A Novel Context-Aware Douglas–Peucker (CADP) Trajectory Compression Method
Most traditional trajectory compression methods, such as the Douglas–Peucker (DP) method, consider only spatial characteristics and disregard contextual factors, including environmental context. This paper proposes a new way of trajectory formulation by considering all spatial, internal, environment...
Saved in:
| Published in: | ISPRS international journal of geo-information Vol. 14; no. 2; p. 58 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Basel
MDPI AG
01.02.2025
|
| Subjects: | |
| ISSN: | 2220-9964, 2220-9964 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Most traditional trajectory compression methods, such as the Douglas–Peucker (DP) method, consider only spatial characteristics and disregard contextual factors, including environmental context. This paper proposes a new way of trajectory formulation by considering all spatial, internal, environmental, and semantic contexts to capture all contextual aspects of moving objects. Then, we propose the Context-Aware Douglas–Peucker (CADP) method for trajectory compression. These facts are confirmed by experiments with real AIS data showing that, while CADP preserves the same computational efficiency of DP (i.e., at O(n2)), it outperforms DP and two-stage Context-Aware Piecewise Linear Segmentation (two-stage CPLS) methods in preserving agent movement behavior, obtaining compressed trajectories that are closer to the original ones and that are much more useful in base analyses such as trajectory prediction. Specifically, the LSTM-based models trained on CADP-compressed trajectories have relatively lower RMSEs than others compressed by either DP or two-stage CPLS. Therefore, CADP is more scalable and efficient, thus making it more practical for large-scale engineering applications; with the improvement in trajectory analysis accuracy achieved by the suggested method, a wide range of critical engineering applications can be potentially improved, such as collision avoidance and route planning. Future work will focus on spatial auto-correlation and uncertainty to extend the robustness and applicability of the approach. |
|---|---|
| AbstractList | Most traditional trajectory compression methods, such as the Douglas–Peucker (DP) method, consider only spatial characteristics and disregard contextual factors, including environmental context. This paper proposes a new way of trajectory formulation by considering all spatial, internal, environmental, and semantic contexts to capture all contextual aspects of moving objects. Then, we propose the Context-Aware Douglas–Peucker (CADP) method for trajectory compression. These facts are confirmed by experiments with real AIS data showing that, while CADP preserves the same computational efficiency of DP (i.e., at O(n2)), it outperforms DP and two-stage Context-Aware Piecewise Linear Segmentation (two-stage CPLS) methods in preserving agent movement behavior, obtaining compressed trajectories that are closer to the original ones and that are much more useful in base analyses such as trajectory prediction. Specifically, the LSTM-based models trained on CADP-compressed trajectories have relatively lower RMSEs than others compressed by either DP or two-stage CPLS. Therefore, CADP is more scalable and efficient, thus making it more practical for large-scale engineering applications; with the improvement in trajectory analysis accuracy achieved by the suggested method, a wide range of critical engineering applications can be potentially improved, such as collision avoidance and route planning. Future work will focus on spatial auto-correlation and uncertainty to extend the robustness and applicability of the approach. Most traditional trajectory compression methods, such as the Douglas–Peucker (DP) method, consider only spatial characteristics and disregard contextual factors, including environmental context. This paper proposes a new way of trajectory formulation by considering all spatial, internal, environmental, and semantic contexts to capture all contextual aspects of moving objects. Then, we propose the Context-Aware Douglas–Peucker (CADP) method for trajectory compression. These facts are confirmed by experiments with real AIS data showing that, while CADP preserves the same computational efficiency of DP (i.e., at O(n [sup.2])), it outperforms DP and two-stage Context-Aware Piecewise Linear Segmentation (two-stage CPLS) methods in preserving agent movement behavior, obtaining compressed trajectories that are closer to the original ones and that are much more useful in base analyses such as trajectory prediction. Specifically, the LSTM-based models trained on CADP-compressed trajectories have relatively lower RMSEs than others compressed by either DP or two-stage CPLS. Therefore, CADP is more scalable and efficient, thus making it more practical for large-scale engineering applications; with the improvement in trajectory analysis accuracy achieved by the suggested method, a wide range of critical engineering applications can be potentially improved, such as collision avoidance and route planning. Future work will focus on spatial auto-correlation and uncertainty to extend the robustness and applicability of the approach. |
| Audience | Academic |
| Author | Hooshangi, Navid Mahdizadeh Gharakhanlou, Navid Mehri, Saeed |
| Author_xml | – sequence: 1 givenname: Saeed orcidid: 0000-0002-4423-308X surname: Mehri fullname: Mehri, Saeed – sequence: 2 givenname: Navid surname: Hooshangi fullname: Hooshangi, Navid – sequence: 3 givenname: Navid orcidid: 0000-0001-6762-9012 surname: Mahdizadeh Gharakhanlou fullname: Mahdizadeh Gharakhanlou, Navid |
| BookMark | eNptkctuFDEQRVsoSISQHR_QEhuQ6OBH-7VsTYBEGiCLsLb8qB7c9LQH2xPIjn_gD_MlGAakCOFa2Crdc-Wq-7g5WuICTfMUozNKFXoVpk3APSIIMfmgOSaEoE4p3h_dez9qTnOeUD0KU9mj42Y9tO_jDcztKi4FvpVu-GoStOdxv5lNvvv-4wr27jOk9vlqOL960V4nM4ErMd1WYrtLkHOIS_sOyqfonzQPRzNnOP1znzQf37y-Xl106w9vL1fDunM94qWzjgMozihjnDtD7GgstR48ZlQZ2UvWY8pIj0bDrRDAJRBjuPAMmLRW0JPm8uDro5n0LoWtSbc6mqB_N2LaaJNKcDNoh6yU3HnlMOqVoBacIGJ0zmGP5eir17OD1y7FL3vIRU9xn5b6fU2xwHVTnLKqOjuoNqaahmWMJRlXy8M2uBrEGGp_kEQpQRBFFSAHwKWYc4JRu1BMqbuqYJg1RvpXavp-ahV6-Q_0d7b_yn8CnlSaPQ |
| CitedBy_id | crossref_primary_10_1016_j_engappai_2025_112063 |
| Cites_doi | 10.1109/ACCESS.2021.3092948 10.1038/s41598-024-71779-4 10.1007/978-3-642-37583-5 10.14778/2536206.2536221 10.1186/2051-3933-1-3 10.1007/978-1-4614-1629-6 10.1007/s10489-021-02757-w 10.1177/0278364911406761 10.1007/s00778-005-0163-7 10.1016/j.procs.2016.08.106 10.1007/978-3-540-24741-8_44 10.1109/TAES.2021.3096873 10.23919/JCC.2020.05.011 10.1080/20464177.2019.1665258 10.1016/j.oceaneng.2022.111771 10.1016/j.datak.2007.10.008 10.1109/ACCESS.2019.2947111 10.1016/j.oceaneng.2024.119189 10.3390/s20164571 10.7717/peerj-cs.1112 10.3138/FM57-6770-U75U-7727 10.3390/s16091510 10.5623/cig2015-306 10.1016/j.knosys.2019.03.006 10.1142/9789812565402_0001 10.1080/13658816.2016.1224887 10.3390/app9081711 10.1007/s11042-020-09471-8 10.14778/3357377.3357380 10.1109/70.508439 10.1016/j.oceaneng.2023.114916 10.14778/3213880.3213885 10.1109/ACCESS.2021.3066463 10.1017/CBO9780511778025 10.1016/j.trc.2024.104648 10.3390/s18124211 10.1016/j.eswa.2012.05.060 10.1109/ICDE60146.2024.00334 10.1109/TKDE.2011.200 10.1016/j.compenvurbsys.2018.05.004 10.3390/ijgi13060212 10.52547/gisj.13.4.89 10.1109/ACCESS.2020.3001934 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Published by MDPI on behalf of the International Society for Photogrammetry and Remote Sensing. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Published by MDPI on behalf of the International Society for Photogrammetry and Remote Sensing. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7SC 7UA 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 H96 HCIFZ JQ2 KR7 L.G L6V L7M L~C L~D M7S P5Z P62 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
| DOI | 10.3390/ijgi14020058 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Water Resources Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central ProQuest Central UK/Ireland ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC ProQuest Central ProQuest Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection ProQuest Computer Science Collection Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Visual Arts |
| EISSN | 2220-9964 |
| ExternalDocumentID | oai_doaj_org_article_c0b886cd9c104973bec727fccc1d18fd A829972030 10_3390_ijgi14020058 |
| GroupedDBID | 5VS 8FE 8FG 8FH AADQD AAFWJ AAHBH AAYXX ABJCF ADBBV ADMLS AENEX AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION GROUPED_DOAJ HCIFZ IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PQGLB PROAC PTHSS ZBA 7SC 7UA 8FD ABUWG AZQEC C1K DWQXO F1W FR3 H96 JQ2 KR7 L.G L7M L~C L~D PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c406t-bc6ee96535566ca2bfab3bded1539a84854135240fa6b77e68e2aa67d5e58bb73 |
| IEDL.DBID | P5Z |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001430411400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2220-9964 |
| IngestDate | Tue Oct 14 18:45:00 EDT 2025 Fri Jul 25 12:16:06 EDT 2025 Tue Nov 04 18:12:13 EST 2025 Sat Nov 29 07:14:11 EST 2025 Tue Nov 18 22:16:42 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c406t-bc6ee96535566ca2bfab3bded1539a84854135240fa6b77e68e2aa67d5e58bb73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-4423-308X 0000-0001-6762-9012 |
| OpenAccessLink | https://www.proquest.com/docview/3171009635?pq-origsite=%requestingapplication% |
| PQID | 3171009635 |
| PQPubID | 2032387 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_c0b886cd9c104973bec727fccc1d18fd proquest_journals_3171009635 gale_infotracacademiconefile_A829972030 crossref_citationtrail_10_3390_ijgi14020058 crossref_primary_10_3390_ijgi14020058 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-02-01 |
| PublicationDateYYYYMMDD | 2025-02-01 |
| PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | ISPRS international journal of geo-information |
| PublicationYear | 2025 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Du (ref_56) 2022; 258 ref_14 Buchin (ref_24) 2014; 2014 ref_13 Long (ref_22) 2013; 6 ref_55 ref_54 ref_53 ref_51 ref_18 Long (ref_28) 2018; 71 Makris (ref_10) 2021; 9 ref_17 Spaccapietra (ref_31) 2008; 65 Cao (ref_15) 2006; 15 Niu (ref_40) 2022; 52 Tavenard (ref_44) 2020; 21 Tang (ref_46) 2019; 21 Vaughan (ref_35) 2016; 96 ref_20 Zhong (ref_11) 2022; 8 ref_29 ref_26 Sun (ref_2) 2020; 8 Gao (ref_21) 2019; 174 Douglas (ref_16) 1973; 10 Kavraki (ref_50) 1996; 12 Capobianco (ref_45) 2021; 57 Dodge (ref_27) 2013; 1 ref_36 ref_34 ref_33 Zheng (ref_30) 2015; 6 ref_37 Alesheikh (ref_48) 2022; 13 Liu (ref_6) 2019; 7 Mehri (ref_42) 2023; 282 Mehri (ref_8) 2021; 9 Zhang (ref_1) 2018; 11 Bokde (ref_39) 2021; 80 Ahearn (ref_25) 2017; 31 Maisondieu (ref_43) 2013; 3–4 Wang (ref_38) 2019; 13 ref_47 Guo (ref_19) 2024; 312 Zhao (ref_4) 2020; 17 Li (ref_23) 2024; 163 ref_3 Tienaah (ref_12) 2015; 69 ref_49 Karaman (ref_52) 2011; 30 (ref_9) 2012; 39 Graser (ref_41) 2019; 1 ref_5 ref_7 Yuan (ref_32) 2013; 25 |
| References_xml | – volume: 21 start-page: 4686 year: 2020 ident: ref_44 article-title: Tslearn, a machine learning toolkit for time series data publication-title: J. Mach. Learn. Res. – volume: 9 start-page: 92516 year: 2021 ident: ref_10 article-title: A Comparison of Trajectory Compression Algorithms Over AIS Data publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3092948 – ident: ref_49 – ident: ref_55 – ident: ref_18 doi: 10.1038/s41598-024-71779-4 – ident: ref_26 – ident: ref_51 – ident: ref_29 doi: 10.1007/978-3-642-37583-5 – volume: 6 start-page: 949 year: 2013 ident: ref_22 article-title: Direction-preserving trajectory simplification publication-title: Proc. VLDB Endow. doi: 10.14778/2536206.2536221 – volume: 1 start-page: 3 year: 2013 ident: ref_27 article-title: The environmental-data automated track annotation (Env-DATA) system: Linking animal tracks with environmental data publication-title: Mov. Ecol. doi: 10.1186/2051-3933-1-3 – ident: ref_13 doi: 10.1007/978-1-4614-1629-6 – volume: 52 start-page: 17042 year: 2022 ident: ref_40 article-title: Parallel grid-based density peak clustering of big trajectory data publication-title: Appl. Intell. doi: 10.1007/s10489-021-02757-w – volume: 1 start-page: 54 year: 2019 ident: ref_41 article-title: Movingpandas: Efficient structures for movement data in python publication-title: GI_Forum—J. Geogr. Inf. Sci. – volume: 30 start-page: 846 year: 2011 ident: ref_52 article-title: Sampling-based algorithms for optimal motion planning publication-title: Int. J. Robot. Res. doi: 10.1177/0278364911406761 – volume: 15 start-page: 211 year: 2006 ident: ref_15 article-title: Spatio-temporal data reduction with deterministic error bounds publication-title: VLDB J.—Int. J. Very Large Data Bases doi: 10.1007/s00778-005-0163-7 – volume: 96 start-page: 465 year: 2016 ident: ref_35 article-title: Comparing and combining time series trajectories using dynamic time warping publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2016.08.106 – ident: ref_17 doi: 10.1007/978-3-540-24741-8_44 – volume: 57 start-page: 4329 year: 2021 ident: ref_45 article-title: Deep Learning Methods for Vessel Trajectory Prediction Based on Recurrent Neural Networks publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/TAES.2021.3096873 – volume: 17 start-page: 119 year: 2020 ident: ref_4 article-title: CLEAN: Frequent pattern-based trajectory compression and computation on road networks publication-title: China Commun. doi: 10.23919/JCC.2020.05.011 – volume: 21 start-page: 136 year: 2019 ident: ref_46 article-title: A model for vessel trajectory prediction based on long short-term memory neural network publication-title: J. Mar. Eng. Technol. doi: 10.1080/20464177.2019.1665258 – volume: 258 start-page: 111771 year: 2022 ident: ref_56 article-title: Energy saving method for ship weather routing optimization publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2022.111771 – volume: 65 start-page: 126 year: 2008 ident: ref_31 article-title: A conceptual view on trajectories publication-title: Data Knowl. Eng. doi: 10.1016/j.datak.2007.10.008 – volume: 7 start-page: 150677 year: 2019 ident: ref_6 article-title: Adaptive Douglas-Peucker Algorithm with Automatic Thresholding for AIS-Based Vessel Trajectory Compression publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2947111 – volume: 312 start-page: 119189 year: 2024 ident: ref_19 article-title: An adaptive trajectory compression and feature preservation method for maritime traffic analysis publication-title: Ocean. Eng. doi: 10.1016/j.oceaneng.2024.119189 – ident: ref_33 doi: 10.3390/s20164571 – volume: 8 start-page: e1112 year: 2022 ident: ref_11 article-title: A trajectory data compression algorithm based on spatio-temporal characteristics publication-title: PeerJ Comput. Sci. doi: 10.7717/peerj-cs.1112 – volume: 10 start-page: 112 year: 1973 ident: ref_16 article-title: Algorithms for the reduction of the number of points required to represent a digitized line or its caricature publication-title: Cartographica doi: 10.3138/FM57-6770-U75U-7727 – ident: ref_5 doi: 10.3390/s16091510 – volume: 69 start-page: 327 year: 2015 ident: ref_12 article-title: Contextual Douglas-Peucker simplification publication-title: Geomatica doi: 10.5623/cig2015-306 – volume: 174 start-page: 177 year: 2019 ident: ref_21 article-title: Semantic trajectory compression via multi-resolution synchronization-based clustering publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2019.03.006 – ident: ref_14 doi: 10.1142/9789812565402_0001 – volume: 31 start-page: 867 year: 2017 ident: ref_25 article-title: A context-sensitive correlated random walk: A new simulation model for movement publication-title: Int. J. Geogr. Inf. Sci. doi: 10.1080/13658816.2016.1224887 – ident: ref_37 doi: 10.3390/app9081711 – volume: 80 start-page: 2997 year: 2021 ident: ref_39 article-title: An empirical estimation for time and memory algorithm complexities: Newly developed R package publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-020-09471-8 – ident: ref_7 – ident: ref_34 – volume: 13 start-page: 29 year: 2019 ident: ref_38 article-title: Fast large-scale trajectory clustering publication-title: Proc. VLDB Endow. doi: 10.14778/3357377.3357380 – volume: 12 start-page: 566 year: 1996 ident: ref_50 article-title: Probabilistic roadmaps for path planning in high-dimensional configuration spaces publication-title: IEEE Trans. Robot. Autom. doi: 10.1109/70.508439 – volume: 282 start-page: 114916 year: 2023 ident: ref_42 article-title: A context-aware approach for vessels’ trajectory prediction publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2023.114916 – volume: 11 start-page: 934 year: 2018 ident: ref_1 article-title: Trajectory simplification: An experimental study and quality analysis publication-title: Proc. VLDB Endow. doi: 10.14778/3213880.3213885 – volume: 9 start-page: 45600 year: 2021 ident: ref_8 article-title: A Contextual Hybrid Model for Vessel Movement Prediction publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3066463 – ident: ref_53 doi: 10.1017/CBO9780511778025 – volume: 163 start-page: 104648 year: 2024 ident: ref_23 article-title: Incorporation of adaptive compression into a GPU parallel computing framework for analyzing large-scale vessel trajectories publication-title: Transp. Res. Part C Emerg. Technol. doi: 10.1016/j.trc.2024.104648 – volume: 2014 start-page: 101 year: 2014 ident: ref_24 article-title: Similarity of trajectories taking into account geographic context publication-title: J. Spat. Inf. Sci. – ident: ref_47 doi: 10.3390/s18124211 – volume: 39 start-page: 13426 year: 2012 ident: ref_9 article-title: Machine learning for vessel trajectories using compression, alignments and domain knowledge publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2012.05.060 – ident: ref_3 doi: 10.1109/ICDE60146.2024.00334 – volume: 25 start-page: 220 year: 2013 ident: ref_32 article-title: T-Drive: Enhancing Driving Directions with Taxi Drivers’ Intelligence publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2011.200 – volume: 71 start-page: 131 year: 2018 ident: ref_28 article-title: Weather effects on human mobility: A study using multi-channel sequence analysis publication-title: Comput. Environ. Urban Syst. doi: 10.1016/j.compenvurbsys.2018.05.004 – ident: ref_54 – ident: ref_20 doi: 10.3390/ijgi13060212 – volume: 3–4 start-page: e40 year: 2013 ident: ref_43 article-title: A suitable metocean hindcast database for the design of Marine energy converters publication-title: Int. J. Mar. Energy – volume: 13 start-page: 89 year: 2022 ident: ref_48 article-title: Finding Optimal Contextual Parameters for Real-Time Vessel Position Prediction Using Deep Learning publication-title: Iran. J. Remote Sens. GIS doi: 10.52547/gisj.13.4.89 – ident: ref_36 – volume: 8 start-page: 109350 year: 2020 ident: ref_2 article-title: Vessel AIS Trajectory Online Compression Based on Scan-Pick-Move Algorithm Added Sliding Window publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3001934 – volume: 6 start-page: 29 year: 2015 ident: ref_30 article-title: Trajectory data mining: An overview publication-title: ACM Trans. Intell. Syst. Technol. (TIST) |
| SSID | ssj0000913840 |
| Score | 2.3294656 |
| Snippet | Most traditional trajectory compression methods, such as the Douglas–Peucker (DP) method, consider only spatial characteristics and disregard contextual... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 58 |
| SubjectTerms | Algorithms Collision avoidance Compression Context context awareness data compression Datasets Douglas–Peucker Efficiency Methods Performance evaluation prediction Route planning Semantics trajectory Trajectory analysis Velocity |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEB5EBPUgPrG-yEFRkcXuZpNNjlUUD1p6UPEW8lqtSJW2VnrzP_gP_SVOsqv0Il68LgObnUzmm2-ZzAewm2mNKKxN4kvWTHLmaCJwnxOLWJRnObUpN1Fsomi3xd2d7ExIfYWesGo8cOW4Y9s0QnDrpEXiIAuK70TILa21qUtF6UL2bRZygkzFHCxTitSl6nSnyOuPu4_33TSQpWZQd5_AoDiq_7eEHFHmfBEW6vKQtKplLcGU7y3DbK1U_jBehvnb7uC1shiswGWLtJ9H_onEIVPIYVtvuu9JXRV_vn90fOybIAfo8c4hQWR6jL_pxyQkgqoHtkeuooz0Ktycn12fXiS1PkJiEYaHibHce8kZlgycW52ZUhtqnHeYxaQWuWCIUAwhu9TcFIXnwuPW8MIxz4QxBV2D6d5zz68DwUc-aKRrlwsskLRk1nGfa0FLJzVjDTj69piy9fDwoGHxpJBEBP-qSf82YO_H-qUamvGL3Ulw_o9NGHUdH2AAqDoA1F8B0ID9sHUqHEhcktX1vQL8sDDaSrVEFi4HYzJrwNb37qr6pA4U1k9p4HGUbfzHajZhLgsKwbGvewumh_1Xvw0zdjTsDvo7MUi_AEeB7JA priority: 102 providerName: Directory of Open Access Journals |
| Title | A Novel Context-Aware Douglas–Peucker (CADP) Trajectory Compression Method |
| URI | https://www.proquest.com/docview/3171009635 https://doaj.org/article/c0b886cd9c104973bec727fccc1d18fd |
| Volume | 14 |
| WOSCitedRecordID | wos001430411400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2220-9964 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913840 issn: 2220-9964 databaseCode: DOA dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2220-9964 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913840 issn: 2220-9964 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2220-9964 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913840 issn: 2220-9964 databaseCode: P5Z dateStart: 20120301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 2220-9964 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913840 issn: 2220-9964 databaseCode: PCBAR dateStart: 20120301 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2220-9964 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913840 issn: 2220-9964 databaseCode: M7S dateStart: 20120301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2220-9964 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913840 issn: 2220-9964 databaseCode: BENPR dateStart: 20120301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2220-9964 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913840 issn: 2220-9964 databaseCode: PIMPY dateStart: 20120301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BiwQceBRQF8rKBxAgFHXzsOOc0BZtBRJdRbxUuFh-pWxV7babbVEviP_AP-SXMON4l17KhUsOsQ9OPnu-mclkPoAnmdbIwtokvuGDpOAuTyTinFjkoiIrcpsKE8QmyvFY7u9XdUy4tbGscmkTg6F2M0s58m3kuZT87Zy_Oj5JSDWKvq5GCY2rsJ5m6Ovjfq7511WOhXpeYgDT1bvnGN1vTw4PJimFTAPSeL_ARKFh_2VmOXDN7u3_XeUduBW9TDbstsVduOKnG3A9Cp5_O9-Am58n7Wk3o70H74ZsPDvzRyz0qsJQePhdzz2LzvXvn79qH8ov2HMErn7BkOAOQ7b_nJE96Uppp2wvqFHfh0-7o4-v3yRRZiGxyOaLxFjhfSU4eh5CWJ2ZRpvcOO_QGFZaFpIj0XFk_kYLU5ZeSI8Ii9Jxz6UxZf4A1qazqd8Ehrc8Sa1rV0j0s3TFrRO-0DJvXKU578HL5StXNvYgJymMI4WxCAGkLgLUg6er2cdd741L5u0Qeqs51DE73JjND1Q8gMoOjJTCuspiAFqVOe5ddN0aa23qUtm4Hjwj7BWda1yS1fH3BHww6pClhjKjf4zRJvZga4m9ige-VX-Bf_jv4UdwIyMJ4VD4vQVri_mpfwzX7Nli0s77sL4zGtfv-yE10KdC1A90_THqh52N4_XbvfrLH02a_88 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qBamw4FFADBTwggoQijp52HEWCA2PqlWno1kUVHVj_EqZqpopk2mr2fEP_AcfxZdwr5MM3ZRdF2wTK4rj43N84-t7AF4kWqMKaxP5knejjLs0kjjOkUUtypIstbEwwWwiHwzk_n4xXIJf7VkYSqtsOTEQtZtY-ke-gToX03o75e9OvkfkGkW7q62FRg2LHT8_x5Cterv9Ecd3PUk2P-192IoaV4HIonjNImOF94XgKLRCWJ2YUpvUOO9w7hdaZpIjr3MUulILk-deSI8dErnjnktj8hSfew2u4zKiICIY8oPFPx2qsYkBU51fn6ZFd2N0dDiKKUTrkqf8BeULBgGXyUDQts07_9tXuQu3m1U069WwvwdLfrwKK42h-7f5Ktz6MqpO6xbVfej32GBy5o9ZqMWFoX7vXE89a4KH3z9-Dn1IL2GvEJjD1wwF_CjsZswZ8WWdKjxmu8Ft-wF8vpKuPYTl8WTsHwHDS56s5LXLJAJAF9w64TMt09IVmvMOvGmHWNmmxjpZfRwrjLUIEOoiIDqwvmh9UtcWuaTde0LLog1VBA8XJtND1RCMsl0jpbCusBhgF3mKcxOXpqW1NnaxLF0HXhLWFPEWvpLVzfEL7BhVAFM9mdAZauT8Dqy1WFMNoVXqL9Ae__v2c1jZ2tvtq_72YOcJ3EzILjkkua_B8mx66p_CDXs2G1XTZ2HuMPh61bD8A6xAV0o |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbhMxEB6VFFE48FNABAr4QAUIrZL9sdd7QChQIqK20R4AlZPx37apqqRk05bceAfehsfhSRh7ndBLufXA1Wut1uvP883Y4_kAniVSIgtLFdmKdqOMmjTiOM-RRi7KkizVMVNebCIfDvneXlGuwK_FXRiXVrmwid5Qm4l2e-Qd5LnY-dsp7VQhLaLc6r85_hY5BSl30rqQ02ggsm3nZxi-1a8HWzjXm0nSf__x3YcoKAxEGolsFinNrC0YRdJlTMtEVVKlyliDdqCQPOMUbTxF0qskU3luGbc4OJYbailXKk_xvVdgFV3yJGvBajnYLb8sd3hcxU0Mn5ps-zQtup3R4f4odgFb1ynMn-NBLxdwESl4puvf-p__0W24Gfxr0msWxB1YseN1WAtS7wfzdbjxeVSfND3qu7DTI8PJqT0ivkrX91nUO5NTS0JY8fvHz9L6xBPyAiFbviRI7Yf-nGNOnCVtkojHZNfrcN-DT5cytPvQGk_G9gEQbLJOZF6ajKOHKQuqDbOZ5GllCklpG14tplvoUH3diYAcCYzCHDjEeXC0YXPZ-7ipOnJBv7cOOcs-rla4b5hM90UwPUJ3FedMm0Jj6F3kKa5adForrXVsYl6ZNjx3uBPOouEnaRkuZuDAXG0w0eOJu12NbNCGjQXuRDB1tfgLuof_fvwUriEaxc5guP0IridOR9lnv29AazY9sY_hqj6djerpk7CQCHy9bFz-AQznYXE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Context-Aware+Douglas%E2%80%93Peucker+Trajectory+Compression+Method&rft.jtitle=ISPRS+international+journal+of+geo-information&rft.au=Mehri%2C+Saeed&rft.au=Hooshangi%2C+Navid&rft.au=Mahdizadeh+Gharakhanlou%2C+Navid&rft.date=2025-02-01&rft.pub=MDPI+AG&rft.issn=2220-9964&rft.eissn=2220-9964&rft.volume=14&rft.issue=2&rft_id=info:doi/10.3390%2Fijgi14020058&rft.externalDocID=A829972030 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2220-9964&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2220-9964&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2220-9964&client=summon |