A Novel Context-Aware Douglas–Peucker (CADP) Trajectory Compression Method

Most traditional trajectory compression methods, such as the Douglas–Peucker (DP) method, consider only spatial characteristics and disregard contextual factors, including environmental context. This paper proposes a new way of trajectory formulation by considering all spatial, internal, environment...

Full description

Saved in:
Bibliographic Details
Published in:ISPRS international journal of geo-information Vol. 14; no. 2; p. 58
Main Authors: Mehri, Saeed, Hooshangi, Navid, Mahdizadeh Gharakhanlou, Navid
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.02.2025
Subjects:
ISSN:2220-9964, 2220-9964
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Most traditional trajectory compression methods, such as the Douglas–Peucker (DP) method, consider only spatial characteristics and disregard contextual factors, including environmental context. This paper proposes a new way of trajectory formulation by considering all spatial, internal, environmental, and semantic contexts to capture all contextual aspects of moving objects. Then, we propose the Context-Aware Douglas–Peucker (CADP) method for trajectory compression. These facts are confirmed by experiments with real AIS data showing that, while CADP preserves the same computational efficiency of DP (i.e., at O(n2)), it outperforms DP and two-stage Context-Aware Piecewise Linear Segmentation (two-stage CPLS) methods in preserving agent movement behavior, obtaining compressed trajectories that are closer to the original ones and that are much more useful in base analyses such as trajectory prediction. Specifically, the LSTM-based models trained on CADP-compressed trajectories have relatively lower RMSEs than others compressed by either DP or two-stage CPLS. Therefore, CADP is more scalable and efficient, thus making it more practical for large-scale engineering applications; with the improvement in trajectory analysis accuracy achieved by the suggested method, a wide range of critical engineering applications can be potentially improved, such as collision avoidance and route planning. Future work will focus on spatial auto-correlation and uncertainty to extend the robustness and applicability of the approach.
AbstractList Most traditional trajectory compression methods, such as the Douglas–Peucker (DP) method, consider only spatial characteristics and disregard contextual factors, including environmental context. This paper proposes a new way of trajectory formulation by considering all spatial, internal, environmental, and semantic contexts to capture all contextual aspects of moving objects. Then, we propose the Context-Aware Douglas–Peucker (CADP) method for trajectory compression. These facts are confirmed by experiments with real AIS data showing that, while CADP preserves the same computational efficiency of DP (i.e., at O(n2)), it outperforms DP and two-stage Context-Aware Piecewise Linear Segmentation (two-stage CPLS) methods in preserving agent movement behavior, obtaining compressed trajectories that are closer to the original ones and that are much more useful in base analyses such as trajectory prediction. Specifically, the LSTM-based models trained on CADP-compressed trajectories have relatively lower RMSEs than others compressed by either DP or two-stage CPLS. Therefore, CADP is more scalable and efficient, thus making it more practical for large-scale engineering applications; with the improvement in trajectory analysis accuracy achieved by the suggested method, a wide range of critical engineering applications can be potentially improved, such as collision avoidance and route planning. Future work will focus on spatial auto-correlation and uncertainty to extend the robustness and applicability of the approach.
Most traditional trajectory compression methods, such as the Douglas–Peucker (DP) method, consider only spatial characteristics and disregard contextual factors, including environmental context. This paper proposes a new way of trajectory formulation by considering all spatial, internal, environmental, and semantic contexts to capture all contextual aspects of moving objects. Then, we propose the Context-Aware Douglas–Peucker (CADP) method for trajectory compression. These facts are confirmed by experiments with real AIS data showing that, while CADP preserves the same computational efficiency of DP (i.e., at O(n [sup.2])), it outperforms DP and two-stage Context-Aware Piecewise Linear Segmentation (two-stage CPLS) methods in preserving agent movement behavior, obtaining compressed trajectories that are closer to the original ones and that are much more useful in base analyses such as trajectory prediction. Specifically, the LSTM-based models trained on CADP-compressed trajectories have relatively lower RMSEs than others compressed by either DP or two-stage CPLS. Therefore, CADP is more scalable and efficient, thus making it more practical for large-scale engineering applications; with the improvement in trajectory analysis accuracy achieved by the suggested method, a wide range of critical engineering applications can be potentially improved, such as collision avoidance and route planning. Future work will focus on spatial auto-correlation and uncertainty to extend the robustness and applicability of the approach.
Audience Academic
Author Hooshangi, Navid
Mahdizadeh Gharakhanlou, Navid
Mehri, Saeed
Author_xml – sequence: 1
  givenname: Saeed
  orcidid: 0000-0002-4423-308X
  surname: Mehri
  fullname: Mehri, Saeed
– sequence: 2
  givenname: Navid
  surname: Hooshangi
  fullname: Hooshangi, Navid
– sequence: 3
  givenname: Navid
  orcidid: 0000-0001-6762-9012
  surname: Mahdizadeh Gharakhanlou
  fullname: Mahdizadeh Gharakhanlou, Navid
BookMark eNptkctuFDEQRVsoSISQHR_QEhuQ6OBH-7VsTYBEGiCLsLb8qB7c9LQH2xPIjn_gD_MlGAakCOFa2Crdc-Wq-7g5WuICTfMUozNKFXoVpk3APSIIMfmgOSaEoE4p3h_dez9qTnOeUD0KU9mj42Y9tO_jDcztKi4FvpVu-GoStOdxv5lNvvv-4wr27jOk9vlqOL960V4nM4ErMd1WYrtLkHOIS_sOyqfonzQPRzNnOP1znzQf37y-Xl106w9vL1fDunM94qWzjgMozihjnDtD7GgstR48ZlQZ2UvWY8pIj0bDrRDAJRBjuPAMmLRW0JPm8uDro5n0LoWtSbc6mqB_N2LaaJNKcDNoh6yU3HnlMOqVoBacIGJ0zmGP5eir17OD1y7FL3vIRU9xn5b6fU2xwHVTnLKqOjuoNqaahmWMJRlXy8M2uBrEGGp_kEQpQRBFFSAHwKWYc4JRu1BMqbuqYJg1RvpXavp-ahV6-Q_0d7b_yn8CnlSaPQ
CitedBy_id crossref_primary_10_1016_j_engappai_2025_112063
Cites_doi 10.1109/ACCESS.2021.3092948
10.1038/s41598-024-71779-4
10.1007/978-3-642-37583-5
10.14778/2536206.2536221
10.1186/2051-3933-1-3
10.1007/978-1-4614-1629-6
10.1007/s10489-021-02757-w
10.1177/0278364911406761
10.1007/s00778-005-0163-7
10.1016/j.procs.2016.08.106
10.1007/978-3-540-24741-8_44
10.1109/TAES.2021.3096873
10.23919/JCC.2020.05.011
10.1080/20464177.2019.1665258
10.1016/j.oceaneng.2022.111771
10.1016/j.datak.2007.10.008
10.1109/ACCESS.2019.2947111
10.1016/j.oceaneng.2024.119189
10.3390/s20164571
10.7717/peerj-cs.1112
10.3138/FM57-6770-U75U-7727
10.3390/s16091510
10.5623/cig2015-306
10.1016/j.knosys.2019.03.006
10.1142/9789812565402_0001
10.1080/13658816.2016.1224887
10.3390/app9081711
10.1007/s11042-020-09471-8
10.14778/3357377.3357380
10.1109/70.508439
10.1016/j.oceaneng.2023.114916
10.14778/3213880.3213885
10.1109/ACCESS.2021.3066463
10.1017/CBO9780511778025
10.1016/j.trc.2024.104648
10.3390/s18124211
10.1016/j.eswa.2012.05.060
10.1109/ICDE60146.2024.00334
10.1109/TKDE.2011.200
10.1016/j.compenvurbsys.2018.05.004
10.3390/ijgi13060212
10.52547/gisj.13.4.89
10.1109/ACCESS.2020.3001934
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Published by MDPI on behalf of the International Society for Photogrammetry and Remote Sensing. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Published by MDPI on behalf of the International Society for Photogrammetry and Remote Sensing. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SC
7UA
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
H96
HCIFZ
JQ2
KR7
L.G
L6V
L7M
L~C
L~D
M7S
P5Z
P62
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.3390/ijgi14020058
DatabaseName CrossRef
Computer and Information Systems Abstracts
Water Resources Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central
ProQuest Central UK/Ireland
ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
ProQuest Computer Science Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Visual Arts
EISSN 2220-9964
ExternalDocumentID oai_doaj_org_article_c0b886cd9c104973bec727fccc1d18fd
A829972030
10_3390_ijgi14020058
GroupedDBID 5VS
8FE
8FG
8FH
AADQD
AAFWJ
AAHBH
AAYXX
ABJCF
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
ZBA
7SC
7UA
8FD
ABUWG
AZQEC
C1K
DWQXO
F1W
FR3
H96
JQ2
KR7
L.G
L7M
L~C
L~D
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c406t-bc6ee96535566ca2bfab3bded1539a84854135240fa6b77e68e2aa67d5e58bb73
IEDL.DBID P5Z
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001430411400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2220-9964
IngestDate Tue Oct 14 18:45:00 EDT 2025
Fri Jul 25 12:16:06 EDT 2025
Tue Nov 04 18:12:13 EST 2025
Sat Nov 29 07:14:11 EST 2025
Tue Nov 18 22:16:42 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-bc6ee96535566ca2bfab3bded1539a84854135240fa6b77e68e2aa67d5e58bb73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4423-308X
0000-0001-6762-9012
OpenAccessLink https://www.proquest.com/docview/3171009635?pq-origsite=%requestingapplication%
PQID 3171009635
PQPubID 2032387
ParticipantIDs doaj_primary_oai_doaj_org_article_c0b886cd9c104973bec727fccc1d18fd
proquest_journals_3171009635
gale_infotracacademiconefile_A829972030
crossref_citationtrail_10_3390_ijgi14020058
crossref_primary_10_3390_ijgi14020058
PublicationCentury 2000
PublicationDate 2025-02-01
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle ISPRS international journal of geo-information
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Du (ref_56) 2022; 258
ref_14
Buchin (ref_24) 2014; 2014
ref_13
Long (ref_22) 2013; 6
ref_55
ref_54
ref_53
ref_51
ref_18
Long (ref_28) 2018; 71
Makris (ref_10) 2021; 9
ref_17
Spaccapietra (ref_31) 2008; 65
Cao (ref_15) 2006; 15
Niu (ref_40) 2022; 52
Tavenard (ref_44) 2020; 21
Tang (ref_46) 2019; 21
Vaughan (ref_35) 2016; 96
ref_20
Zhong (ref_11) 2022; 8
ref_29
ref_26
Sun (ref_2) 2020; 8
Gao (ref_21) 2019; 174
Douglas (ref_16) 1973; 10
Kavraki (ref_50) 1996; 12
Capobianco (ref_45) 2021; 57
Dodge (ref_27) 2013; 1
ref_36
ref_34
ref_33
Zheng (ref_30) 2015; 6
ref_37
Alesheikh (ref_48) 2022; 13
Liu (ref_6) 2019; 7
Mehri (ref_42) 2023; 282
Mehri (ref_8) 2021; 9
Zhang (ref_1) 2018; 11
Bokde (ref_39) 2021; 80
Ahearn (ref_25) 2017; 31
Maisondieu (ref_43) 2013; 3–4
Wang (ref_38) 2019; 13
ref_47
Guo (ref_19) 2024; 312
Zhao (ref_4) 2020; 17
Li (ref_23) 2024; 163
ref_3
Tienaah (ref_12) 2015; 69
ref_49
Karaman (ref_52) 2011; 30
(ref_9) 2012; 39
Graser (ref_41) 2019; 1
ref_5
ref_7
Yuan (ref_32) 2013; 25
References_xml – volume: 21
  start-page: 4686
  year: 2020
  ident: ref_44
  article-title: Tslearn, a machine learning toolkit for time series data
  publication-title: J. Mach. Learn. Res.
– volume: 9
  start-page: 92516
  year: 2021
  ident: ref_10
  article-title: A Comparison of Trajectory Compression Algorithms Over AIS Data
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3092948
– ident: ref_49
– ident: ref_55
– ident: ref_18
  doi: 10.1038/s41598-024-71779-4
– ident: ref_26
– ident: ref_51
– ident: ref_29
  doi: 10.1007/978-3-642-37583-5
– volume: 6
  start-page: 949
  year: 2013
  ident: ref_22
  article-title: Direction-preserving trajectory simplification
  publication-title: Proc. VLDB Endow.
  doi: 10.14778/2536206.2536221
– volume: 1
  start-page: 3
  year: 2013
  ident: ref_27
  article-title: The environmental-data automated track annotation (Env-DATA) system: Linking animal tracks with environmental data
  publication-title: Mov. Ecol.
  doi: 10.1186/2051-3933-1-3
– ident: ref_13
  doi: 10.1007/978-1-4614-1629-6
– volume: 52
  start-page: 17042
  year: 2022
  ident: ref_40
  article-title: Parallel grid-based density peak clustering of big trajectory data
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-021-02757-w
– volume: 1
  start-page: 54
  year: 2019
  ident: ref_41
  article-title: Movingpandas: Efficient structures for movement data in python
  publication-title: GI_Forum—J. Geogr. Inf. Sci.
– volume: 30
  start-page: 846
  year: 2011
  ident: ref_52
  article-title: Sampling-based algorithms for optimal motion planning
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/0278364911406761
– volume: 15
  start-page: 211
  year: 2006
  ident: ref_15
  article-title: Spatio-temporal data reduction with deterministic error bounds
  publication-title: VLDB J.—Int. J. Very Large Data Bases
  doi: 10.1007/s00778-005-0163-7
– volume: 96
  start-page: 465
  year: 2016
  ident: ref_35
  article-title: Comparing and combining time series trajectories using dynamic time warping
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2016.08.106
– ident: ref_17
  doi: 10.1007/978-3-540-24741-8_44
– volume: 57
  start-page: 4329
  year: 2021
  ident: ref_45
  article-title: Deep Learning Methods for Vessel Trajectory Prediction Based on Recurrent Neural Networks
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/TAES.2021.3096873
– volume: 17
  start-page: 119
  year: 2020
  ident: ref_4
  article-title: CLEAN: Frequent pattern-based trajectory compression and computation on road networks
  publication-title: China Commun.
  doi: 10.23919/JCC.2020.05.011
– volume: 21
  start-page: 136
  year: 2019
  ident: ref_46
  article-title: A model for vessel trajectory prediction based on long short-term memory neural network
  publication-title: J. Mar. Eng. Technol.
  doi: 10.1080/20464177.2019.1665258
– volume: 258
  start-page: 111771
  year: 2022
  ident: ref_56
  article-title: Energy saving method for ship weather routing optimization
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2022.111771
– volume: 65
  start-page: 126
  year: 2008
  ident: ref_31
  article-title: A conceptual view on trajectories
  publication-title: Data Knowl. Eng.
  doi: 10.1016/j.datak.2007.10.008
– volume: 7
  start-page: 150677
  year: 2019
  ident: ref_6
  article-title: Adaptive Douglas-Peucker Algorithm with Automatic Thresholding for AIS-Based Vessel Trajectory Compression
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2947111
– volume: 312
  start-page: 119189
  year: 2024
  ident: ref_19
  article-title: An adaptive trajectory compression and feature preservation method for maritime traffic analysis
  publication-title: Ocean. Eng.
  doi: 10.1016/j.oceaneng.2024.119189
– ident: ref_33
  doi: 10.3390/s20164571
– volume: 8
  start-page: e1112
  year: 2022
  ident: ref_11
  article-title: A trajectory data compression algorithm based on spatio-temporal characteristics
  publication-title: PeerJ Comput. Sci.
  doi: 10.7717/peerj-cs.1112
– volume: 10
  start-page: 112
  year: 1973
  ident: ref_16
  article-title: Algorithms for the reduction of the number of points required to represent a digitized line or its caricature
  publication-title: Cartographica
  doi: 10.3138/FM57-6770-U75U-7727
– ident: ref_5
  doi: 10.3390/s16091510
– volume: 69
  start-page: 327
  year: 2015
  ident: ref_12
  article-title: Contextual Douglas-Peucker simplification
  publication-title: Geomatica
  doi: 10.5623/cig2015-306
– volume: 174
  start-page: 177
  year: 2019
  ident: ref_21
  article-title: Semantic trajectory compression via multi-resolution synchronization-based clustering
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2019.03.006
– ident: ref_14
  doi: 10.1142/9789812565402_0001
– volume: 31
  start-page: 867
  year: 2017
  ident: ref_25
  article-title: A context-sensitive correlated random walk: A new simulation model for movement
  publication-title: Int. J. Geogr. Inf. Sci.
  doi: 10.1080/13658816.2016.1224887
– ident: ref_37
  doi: 10.3390/app9081711
– volume: 80
  start-page: 2997
  year: 2021
  ident: ref_39
  article-title: An empirical estimation for time and memory algorithm complexities: Newly developed R package
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-020-09471-8
– ident: ref_7
– ident: ref_34
– volume: 13
  start-page: 29
  year: 2019
  ident: ref_38
  article-title: Fast large-scale trajectory clustering
  publication-title: Proc. VLDB Endow.
  doi: 10.14778/3357377.3357380
– volume: 12
  start-page: 566
  year: 1996
  ident: ref_50
  article-title: Probabilistic roadmaps for path planning in high-dimensional configuration spaces
  publication-title: IEEE Trans. Robot. Autom.
  doi: 10.1109/70.508439
– volume: 282
  start-page: 114916
  year: 2023
  ident: ref_42
  article-title: A context-aware approach for vessels’ trajectory prediction
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2023.114916
– volume: 11
  start-page: 934
  year: 2018
  ident: ref_1
  article-title: Trajectory simplification: An experimental study and quality analysis
  publication-title: Proc. VLDB Endow.
  doi: 10.14778/3213880.3213885
– volume: 9
  start-page: 45600
  year: 2021
  ident: ref_8
  article-title: A Contextual Hybrid Model for Vessel Movement Prediction
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3066463
– ident: ref_53
  doi: 10.1017/CBO9780511778025
– volume: 163
  start-page: 104648
  year: 2024
  ident: ref_23
  article-title: Incorporation of adaptive compression into a GPU parallel computing framework for analyzing large-scale vessel trajectories
  publication-title: Transp. Res. Part C Emerg. Technol.
  doi: 10.1016/j.trc.2024.104648
– volume: 2014
  start-page: 101
  year: 2014
  ident: ref_24
  article-title: Similarity of trajectories taking into account geographic context
  publication-title: J. Spat. Inf. Sci.
– ident: ref_47
  doi: 10.3390/s18124211
– volume: 39
  start-page: 13426
  year: 2012
  ident: ref_9
  article-title: Machine learning for vessel trajectories using compression, alignments and domain knowledge
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2012.05.060
– ident: ref_3
  doi: 10.1109/ICDE60146.2024.00334
– volume: 25
  start-page: 220
  year: 2013
  ident: ref_32
  article-title: T-Drive: Enhancing Driving Directions with Taxi Drivers’ Intelligence
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2011.200
– volume: 71
  start-page: 131
  year: 2018
  ident: ref_28
  article-title: Weather effects on human mobility: A study using multi-channel sequence analysis
  publication-title: Comput. Environ. Urban Syst.
  doi: 10.1016/j.compenvurbsys.2018.05.004
– ident: ref_54
– ident: ref_20
  doi: 10.3390/ijgi13060212
– volume: 3–4
  start-page: e40
  year: 2013
  ident: ref_43
  article-title: A suitable metocean hindcast database for the design of Marine energy converters
  publication-title: Int. J. Mar. Energy
– volume: 13
  start-page: 89
  year: 2022
  ident: ref_48
  article-title: Finding Optimal Contextual Parameters for Real-Time Vessel Position Prediction Using Deep Learning
  publication-title: Iran. J. Remote Sens. GIS
  doi: 10.52547/gisj.13.4.89
– ident: ref_36
– volume: 8
  start-page: 109350
  year: 2020
  ident: ref_2
  article-title: Vessel AIS Trajectory Online Compression Based on Scan-Pick-Move Algorithm Added Sliding Window
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3001934
– volume: 6
  start-page: 29
  year: 2015
  ident: ref_30
  article-title: Trajectory data mining: An overview
  publication-title: ACM Trans. Intell. Syst. Technol. (TIST)
SSID ssj0000913840
Score 2.3294656
Snippet Most traditional trajectory compression methods, such as the Douglas–Peucker (DP) method, consider only spatial characteristics and disregard contextual...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 58
SubjectTerms Algorithms
Collision avoidance
Compression
Context
context awareness
data compression
Datasets
Douglas–Peucker
Efficiency
Methods
Performance evaluation
prediction
Route planning
Semantics
trajectory
Trajectory analysis
Velocity
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEB5EBPUgPrG-yEFRkcXuZpNNjlUUD1p6UPEW8lqtSJW2VnrzP_gP_SVOsqv0Il68LgObnUzmm2-ZzAewm2mNKKxN4kvWTHLmaCJwnxOLWJRnObUpN1Fsomi3xd2d7ExIfYWesGo8cOW4Y9s0QnDrpEXiIAuK70TILa21qUtF6UL2bRZygkzFHCxTitSl6nSnyOuPu4_33TSQpWZQd5_AoDiq_7eEHFHmfBEW6vKQtKplLcGU7y3DbK1U_jBehvnb7uC1shiswGWLtJ9H_onEIVPIYVtvuu9JXRV_vn90fOybIAfo8c4hQWR6jL_pxyQkgqoHtkeuooz0Ktycn12fXiS1PkJiEYaHibHce8kZlgycW52ZUhtqnHeYxaQWuWCIUAwhu9TcFIXnwuPW8MIxz4QxBV2D6d5zz68DwUc-aKRrlwsskLRk1nGfa0FLJzVjDTj69piy9fDwoGHxpJBEBP-qSf82YO_H-qUamvGL3Ulw_o9NGHUdH2AAqDoA1F8B0ID9sHUqHEhcktX1vQL8sDDaSrVEFi4HYzJrwNb37qr6pA4U1k9p4HGUbfzHajZhLgsKwbGvewumh_1Xvw0zdjTsDvo7MUi_AEeB7JA
  priority: 102
  providerName: Directory of Open Access Journals
Title A Novel Context-Aware Douglas–Peucker (CADP) Trajectory Compression Method
URI https://www.proquest.com/docview/3171009635
https://doaj.org/article/c0b886cd9c104973bec727fccc1d18fd
Volume 14
WOSCitedRecordID wos001430411400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2220-9964
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913840
  issn: 2220-9964
  databaseCode: DOA
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2220-9964
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913840
  issn: 2220-9964
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2220-9964
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913840
  issn: 2220-9964
  databaseCode: P5Z
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 2220-9964
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913840
  issn: 2220-9964
  databaseCode: PCBAR
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2220-9964
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913840
  issn: 2220-9964
  databaseCode: M7S
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2220-9964
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913840
  issn: 2220-9964
  databaseCode: BENPR
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2220-9964
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913840
  issn: 2220-9964
  databaseCode: PIMPY
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BiwQceBRQF8rKBxAgFHXzsOOc0BZtBRJdRbxUuFh-pWxV7babbVEviP_AP-SXMON4l17KhUsOsQ9OPnu-mclkPoAnmdbIwtokvuGDpOAuTyTinFjkoiIrcpsKE8QmyvFY7u9XdUy4tbGscmkTg6F2M0s58m3kuZT87Zy_Oj5JSDWKvq5GCY2rsJ5m6Ovjfq7511WOhXpeYgDT1bvnGN1vTw4PJimFTAPSeL_ARKFh_2VmOXDN7u3_XeUduBW9TDbstsVduOKnG3A9Cp5_O9-Am58n7Wk3o70H74ZsPDvzRyz0qsJQePhdzz2LzvXvn79qH8ov2HMErn7BkOAOQ7b_nJE96Uppp2wvqFHfh0-7o4-v3yRRZiGxyOaLxFjhfSU4eh5CWJ2ZRpvcOO_QGFZaFpIj0XFk_kYLU5ZeSI8Ii9Jxz6UxZf4A1qazqd8Ehrc8Sa1rV0j0s3TFrRO-0DJvXKU578HL5StXNvYgJymMI4WxCAGkLgLUg6er2cdd741L5u0Qeqs51DE73JjND1Q8gMoOjJTCuspiAFqVOe5ddN0aa23qUtm4Hjwj7BWda1yS1fH3BHww6pClhjKjf4zRJvZga4m9ige-VX-Bf_jv4UdwIyMJ4VD4vQVri_mpfwzX7Nli0s77sL4zGtfv-yE10KdC1A90_THqh52N4_XbvfrLH02a_88
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qBamw4FFADBTwggoQijp52HEWCA2PqlWno1kUVHVj_EqZqpopk2mr2fEP_AcfxZdwr5MM3ZRdF2wTK4rj43N84-t7AF4kWqMKaxP5knejjLs0kjjOkUUtypIstbEwwWwiHwzk_n4xXIJf7VkYSqtsOTEQtZtY-ke-gToX03o75e9OvkfkGkW7q62FRg2LHT8_x5Cterv9Ecd3PUk2P-192IoaV4HIonjNImOF94XgKLRCWJ2YUpvUOO9w7hdaZpIjr3MUulILk-deSI8dErnjnktj8hSfew2u4zKiICIY8oPFPx2qsYkBU51fn6ZFd2N0dDiKKUTrkqf8BeULBgGXyUDQts07_9tXuQu3m1U069WwvwdLfrwKK42h-7f5Ktz6MqpO6xbVfej32GBy5o9ZqMWFoX7vXE89a4KH3z9-Dn1IL2GvEJjD1wwF_CjsZswZ8WWdKjxmu8Ft-wF8vpKuPYTl8WTsHwHDS56s5LXLJAJAF9w64TMt09IVmvMOvGmHWNmmxjpZfRwrjLUIEOoiIDqwvmh9UtcWuaTde0LLog1VBA8XJtND1RCMsl0jpbCusBhgF3mKcxOXpqW1NnaxLF0HXhLWFPEWvpLVzfEL7BhVAFM9mdAZauT8Dqy1WFMNoVXqL9Ae__v2c1jZ2tvtq_72YOcJ3EzILjkkua_B8mx66p_CDXs2G1XTZ2HuMPh61bD8A6xAV0o
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbhMxEB6VFFE48FNABAr4QAUIrZL9sdd7QChQIqK20R4AlZPx37apqqRk05bceAfehsfhSRh7ndBLufXA1Wut1uvP883Y4_kAniVSIgtLFdmKdqOMmjTiOM-RRi7KkizVMVNebCIfDvneXlGuwK_FXRiXVrmwid5Qm4l2e-Qd5LnY-dsp7VQhLaLc6r85_hY5BSl30rqQ02ggsm3nZxi-1a8HWzjXm0nSf__x3YcoKAxEGolsFinNrC0YRdJlTMtEVVKlyliDdqCQPOMUbTxF0qskU3luGbc4OJYbailXKk_xvVdgFV3yJGvBajnYLb8sd3hcxU0Mn5ps-zQtup3R4f4odgFb1ynMn-NBLxdwESl4puvf-p__0W24Gfxr0msWxB1YseN1WAtS7wfzdbjxeVSfND3qu7DTI8PJqT0ivkrX91nUO5NTS0JY8fvHz9L6xBPyAiFbviRI7Yf-nGNOnCVtkojHZNfrcN-DT5cytPvQGk_G9gEQbLJOZF6ajKOHKQuqDbOZ5GllCklpG14tplvoUH3diYAcCYzCHDjEeXC0YXPZ-7ipOnJBv7cOOcs-rla4b5hM90UwPUJ3FedMm0Jj6F3kKa5adForrXVsYl6ZNjx3uBPOouEnaRkuZuDAXG0w0eOJu12NbNCGjQXuRDB1tfgLuof_fvwUriEaxc5guP0IridOR9lnv29AazY9sY_hqj6djerpk7CQCHy9bFz-AQznYXE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Context-Aware+Douglas%E2%80%93Peucker+Trajectory+Compression+Method&rft.jtitle=ISPRS+international+journal+of+geo-information&rft.au=Mehri%2C+Saeed&rft.au=Hooshangi%2C+Navid&rft.au=Mahdizadeh+Gharakhanlou%2C+Navid&rft.date=2025-02-01&rft.pub=MDPI+AG&rft.issn=2220-9964&rft.eissn=2220-9964&rft.volume=14&rft.issue=2&rft_id=info:doi/10.3390%2Fijgi14020058&rft.externalDocID=A829972030
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2220-9964&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2220-9964&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2220-9964&client=summon