Experimentally fitted biodynamic models for pedestrian–structure interaction in walking situations

The interaction between moving humans and structures usually occurs in slender structures in which the level of vibration is potentially high. Furthermore, there is the addition of mass to the structural system due to the presence of people and an increase in damping due to the human body´s ability...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mechanical systems and signal processing Jg. 72-73; S. 590 - 606
Hauptverfasser: Toso, Marcelo André, Gomes, Herbert Martins, da Silva, Felipe Tavares, Pimentel, Roberto Leal
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.05.2016
Schlagworte:
ISSN:0888-3270, 1096-1216
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The interaction between moving humans and structures usually occurs in slender structures in which the level of vibration is potentially high. Furthermore, there is the addition of mass to the structural system due to the presence of people and an increase in damping due to the human body´s ability to absorb vibrational energy. In this paper, a test campaign is presented to obtain parameters for a single degree of freedom (SDOF) biodynamic model that represents the action of a walking pedestrian in the vertical direction. The parameters of this model are the mass (m), damping (c) and stiffness (k). The measurements were performed on a force platform, and the inputs were the spectral acceleration amplitudes of the first three harmonics at the waist level of the test subjects and the corresponding amplitudes of the first three harmonics of the vertical ground reaction force. This leads to a system of nonlinear equations that is solved using a gradient-based optimization algorithm. A set of individuals took part in the tests to ensure inter-subject variability, and, regression expressions and an artificial neural network (ANN) were used to relate the biodynamic parameters to the pacing rate and the body mass of the pedestrians. The results showed some scatter in damping and stiffness that could not be precisely correlated with the masses and pacing rates of the subjects. The use of the ANN resulted in significant improvements in the parameter expressions with a low uncertainty. Finally, the measured vertical accelerations on a prototype footbridge show the adequacy of the numerical model for the representation of the effects of walking pedestrians on a structure. The results are consistent for many crowd densities. •It is presented a test campaign on pedestrians to fit a SDOF biodynamic model.•Measurements are performed on a force platform considering several individuals.•Regression functions and neural networks are used to relate biodynamic parameters.•Accelerations are measured on a prototype footbridge crossed by pedestrians.•The numerical model results are in agreement with the experimental measurements.
AbstractList The interaction between moving humans and structures usually occurs in slender structures in which the level of vibration is potentially high. Furthermore, there is the addition of mass to the structural system due to the presence of people and an increase in damping due to the human body´s ability to absorb vibrational energy. In this paper, a test campaign is presented to obtain parameters for a single degree of freedom (SDOF) biodynamic model that represents the action of a walking pedestrian in the vertical direction. The parameters of this model are the mass (m), damping (c) and stiffness (k). The measurements were performed on a force platform, and the inputs were the spectral acceleration amplitudes of the first three harmonics at the waist level of the test subjects and the corresponding amplitudes of the first three harmonics of the vertical ground reaction force. This leads to a system of nonlinear equations that is solved using a gradient-based optimization algorithm. A set of individuals took part in the tests to ensure inter-subject variability, and, regression expressions and an artificial neural network (ANN) were used to relate the biodynamic parameters to the pacing rate and the body mass of the pedestrians. The results showed some scatter in damping and stiffness that could not be precisely correlated with the masses and pacing rates of the subjects. The use of the ANN resulted in significant improvements in the parameter expressions with a low uncertainty. Finally, the measured vertical accelerations on a prototype footbridge show the adequacy of the numerical model for the representation of the effects of walking pedestrians on a structure. The results are consistent for many crowd densities. •It is presented a test campaign on pedestrians to fit a SDOF biodynamic model.•Measurements are performed on a force platform considering several individuals.•Regression functions and neural networks are used to relate biodynamic parameters.•Accelerations are measured on a prototype footbridge crossed by pedestrians.•The numerical model results are in agreement with the experimental measurements.
The interaction between moving humans and structures usually occurs in slender structures in which the level of vibration is potentially high. Furthermore, there is the addition of mass to the structural system due to the presence of people and an increase in damping due to the human bodys ability to absorb vibrational energy. In this paper, a test campaign is presented to obtain parameters for a single degree of freedom (SDOF) biodynamic model that represents the action of a walking pedestrian in the vertical direction. The parameters of this model are the mass (m), damping (c) and stiffness (k). The measurements were performed on a force platform, and the inputs were the spectral acceleration amplitudes of the first three harmonics at the waist level of the test subjects and the corresponding amplitudes of the first three harmonics of the vertical ground reaction force. This leads to a system of nonlinear equations that is solved using a gradient-based optimization algorithm. A set of individuals took part in the tests to ensure inter-subject variability, and, regression expressions and an artificial neural network (ANN) were used to relate the biodynamic parameters to the pacing rate and the body mass of the pedestrians. The results showed some scatter in damping and stiffness that could not be precisely correlated with the masses and pacing rates of the subjects. The use of the ANN resulted in significant improvements in the parameter expressions with a low uncertainty. Finally, the measured vertical accelerations on a prototype footbridge show the adequacy of the numerical model for the representation of the effects of walking pedestrians on a structure. The results are consistent for many crowd densities.
Author Gomes, Herbert Martins
Pimentel, Roberto Leal
Toso, Marcelo André
da Silva, Felipe Tavares
Author_xml – sequence: 1
  givenname: Marcelo André
  surname: Toso
  fullname: Toso, Marcelo André
  email: marcelo.toso@yahoo.com.br
  organization: Mechanical Engineering Department, Federal University of Rio Grande do Sul, Sarmento Leite, 425, 90050-170 Porto Alegre, RS, Brazil
– sequence: 2
  givenname: Herbert Martins
  surname: Gomes
  fullname: Gomes, Herbert Martins
  email: herbert@mecanica.ufrgs.br
  organization: Mechanical Engineering Department, Federal University of Rio Grande do Sul, Sarmento Leite, 425, 90050-170 Porto Alegre, RS, Brazil
– sequence: 3
  givenname: Felipe Tavares
  surname: da Silva
  fullname: da Silva, Felipe Tavares
  email: felipe.estruturas@gmail.com
  organization: Faculty of Architecture and Urban Studies, Federal University of Bahia, Caetano Moura, 121-Federação, 40210-905 Salvador, BA, Brazil
– sequence: 4
  givenname: Roberto Leal
  surname: Pimentel
  fullname: Pimentel, Roberto Leal
  email: r.pimentel@uol.com.br
  organization: Civil Engineering Department, Federal University of Paraíba, Campus Universitário, s/n-Castelo Branco, 58051-900 João Pessoa, PB, Brazil
BookMark eNqFkL9OwzAQhy1UJNrCE7BkZEmw4yRNBgZUlT9SJRaYLde-IBfHDrYDdOMdeEOeBIcyMYBk6U4_3WfdfTM0MdYAQqcEZwST6nyb7Trv-yzHpIxJhvPmAE0JbqqU5KSaoCmu6zql-QIfoZn3W4xxU-BqiuTqrQenOjCBa71LWhUCyGSjrNwZ3imRdFaC9klrXdKDBB-c4ubz_SM2gwiDg0SZAI6LoKyJffLK9ZMyj4lXYeBj6I_RYcu1h5OfOkcPV6v75U26vru-XV6uUxF3CanAVLQVFeMjtJJlC03RbnLCucx53haSxis4wXhRCropgRaYyFLySkaeV3SOzvb_9s4-D3FV1ikvQGtuwA6ekTovi6IpaxJH6X5UOOu9g5b10QJ3O0YwG52yLft2ykanYxidRqr5RQkVvm8Mjiv9D3uxZ6NNeFHgmBcKjACpHIjApFV_8l9Auppw
CitedBy_id crossref_primary_10_1016_j_jsv_2017_11_057
crossref_primary_10_1061_JBENF2_BEENG_7155
crossref_primary_10_1016_j_measurement_2023_113258
crossref_primary_10_1061_JBENF2_BEENG_6344
crossref_primary_10_1016_j_proeng_2017_09_565
crossref_primary_10_1016_j_proeng_2017_09_588
crossref_primary_10_3390_app13064023
crossref_primary_10_3390_app9091936
crossref_primary_10_1007_s43452_025_01117_6
crossref_primary_10_1016_j_proeng_2017_09_584
crossref_primary_10_3390_app14167257
crossref_primary_10_3390_s25051387
crossref_primary_10_1016_j_engstruct_2018_09_033
crossref_primary_10_1016_j_jsv_2020_115237
crossref_primary_10_1080_10168664_2021_1982661
crossref_primary_10_1177_1461348418756025
crossref_primary_10_1016_j_istruc_2024_106885
crossref_primary_10_26417_ejef_v4i1_p64_74
crossref_primary_10_3390_vibration5040052
crossref_primary_10_1016_j_ymssp_2017_10_028
crossref_primary_10_1007_s13296_022_00640_z
crossref_primary_10_1061__ASCE_CF_1943_5509_0001688
crossref_primary_10_1016_j_jsv_2023_117750
crossref_primary_10_1680_jstbu_19_00184
crossref_primary_10_1016_j_engstruct_2018_08_055
crossref_primary_10_1007_s42417_021_00292_z
crossref_primary_10_1155_2016_3430285
crossref_primary_10_3390_vibration5010008
crossref_primary_10_1016_j_engstruct_2023_117343
crossref_primary_10_1080_15732479_2023_2230567
crossref_primary_10_1016_j_proeng_2017_09_556
crossref_primary_10_1016_j_ymssp_2021_108513
crossref_primary_10_3390_vibration4010015
crossref_primary_10_1016_j_ymssp_2021_108511
crossref_primary_10_1002_stc_2466
crossref_primary_10_1007_s42417_020_00197_3
crossref_primary_10_1016_j_engstruct_2022_114330
crossref_primary_10_1016_j_istruc_2023_105160
crossref_primary_10_1061_JPCFEV_CFENG_4659
crossref_primary_10_1007_s00419_019_01569_2
crossref_primary_10_1155_stc_3296513
Cites_doi 10.1139/l85-069
10.1016/j.jsv.2014.05.022
10.1242/jeb.201.21.2935
10.1016/j.jsv.2003.08.052
10.1016/j.jsv.2004.01.019
10.1016/j.compstruc.2012.03.006
10.1139/cjce-2011-0587
10.1016/j.jsv.2009.04.020
10.1177/0583102403035001624
10.2749/sed003e
10.1016/j.jsv.2010.02.021
10.1061/(ASCE)ST.1943-541X.0000226
10.1061/(ASCE)BE.1943-5592.0000347
10.1098/rspb.2006.3637
ContentType Journal Article
Copyright 2015 Elsevier Ltd
Copyright_xml – notice: 2015 Elsevier Ltd
DBID AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1016/j.ymssp.2015.10.029
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1096-1216
EndPage 606
ExternalDocumentID 10_1016_j_ymssp_2015_10_029
S0888327015004896
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADFGL
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG5
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SPD
SST
SSV
SSZ
T5K
WUQ
XPP
ZMT
ZU3
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c406t-c03cf63c63c6136d5fe94fb21aad2a2f4d3888a10075c3b5e3401d5da6d406a63
ISICitedReferencesCount 57
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000369196200036&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0888-3270
IngestDate Thu Oct 02 19:59:49 EDT 2025
Sat Nov 29 02:08:09 EST 2025
Tue Nov 18 21:33:05 EST 2025
Fri Feb 23 02:25:12 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Footbridge vibrations
Biodynamic model
Force platform
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c406t-c03cf63c63c6136d5fe94fb21aad2a2f4d3888a10075c3b5e3401d5da6d406a63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1825449581
PQPubID 23500
PageCount 17
ParticipantIDs proquest_miscellaneous_1825449581
crossref_primary_10_1016_j_ymssp_2015_10_029
crossref_citationtrail_10_1016_j_ymssp_2015_10_029
elsevier_sciencedirect_doi_10_1016_j_ymssp_2015_10_029
PublicationCentury 2000
PublicationDate 2016-05-01
PublicationDateYYYYMMDD 2016-05-01
PublicationDate_xml – month: 05
  year: 2016
  text: 2016-05-01
  day: 01
PublicationDecade 2010
PublicationTitle Mechanical systems and signal processing
PublicationYear 2016
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Ohlsson (bib18) 1982
P. Young, Improved Floor Vibration Prediction Methodologies, In: Proceedings of the Arup Vibration Seminar on Engineering for Structural Vibration-Current Developments in Research and Practice, 2001.
Sachse, Pavic, Reynolds (bib20) 2004; 274
Hamill, Knutzen (bib37) 2012
Triola (bib39) 2008
Winter (bib36) 2009
Vaughan, Davis, O’Connor (bib35) 1992
MATLAB version 7.11.0. Natick, Massachusetts: The MathWorks Inc., 2011.
ISO 5982, International Organization for Standardization, Bases for design of structures vibration and shock-mechanical driving point impedance of the human body, 1981.
Van Nimmen, Lombaert, Jonkers, De Roeck, Van den Broeck (bib24) 2014; 333
Kerr (bib40) 1998
Caprani, Keogh, Archbold, Fanning (bib15) 2012
Sachse, Pavic, Reynolds (bib22) 2003; 35
C. Barker, D. Mackenzie, Calibration of the UK National Annex, in: Proceedings of the International Conference-Footbridge, 2008.
Toso (bib14) 2012
H. Geyer, A. Seyfarth, R. Blickhan, Compliant leg behaviour explains basic dynamics of walking and running, In: Proceeding of the Royal Society B: Biological Sciences, 2006.
Kim, Cho, Choi, Lim (bib6) 2008; 8
Dallard, Fitzpatrick, Flint, Le Bourva, Low, Ridsdill-Smith, Willford (bib4) 2001; 79
Dang, Zivanovic (bib1) 2013; 41
M. Willford, Dynamic actions and reactions of pedestrians, in: Proceedings Footbridge Conference, 2002.
Shahabpoor (bib28) 2014
Zivanovic, Pavic, Ingólfsson (bib9) 2010; 136
Zivanovic, Pavic, Reynolds (bib31) 2005; 158
UK-NA to BS EN 1991-2:2003-British Standards Institute, UK National Annex to Eurocode 1: actions on structures – Part 2: Traffic loads on bridges. London: BSI; 2008.
Toso, Gomes (bib33) 2014; 30
M.A. Toso, H.M. Gomes, Dynamic validation of a numerical model of force platform for human gait analysis, in: Proceedings of the International Congress of Mechanical Engineering (COBEM), 2013.
Kala, Salajka, Hradil (bib17) 2009; 5
C.C. Caprani, J. Keogh, P. Archbold, P. Fanning, Characteristic vertical response of a footbridge due to crowd loading, In: Proceedings of the Eurodyn International Conference on Structural Dynamics, 2011.
Haykin (bib41) 1999
M.A. Toso, H.M. Gomes, F.T. Silva, R.L. Pimentel, A biodynamic model fit for vibration serviceability in footbridges using experimental measurements in a designed force platform for vertical load gait analysis, In: Proceedings of the International Conference on Experimental Mechanics (ICEM), 2012.
Racic, Brownjohn, Pavic (bib23) 2010; 329
Rose, Gamble (bib38) 1994
Racic, Pavic, Brownjohn (bib21) 2009; 326
F.T. Silva, R.L. Pimentel, Biodynamic walking model for vibration serviceability of footbridges in vertical direction, In: Proceedings of the Eurodyn International Conference on Structural Dynamics, 2011.
ANSYS. 2010. ANSYS v. 12.1 Reference Manual.
ISO 10137, International Organization for Standardization. Bases for Design of Structures-Serviceability of Buildings and Walkways against Vibrations, 2012.
H. Bachmann, W. Ammann, Vibrations in structures induced by man and machines, structural engineering documents, In: Proceedings of the International Association of Bridge and Structural Engineering (IABSE), 1987.
Allemang (bib44) 2003; 37
Lee, Farley (bib25) 1998; 201
Silva, Brito, Pimentel (bib13) 2013; 40
Zivanovic, Pavic, Reynolds (bib8) 2005; 279
Y. Miyamori, T. Obata, T. Hayashikawa, K. Sato, Study on identification of human walking model based on dynamic response characteristics of pedestrian bridges, in: Proceedings of the East Asia-Pacific Conference on Structural Engineering and Construction (EASEC), 2001.
SETRA-Service d׳Études techniques des routes et autoroutes. Footbridges. Assessment of vibrational behaviour of footbridges under pedestrian loading, 2006.
Allen, Rainer, Pernica (bib19) 1985; 12
Pimentel, Araújo, Brito, Vital de Brito (bib30) 2013; 18
Kim (10.1016/j.ymssp.2015.10.029_bib6) 2008; 8
Kerr (10.1016/j.ymssp.2015.10.029_bib40) 1998
10.1016/j.ymssp.2015.10.029_bib45
Silva (10.1016/j.ymssp.2015.10.029_bib13) 2013; 40
Allen (10.1016/j.ymssp.2015.10.029_bib19) 1985; 12
10.1016/j.ymssp.2015.10.029_bib43
Rose (10.1016/j.ymssp.2015.10.029_bib38) 1994
10.1016/j.ymssp.2015.10.029_bib42
Racic (10.1016/j.ymssp.2015.10.029_bib23) 2010; 329
Zivanovic (10.1016/j.ymssp.2015.10.029_bib8) 2005; 279
Dang (10.1016/j.ymssp.2015.10.029_bib1) 2013; 41
Zivanovic (10.1016/j.ymssp.2015.10.029_bib9) 2010; 136
Triola (10.1016/j.ymssp.2015.10.029_bib39) 2008
Zivanovic (10.1016/j.ymssp.2015.10.029_bib31) 2005; 158
Lee (10.1016/j.ymssp.2015.10.029_bib25) 1998; 201
Winter (10.1016/j.ymssp.2015.10.029_bib36) 2009
Sachse (10.1016/j.ymssp.2015.10.029_bib20) 2004; 274
10.1016/j.ymssp.2015.10.029_bib16
Racic (10.1016/j.ymssp.2015.10.029_bib21) 2009; 326
Dallard (10.1016/j.ymssp.2015.10.029_bib4) 2001; 79
Kala (10.1016/j.ymssp.2015.10.029_bib17) 2009; 5
10.1016/j.ymssp.2015.10.029_bib12
10.1016/j.ymssp.2015.10.029_bib34
10.1016/j.ymssp.2015.10.029_bib11
Allemang (10.1016/j.ymssp.2015.10.029_bib44) 2003; 37
10.1016/j.ymssp.2015.10.029_bib10
10.1016/j.ymssp.2015.10.029_bib32
Sachse (10.1016/j.ymssp.2015.10.029_bib22) 2003; 35
Toso (10.1016/j.ymssp.2015.10.029_bib33) 2014; 30
Ohlsson (10.1016/j.ymssp.2015.10.029_bib18) 1982
Haykin (10.1016/j.ymssp.2015.10.029_bib41) 1999
Hamill (10.1016/j.ymssp.2015.10.029_bib37) 2012
Shahabpoor (10.1016/j.ymssp.2015.10.029_bib28) 2014
10.1016/j.ymssp.2015.10.029_bib7
Toso (10.1016/j.ymssp.2015.10.029_bib14) 2012
Vaughan (10.1016/j.ymssp.2015.10.029_bib35) 1992
10.1016/j.ymssp.2015.10.029_bib5
Van Nimmen (10.1016/j.ymssp.2015.10.029_bib24) 2014; 333
10.1016/j.ymssp.2015.10.029_bib2
10.1016/j.ymssp.2015.10.029_bib29
10.1016/j.ymssp.2015.10.029_bib3
Caprani (10.1016/j.ymssp.2015.10.029_bib15) 2012
10.1016/j.ymssp.2015.10.029_bib27
10.1016/j.ymssp.2015.10.029_bib26
Pimentel (10.1016/j.ymssp.2015.10.029_bib30) 2013; 18
References_xml – year: 1992
  ident: bib35
  article-title: Dynamics of Human Gait
– year: 1982
  ident: bib18
  article-title: Floor vibrations and human discomfort (Ph.D. thesis)
– reference: Y. Miyamori, T. Obata, T. Hayashikawa, K. Sato, Study on identification of human walking model based on dynamic response characteristics of pedestrian bridges, in: Proceedings of the East Asia-Pacific Conference on Structural Engineering and Construction (EASEC), 2001.
– year: 2012
  ident: bib37
  article-title: Biomechanical basis of Human Movement
– reference: SETRA-Service d׳Études techniques des routes et autoroutes. Footbridges. Assessment of vibrational behaviour of footbridges under pedestrian loading, 2006.
– reference: ISO 10137, International Organization for Standardization. Bases for Design of Structures-Serviceability of Buildings and Walkways against Vibrations, 2012.
– start-page: 87
  year: 2012
  end-page: 96
  ident: bib15
  article-title: Enhancement factors for the vertical response of footbridges subjected to stochastic crowd loading
  publication-title: Comput. Struct. 102-103
– volume: 41
  start-page: 271
  year: 2013
  end-page: 278
  ident: bib1
  article-title: Modelling pedestrian interaction with perceptibly vibrating footbridges
  publication-title: FME Trans.
– reference: H. Bachmann, W. Ammann, Vibrations in structures induced by man and machines, structural engineering documents, In: Proceedings of the International Association of Bridge and Structural Engineering (IABSE), 1987.
– volume: 40
  start-page: 1196
  year: 2013
  end-page: 1204
  ident: bib13
  article-title: Modelling of crowd load in vertical direction using biodynamic model for pedestrians crossing footbridges
  publication-title: Can. J. Civil Eng.
– volume: 18
  start-page: 400
  year: 2013
  end-page: 408
  ident: bib30
  article-title: Synchronization among pedestrians in footbridges due to crowd density
  publication-title: J. Bridge Eng.
– reference: M.A. Toso, H.M. Gomes, Dynamic validation of a numerical model of force platform for human gait analysis, in: Proceedings of the International Congress of Mechanical Engineering (COBEM), 2013.
– reference: C. Barker, D. Mackenzie, Calibration of the UK National Annex, in: Proceedings of the International Conference-Footbridge, 2008.
– volume: 158
  start-page: 165
  year: 2005
  end-page: 177
  ident: bib31
  article-title: Human-structure dynamic interaction in footbridges
  publication-title: Bridge Eng.
– reference: UK-NA to BS EN 1991-2:2003-British Standards Institute, UK National Annex to Eurocode 1: actions on structures – Part 2: Traffic loads on bridges. London: BSI; 2008.
– year: 2012
  ident: bib14
  article-title: Development of a force platform for measuring and analysing the vertical loads in biodynamic modelling of human gait (in Portuguese)
– volume: 5
  start-page: 269
  year: 2009
  end-page: 280
  ident: bib17
  article-title: Footbridge response on single pedestrian induced vibration analysis
  publication-title: Int. J. Eng. Appl. Sci.
– volume: 326
  start-page: 1
  year: 2009
  end-page: 49
  ident: bib21
  article-title: Experimental identification and analytical modelling of human walking forces: Literature review
  publication-title: J. Sound Vib.
– volume: 274
  start-page: 461
  year: 2004
  end-page: 480
  ident: bib20
  article-title: Parametric study of modal properties of damped two-degree-of-freedom crowd–structure dynamic systems
  publication-title: J. Sound Vib.
– reference: M.A. Toso, H.M. Gomes, F.T. Silva, R.L. Pimentel, A biodynamic model fit for vibration serviceability in footbridges using experimental measurements in a designed force platform for vertical load gait analysis, In: Proceedings of the International Conference on Experimental Mechanics (ICEM), 2012.
– reference: MATLAB version 7.11.0. Natick, Massachusetts: The MathWorks Inc., 2011.
– reference: C.C. Caprani, J. Keogh, P. Archbold, P. Fanning, Characteristic vertical response of a footbridge due to crowd loading, In: Proceedings of the Eurodyn International Conference on Structural Dynamics, 2011.
– reference: M. Willford, Dynamic actions and reactions of pedestrians, in: Proceedings Footbridge Conference, 2002.
– reference: F.T. Silva, R.L. Pimentel, Biodynamic walking model for vibration serviceability of footbridges in vertical direction, In: Proceedings of the Eurodyn International Conference on Structural Dynamics, 2011.
– year: 1998
  ident: bib40
  article-title: Human Induced Loading on Staircases (Ph.D. thesis)
– volume: 79
  start-page: 17
  year: 2001
  end-page: 33
  ident: bib4
  article-title: The London millennium footbridge
  publication-title: J. Struct. Eng.
– year: 1999
  ident: bib41
  article-title: Neural Networks: A Comprehensive Foundation
– reference: ISO 5982, International Organization for Standardization, Bases for design of structures vibration and shock-mechanical driving point impedance of the human body, 1981.
– year: 2008
  ident: bib39
  article-title: Elementary Statistics
– reference: P. Young, Improved Floor Vibration Prediction Methodologies, In: Proceedings of the Arup Vibration Seminar on Engineering for Structural Vibration-Current Developments in Research and Practice, 2001.
– year: 1994
  ident: bib38
  article-title: Human Walking
– volume: 329
  start-page: 3397
  year: 2010
  end-page: 3416
  ident: bib23
  article-title: Reproduction and application of human bouncing and jumping forces from visual marker data
  publication-title: J. Sound Vib.
– year: 2014
  ident: bib28
  article-title: Dynamic Interaction of Walking Humans with Pedestrian Structures in Vertical Direction-Experimentally Based Probabilistic Modelling (Ph.D. thesis)
– reference: ANSYS. 2010. ANSYS v. 12.1 Reference Manual.
– year: 2009
  ident: bib36
  article-title: Biomechanics and Motor Control of Human Movement
– volume: 8
  start-page: 333
  year: 2008
  end-page: 345
  ident: bib6
  article-title: Development of human body model for the dynamic analysis of footbridges under pedestrian induced excitation
  publication-title: Int. J. Steel Struct.
– volume: 35
  start-page: 3
  year: 2003
  end-page: 18
  ident: bib22
  article-title: Human–Structure Dynamic Interaction in Civil Engineering Dynamics: A Literature Review
  publication-title: The Shock Vib. Digest
– volume: 333
  start-page: 5212
  year: 2014
  end-page: 5226
  ident: bib24
  article-title: Characterization of walking loads by 3D inertial motion tracking
  publication-title: J. Sound Vib.
– reference: H. Geyer, A. Seyfarth, R. Blickhan, Compliant leg behaviour explains basic dynamics of walking and running, In: Proceeding of the Royal Society B: Biological Sciences, 2006.
– volume: 12
  start-page: 617
  year: 1985
  end-page: 623
  ident: bib19
  article-title: Vibration criteria for assembly occupancies
  publication-title: Can. J. Civil Eng.
– volume: 201
  start-page: 2935
  year: 1998
  end-page: 2944
  ident: bib25
  article-title: Determinants of the centre of mass trajectory in human walking and running
  publication-title: J. Exp. Biol.
– volume: 136
  start-page: 1296
  year: 2010
  end-page: 1308
  ident: bib9
  article-title: Modelling spatially unrestricted pedestrian traffic on footbridges
  publication-title: J. Struct. Eng.
– volume: 279
  start-page: 1
  year: 2005
  end-page: 74
  ident: bib8
  article-title: Vibration serviceability of footbridges under human-induced excitation: a literature review
  publication-title: J. Sound Vib.
– volume: 30
  start-page: 404
  year: 2014
  end-page: 411
  ident: bib33
  article-title: Vertical force calibration of smart force platform using artificial neural networks, Braz
  publication-title: J. Biom. Eng
– volume: 37
  start-page: 14
  year: 2003
  end-page: 21
  ident: bib44
  article-title: The modal assurance criterion: twenty years of use and abuse
  publication-title: J. Sound Vib.
– volume: 12
  start-page: 617
  issue: 3
  year: 1985
  ident: 10.1016/j.ymssp.2015.10.029_bib19
  article-title: Vibration criteria for assembly occupancies
  publication-title: Can. J. Civil Eng.
  doi: 10.1139/l85-069
– volume: 333
  start-page: 5212
  year: 2014
  ident: 10.1016/j.ymssp.2015.10.029_bib24
  article-title: Characterization of walking loads by 3D inertial motion tracking
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2014.05.022
– volume: 201
  start-page: 2935
  year: 1998
  ident: 10.1016/j.ymssp.2015.10.029_bib25
  article-title: Determinants of the centre of mass trajectory in human walking and running
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.201.21.2935
– ident: 10.1016/j.ymssp.2015.10.029_bib12
– ident: 10.1016/j.ymssp.2015.10.029_bib43
– volume: 274
  start-page: 461
  year: 2004
  ident: 10.1016/j.ymssp.2015.10.029_bib20
  article-title: Parametric study of modal properties of damped two-degree-of-freedom crowd–structure dynamic systems
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2003.08.052
– volume: 30
  start-page: 404
  issue: 4
  year: 2014
  ident: 10.1016/j.ymssp.2015.10.029_bib33
  article-title: Vertical force calibration of smart force platform using artificial neural networks, Braz
  publication-title: J. Biom. Eng
– ident: 10.1016/j.ymssp.2015.10.029_bib10
– year: 1998
  ident: 10.1016/j.ymssp.2015.10.029_bib40
– ident: 10.1016/j.ymssp.2015.10.029_bib45
– year: 2014
  ident: 10.1016/j.ymssp.2015.10.029_bib28
– volume: 37
  start-page: 14
  year: 2003
  ident: 10.1016/j.ymssp.2015.10.029_bib44
  article-title: The modal assurance criterion: twenty years of use and abuse
  publication-title: J. Sound Vib.
– ident: 10.1016/j.ymssp.2015.10.029_bib7
– ident: 10.1016/j.ymssp.2015.10.029_bib27
– volume: 279
  start-page: 1
  year: 2005
  ident: 10.1016/j.ymssp.2015.10.029_bib8
  article-title: Vibration serviceability of footbridges under human-induced excitation: a literature review
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2004.01.019
– year: 1999
  ident: 10.1016/j.ymssp.2015.10.029_bib41
– ident: 10.1016/j.ymssp.2015.10.029_bib29
– ident: 10.1016/j.ymssp.2015.10.029_bib5
– start-page: 87
  year: 2012
  ident: 10.1016/j.ymssp.2015.10.029_bib15
  article-title: Enhancement factors for the vertical response of footbridges subjected to stochastic crowd loading
  publication-title: Comput. Struct. 102-103
  doi: 10.1016/j.compstruc.2012.03.006
– ident: 10.1016/j.ymssp.2015.10.029_bib3
– year: 2008
  ident: 10.1016/j.ymssp.2015.10.029_bib39
– year: 1982
  ident: 10.1016/j.ymssp.2015.10.029_bib18
– volume: 40
  start-page: 1196
  year: 2013
  ident: 10.1016/j.ymssp.2015.10.029_bib13
  article-title: Modelling of crowd load in vertical direction using biodynamic model for pedestrians crossing footbridges
  publication-title: Can. J. Civil Eng.
  doi: 10.1139/cjce-2011-0587
– year: 1992
  ident: 10.1016/j.ymssp.2015.10.029_bib35
– volume: 326
  start-page: 1
  year: 2009
  ident: 10.1016/j.ymssp.2015.10.029_bib21
  article-title: Experimental identification and analytical modelling of human walking forces: Literature review
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2009.04.020
– year: 2012
  ident: 10.1016/j.ymssp.2015.10.029_bib37
– volume: 35
  start-page: 3
  year: 2003
  ident: 10.1016/j.ymssp.2015.10.029_bib22
  article-title: Human–Structure Dynamic Interaction in Civil Engineering Dynamics: A Literature Review
  publication-title: The Shock Vib. Digest
  doi: 10.1177/0583102403035001624
– ident: 10.1016/j.ymssp.2015.10.029_bib42
– ident: 10.1016/j.ymssp.2015.10.029_bib11
– year: 2009
  ident: 10.1016/j.ymssp.2015.10.029_bib36
– volume: 79
  start-page: 17
  issue: 22
  year: 2001
  ident: 10.1016/j.ymssp.2015.10.029_bib4
  article-title: The London millennium footbridge
  publication-title: J. Struct. Eng.
– ident: 10.1016/j.ymssp.2015.10.029_bib16
  doi: 10.2749/sed003e
– volume: 329
  start-page: 3397
  year: 2010
  ident: 10.1016/j.ymssp.2015.10.029_bib23
  article-title: Reproduction and application of human bouncing and jumping forces from visual marker data
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2010.02.021
– volume: 136
  start-page: 1296
  issue: 10
  year: 2010
  ident: 10.1016/j.ymssp.2015.10.029_bib9
  article-title: Modelling spatially unrestricted pedestrian traffic on footbridges
  publication-title: J. Struct. Eng.
  doi: 10.1061/(ASCE)ST.1943-541X.0000226
– year: 2012
  ident: 10.1016/j.ymssp.2015.10.029_bib14
– volume: 158
  start-page: 165
  year: 2005
  ident: 10.1016/j.ymssp.2015.10.029_bib31
  article-title: Human-structure dynamic interaction in footbridges
  publication-title: Bridge Eng.
– volume: 18
  start-page: 400
  year: 2013
  ident: 10.1016/j.ymssp.2015.10.029_bib30
  article-title: Synchronization among pedestrians in footbridges due to crowd density
  publication-title: J. Bridge Eng.
  doi: 10.1061/(ASCE)BE.1943-5592.0000347
– volume: 5
  start-page: 269
  year: 2009
  ident: 10.1016/j.ymssp.2015.10.029_bib17
  article-title: Footbridge response on single pedestrian induced vibration analysis
  publication-title: Int. J. Eng. Appl. Sci.
– ident: 10.1016/j.ymssp.2015.10.029_bib26
  doi: 10.1098/rspb.2006.3637
– ident: 10.1016/j.ymssp.2015.10.029_bib32
– volume: 8
  start-page: 333
  year: 2008
  ident: 10.1016/j.ymssp.2015.10.029_bib6
  article-title: Development of human body model for the dynamic analysis of footbridges under pedestrian induced excitation
  publication-title: Int. J. Steel Struct.
– ident: 10.1016/j.ymssp.2015.10.029_bib2
– ident: 10.1016/j.ymssp.2015.10.029_bib34
– year: 1994
  ident: 10.1016/j.ymssp.2015.10.029_bib38
– volume: 41
  start-page: 271
  issue: 4
  year: 2013
  ident: 10.1016/j.ymssp.2015.10.029_bib1
  article-title: Modelling pedestrian interaction with perceptibly vibrating footbridges
  publication-title: FME Trans.
SSID ssj0009406
Score 2.4036195
Snippet The interaction between moving humans and structures usually occurs in slender structures in which the level of vibration is potentially high. Furthermore,...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 590
SubjectTerms Acceleration
Biodynamic model
Biodynamics
Damping
Footbridge vibrations
Force platform
Learning theory
Mathematical models
Neural networks
Pedestrians
Walking
Title Experimentally fitted biodynamic models for pedestrian–structure interaction in walking situations
URI https://dx.doi.org/10.1016/j.ymssp.2015.10.029
https://www.proquest.com/docview/1825449581
Volume 72-73
WOSCitedRecordID wos000369196200036&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1096-1216
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009406
  issn: 0888-3270
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LatwwFBXTSRftovRJ0xcqdOc6xJYle5ahTEi7CIVOYXZGlmRw6tjD2Jkmu_xDvqs_0S_p1cOPJHRoFoXBGGEL2_eMdHV17rkIfYBJQYRSMl8poqNVUvrZfpb4Mgp4RHMRM2qLTcTHx8lyOfs6mfzqcmE2ZVxVyfn5bPVfTQ1tYGydOnsHc_edQgOcg9HhCGaH4z8Zfj7S7C8vvLxotVOZFbW0xedt8Rsjw-CtlFSmcEfVkR6IFZTV2wpaSWLtSokXlfeTlz9M8KFoz0Zhvq4alNIpxDbH0oqgm20JTQ_RuV42HaGbJk1Uu6ldrpBQZW2IlXbTvmcE1S5X4ggsr9atZxUP-jWA5N63otwY5_dQlcVKeQu-0elU_XBfWMXRgUFeaz3ZchzpCNjAK-wHxMQnoS000o3eMSwQyGgEprb6qJvMmZEzuD1P2JDFyd7FadNo1dKA7mmOnwu-XFPlvjFb9hzGjh53kppOUt0JtKTQyT20E8Z0lkzRzsHn-fLLoAIdmWKv_Yt0MliGcHjrWf7mKt1wGowntHiMHrklDD6w0HuCJqp6ih6OhC2fIXkdhNiCEA8gxBaEGECIBxD-vrzq4YdH8INz7OCHB_g9R98P54tPR76r5-ELeO_WF_tE5IwI_QsIk5rnGOVZGHAuQx7mkSTwYbjm7VBBMqoILP4llZxJuJ8z8gJNq7pSLxGGdQVLZMiSnLIoE3zG8lwQEQYBy_I447so7D5dKpzYva65UqZbzLaLPvY3razWy_bLWWeT1Lmr1g1NAWXbb3zfWTCFwVzv0PFK1WdNGuh4TTSjSfDqbs_yGj0Y_jFv0BRspd6i-2LTFs36nYPhH9HOzHY
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimentally+fitted+biodynamic+models+for+pedestrian%E2%80%93structure+interaction+in+walking+situations&rft.jtitle=Mechanical+systems+and+signal+processing&rft.au=Toso%2C+Marcelo+Andr%C3%A9&rft.au=Gomes%2C+Herbert+Martins&rft.au=da+Silva%2C+Felipe+Tavares&rft.au=Pimentel%2C+Roberto+Leal&rft.date=2016-05-01&rft.issn=0888-3270&rft.volume=72-73&rft.spage=590&rft.epage=606&rft_id=info:doi/10.1016%2Fj.ymssp.2015.10.029&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ymssp_2015_10_029
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-3270&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-3270&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-3270&client=summon