib18 – volume: 40 start-page: 1196 year: 2013 ident: 10.1016/j.ymssp.2015.10.029_bib13 article-title: Modelling of crowd load in vertical direction using biodynamic model for pedestrians crossing footbridges publication-title: Can. J. Civil Eng. doi: 10.1139/cjce-2011-0587 – year: 1992 ident: 10.1016/j.ymssp.2015.10.029_bib35 – volume: 326 start-page: 1 year: 2009 ident: 10.1016/j.ymssp.2015.10.029_bib21 article-title: Experimental identification and analytical modelling of human walking forces: Literature review publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2009.04.020 – year: 2012 ident: 10.1016/j.ymssp.2015.10.029_bib37 – volume: 35 start-page: 3 year: 2003 ident: 10.1016/j.ymssp.2015.10.029_bib22 article-title: Human–Structure Dynamic Interaction in Civil Engineering Dynamics: A Literature Review publication-title: The Shock Vib. Digest doi: 10.1177/0583102403035001624 – ident: 10.1016/j.ymssp.2015.10.029_bib42 – ident: 10.1016/j.ymssp.2015.10.029_bib11 – year: 2009 ident: 10.1016/j.ymssp.2015.10.029_bib36 – volume: 79 start-page: 17 issue: 22 year: 2001 ident: 10.1016/j.ymssp.2015.10.029_bib4 article-title: The London millennium footbridge publication-title: J. Struct. Eng. – ident: 10.1016/j.ymssp.2015.10.029_bib16 doi: 10.2749/sed003e – volume: 329 start-page: 3397 year: 2010 ident: 10.1016/j.ymssp.2015.10.029_bib23 article-title: Reproduction and application of human bouncing and jumping forces from visual marker data publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2010.02.021 – volume: 136 start-page: 1296 issue: 10 year: 2010 ident: 10.1016/j.ymssp.2015.10.029_bib9 article-title: Modelling spatially unrestricted pedestrian traffic on footbridges publication-title: J. Struct. Eng. doi: 10.1061/(ASCE)ST.1943-541X.0000226 – year: 2012 ident: 10.1016/j.ymssp.2015.10.029_bib14 – volume: 158 start-page: 165 year: 2005 ident: 10.1016/j.ymssp.2015.10.029_bib31 article-title: Human-structure dynamic interaction in footbridges publication-title: Bridge Eng. – volume: 18 start-page: 400 year: 2013 ident: 10.1016/j.ymssp.2015.10.029_bib30 article-title: Synchronization among pedestrians in footbridges due to crowd density publication-title: J. Bridge Eng. doi: 10.1061/(ASCE)BE.1943-5592.0000347 – volume: 5 start-page: 269 year: 2009 ident: 10.1016/j.ymssp.2015.10.029_bib17 article-title: Footbridge response on single pedestrian induced vibration analysis publication-title: Int. J. Eng. Appl. Sci. – ident: 10.1016/j.ymssp.2015.10.029_bib26 doi: 10.1098/rspb.2006.3637 – ident: 10.1016/j.ymssp.2015.10.029_bib32 – volume: 8 start-page: 333 year: 2008 ident: 10.1016/j.ymssp.2015.10.029_bib6 article-title: Development of human body model for the dynamic analysis of footbridges under pedestrian induced excitation publication-title: Int. J. Steel Struct. – ident: 10.1016/j.ymssp.2015.10.029_bib2 – ident: 10.1016/j.ymssp.2015.10.029_bib34 – year: 1994 ident: 10.1016/j.ymssp.2015.10.029_bib38 – volume: 41 start-page: 271 issue: 4 year: 2013 ident: 10.1016/j.ymssp.2015.10.029_bib1 article-title: Modelling pedestrian interaction with perceptibly vibrating footbridges publication-title: FME Trans. |
| SSID | ssj0009406 |
| Score | 2.4036195 |
| Snippet | The interaction between moving humans and structures usually occurs in slender structures in which the level of vibration is potentially high. Furthermore,... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 590 |
| SubjectTerms | Acceleration Biodynamic model Biodynamics Damping Footbridge vibrations Force platform Learning theory Mathematical models Neural networks Pedestrians Walking |
| Title | Experimentally fitted biodynamic models for pedestrian–structure interaction in walking situations |
| URI | https://dx.doi.org/10.1016/j.ymssp.2015.10.029 https://www.proquest.com/docview/1825449581 |
| Volume | 72-73 |
| WOSCitedRecordID | wos000369196200036&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1096-1216 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009406 issn: 0888-3270 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LatwwFBXTSRftovRJ0xcqdOc6xJYle5ahTEi7CIVOYXZGlmRw6tjD2Jkmu_xDvqs_0S_p1cOPJHRoFoXBGGEL2_eMdHV17rkIfYBJQYRSMl8poqNVUvrZfpb4Mgp4RHMRM2qLTcTHx8lyOfs6mfzqcmE2ZVxVyfn5bPVfTQ1tYGydOnsHc_edQgOcg9HhCGaH4z8Zfj7S7C8vvLxotVOZFbW0xedt8Rsjw-CtlFSmcEfVkR6IFZTV2wpaSWLtSokXlfeTlz9M8KFoz0Zhvq4alNIpxDbH0oqgm20JTQ_RuV42HaGbJk1Uu6ldrpBQZW2IlXbTvmcE1S5X4ggsr9atZxUP-jWA5N63otwY5_dQlcVKeQu-0elU_XBfWMXRgUFeaz3ZchzpCNjAK-wHxMQnoS000o3eMSwQyGgEprb6qJvMmZEzuD1P2JDFyd7FadNo1dKA7mmOnwu-XFPlvjFb9hzGjh53kppOUt0JtKTQyT20E8Z0lkzRzsHn-fLLoAIdmWKv_Yt0MliGcHjrWf7mKt1wGowntHiMHrklDD6w0HuCJqp6ih6OhC2fIXkdhNiCEA8gxBaEGECIBxD-vrzq4YdH8INz7OCHB_g9R98P54tPR76r5-ELeO_WF_tE5IwI_QsIk5rnGOVZGHAuQx7mkSTwYbjm7VBBMqoILP4llZxJuJ8z8gJNq7pSLxGGdQVLZMiSnLIoE3zG8lwQEQYBy_I447so7D5dKpzYva65UqZbzLaLPvY3razWy_bLWWeT1Lmr1g1NAWXbb3zfWTCFwVzv0PFK1WdNGuh4TTSjSfDqbs_yGj0Y_jFv0BRspd6i-2LTFs36nYPhH9HOzHY |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimentally+fitted+biodynamic+models+for+pedestrian%E2%80%93structure+interaction+in+walking+situations&rft.jtitle=Mechanical+systems+and+signal+processing&rft.au=Toso%2C+Marcelo+Andr%C3%A9&rft.au=Gomes%2C+Herbert+Martins&rft.au=da+Silva%2C+Felipe+Tavares&rft.au=Pimentel%2C+Roberto+Leal&rft.date=2016-05-01&rft.issn=0888-3270&rft.volume=72-73&rft.spage=590&rft.epage=606&rft_id=info:doi/10.1016%2Fj.ymssp.2015.10.029&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ymssp_2015_10_029 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-3270&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-3270&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-3270&client=summon |