Equidistant prototypes embedding for single sample based face recognition with generic learning and incremental learning

We develop a parameter-free face recognition algorithm which is insensitive to large variations in lighting, expression, occlusion, and age using a single gallery sample per subject. We take advantage of the observation that equidistant prototypes embedding is an optimal embedding that maximizes the...

Full description

Saved in:
Bibliographic Details
Published in:Pattern recognition Vol. 47; no. 12; pp. 3738 - 3749
Main Authors: Deng, Weihong, Hu, Jiani, Zhou, Xiuzhuang, Guo, Jun
Format: Journal Article
Language:English
Published: Kidlington Elsevier Ltd 01.12.2014
Elsevier
Subjects:
ISSN:0031-3203, 1873-5142
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We develop a parameter-free face recognition algorithm which is insensitive to large variations in lighting, expression, occlusion, and age using a single gallery sample per subject. We take advantage of the observation that equidistant prototypes embedding is an optimal embedding that maximizes the minimum one-against-the-rest margin between the classes. Rather than preserving the global or the local structure of the training data, our method, called linear regression analysis (LRA), applies a least-square regression technique to map gallery samples to the equally distant locations, regardless of the true structure of training data. Further, a novel generic learning method, which maps the intraclass facial differences of the generic faces to the zero vectors, is incorporated to enhance the generalization capability of LRA. Using this novel method, learning based on only a handful of generic classes can largely improve the face recognition performance, even when the generic data are collected from a different database and camera set-up. The incremental learning based on the Greville algorithm makes the mapping matrix efficiently updated from the newly coming gallery classes, training samples, or generic variations. Although it is fairly simple and parameter-free, LRA, combined with commonly used local descriptors, such as Gabor representation and local binary patterns, outperforms the state-of-the-art methods for several standard experiments on the Extended Yale B, CMU PIE, AR, and FERET databases. •Equidistant prototypes embedding that maximizes the minimum one-against-the-rest margin between the classes.•A parameter-free model for the practical usage on one sample problem.•Effective generic learning based on the training samples collected from a different database.•An incremental learning algorithm that makes the model efficiently updated.•Extensive experimental results on the Extended Yale B, CMU PIE, AR, and FERET databases.
AbstractList We develop a parameter-free face recognition algorithm which is insensitive to large variations in lighting, expression, occlusion, and age using a single gallery sample per subject. We take advantage of the observation that equidistant prototypes embedding is an optimal embedding that maximizes the minimum one-against-the-rest margin between the classes. Rather than preserving the global or the local structure of the training data, our method, called linear regression analysis (LRA), applies a least-square regression technique to map gallery samples to the equally distant locations, regardless of the true structure of training data. Further, a novel generic learning method, which maps the intraclass facial differences of the generic faces to the zero vectors, is incorporated to enhance the generalization capability of LRA. Using this novel method, learning based on only a handful of generic classes can largely improve the face recognition performance, even when the generic data are collected from a different database and camera set-up. The incremental learning based on the Greville algorithm makes the mapping matrix efficiently updated from the newly coming gallery classes, training samples, or generic variations. Although it is fairly simple and parameter-free, LRA, combined with commonly used local descriptors, such as Gabor representation and local binary patterns, outperforms the state-of-the-art methods for several standard experiments on the Extended Yale B, CMU PIE, AR, and FERET databases. •Equidistant prototypes embedding that maximizes the minimum one-against-the-rest margin between the classes.•A parameter-free model for the practical usage on one sample problem.•Effective generic learning based on the training samples collected from a different database.•An incremental learning algorithm that makes the model efficiently updated.•Extensive experimental results on the Extended Yale B, CMU PIE, AR, and FERET databases.
Author Deng, Weihong
Zhou, Xiuzhuang
Guo, Jun
Hu, Jiani
Author_xml – sequence: 1
  givenname: Weihong
  surname: Deng
  fullname: Deng, Weihong
  organization: School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
– sequence: 2
  givenname: Jiani
  surname: Hu
  fullname: Hu, Jiani
  organization: School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
– sequence: 3
  givenname: Xiuzhuang
  surname: Zhou
  fullname: Zhou, Xiuzhuang
  email: xiuzhuangzhou@126.com, zxz@xeehoo.com
  organization: College of Information Engineering, Capital Normal University, Beijing 100048, China
– sequence: 4
  givenname: Jun
  surname: Guo
  fullname: Guo, Jun
  organization: School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28785198$$DView record in Pascal Francis
BookMark eNqFkE1LJDEQhoMoOH78Aw-5eOy2ks5093hYEPELhL2s51CTVMYMPeneJLrrvzfDqAcPu4dQgarnLeo5YvthDMTYmYBagGgv1vWE2YyrWoJQNbQ1SNhjM9F3TTUXSu6zGUAjqkZCc8iOUloDiK40Zuzvze8Xb33KGDKf4pjH_DZR4rRZkrU-rLgbI0_lMxBPuJlKWWIiyx0a4pHK2uCzHwP_4_MzX1Gg6A0fCGPY4hgs98FE2lDIOHw1TtiBwyHR6Uc9Zk-3N7-u76vHn3cP11ePlVHQ5gqNcdgu5s4QtBKd6hdWOtUtOmfmVgpseimcsD30S5SNteUBKGg6I1Ep1xyz813uhMng4CIG45Oeot9gfNOy7_q5WPRl7nI3Z-KYUiSnjc-4PSxH9IMWoLeu9VrvXOutaw2tLq4LrL7Bn_n_wX7sMCoCXj1FnYynYMj6IjZrO_p_B7wDZFigSQ
CODEN PTNRA8
CitedBy_id crossref_primary_10_1109_TNNLS_2016_2522431
crossref_primary_10_1016_j_patcog_2016_11_023
crossref_primary_10_1007_s10489_020_01717_0
crossref_primary_10_3390_s19010146
crossref_primary_10_1007_s12652_021_03255_0
crossref_primary_10_1016_j_patcog_2017_03_024
crossref_primary_10_1109_TIFS_2016_2567318
crossref_primary_10_1016_j_patcog_2017_09_014
crossref_primary_10_1109_TIFS_2015_2408431
crossref_primary_10_1016_j_neucom_2014_10_111
crossref_primary_10_1016_j_cogsys_2020_09_004
crossref_primary_10_1016_j_patcog_2016_12_028
crossref_primary_10_1016_j_patrec_2015_05_001
crossref_primary_10_1145_2733383
crossref_primary_10_1016_j_compeleceng_2022_108003
crossref_primary_10_1109_ACCESS_2019_2903333
crossref_primary_10_1007_s10462_022_10240_2
crossref_primary_10_1109_TPAMI_2017_2757923
crossref_primary_10_1109_ACCESS_2020_3017479
crossref_primary_10_3390_app9061189
crossref_primary_10_3233_JIFS_169278
crossref_primary_10_1016_j_patcog_2017_09_022
crossref_primary_10_1007_s00371_020_01802_y
crossref_primary_10_1109_TCYB_2017_2739338
crossref_primary_10_1007_s11042_018_7002_5
crossref_primary_10_1016_j_neucom_2024_128708
crossref_primary_10_1016_j_knosys_2019_05_033
crossref_primary_10_1109_TPAMI_2018_2800008
crossref_primary_10_3390_app10020601
crossref_primary_10_1016_j_imavis_2016_08_007
crossref_primary_10_1109_TIFS_2018_2866295
crossref_primary_10_1016_j_neucom_2016_12_059
crossref_primary_10_1049_iet_cvi_2016_0322
crossref_primary_10_3390_math10050752
crossref_primary_10_1109_LSP_2020_2989670
crossref_primary_10_1016_j_neucom_2022_06_113
crossref_primary_10_1049_iet_spr_2015_0213
crossref_primary_10_1007_s10462_017_9578_y
crossref_primary_10_1016_j_ins_2016_02_001
Cites_doi 10.1109/34.927464
10.1109/TIP.2002.999679
10.1109/TPAMI.2006.244
10.1016/j.patcog.2009.12.004
10.1016/j.patcog.2006.03.013
10.2307/1914166
10.1109/TPAMI.2005.55
10.1109/CVPR.2010.5539990
10.1007/11564386_26
10.1016/j.patcog.2009.12.026
10.1016/j.patcog.2012.06.010
10.1109/TPAMI.2010.230
10.1109/TPAMI.2005.250
10.1109/AFGR.1998.670921
10.1109/TPAMI.2008.79
10.1109/TPAMI.2010.128
10.1109/CVPR.2013.58
10.1214/aos/1176342503
10.1109/CVPR.2011.5995556
10.1109/TPAMI.2003.1251154
10.1109/TPAMI.2002.1008382
10.1016/j.patcog.2006.03.010
10.1109/TPAMI.2004.1261097
10.1109/TPAMI.2012.30
10.1109/TNN.2005.849817
10.1109/TPAMI.2007.1033
10.1162/jocn.1991.3.1.71
10.1109/34.598228
10.1109/TPAMI.2010.220
10.1109/TC.1968.226881
10.1109/34.879790
ContentType Journal Article
Copyright 2014 Elsevier Ltd
2015 INIST-CNRS
Copyright_xml – notice: 2014 Elsevier Ltd
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
DOI 10.1016/j.patcog.2014.06.020
DatabaseName CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Applied Sciences
EISSN 1873-5142
EndPage 3749
ExternalDocumentID 28785198
10_1016_j_patcog_2014_06_020
S0031320314002428
GroupedDBID --K
--M
-D8
-DT
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABFRF
ABHFT
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADMXK
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FD6
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
KZ1
LG9
LMP
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WUQ
XJE
XPP
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
BNPGV
IQODW
SSH
ID FETCH-LOGICAL-c406t-accfa695fce062af489d2f4797fc5d21a3821f1d808ba23dd23d004037c2a44f3
ISICitedReferencesCount 61
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000342870900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0031-3203
IngestDate Wed Apr 02 07:21:52 EDT 2025
Sat Nov 29 03:52:14 EST 2025
Tue Nov 18 20:41:47 EST 2025
Fri Feb 23 02:25:25 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords One sample problem
Feature extraction
Generic learning
Face recognition
Linear regression
Biometrics
Performance evaluation
State of the art
Prototype
Image processing
Updating
Mapping
Regression analysis
Pattern recognition
Algorithm
Learning
Least squares method
Database
Signal processing
Localization
Automatic recognition
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c406t-accfa695fce062af489d2f4797fc5d21a3821f1d808ba23dd23d004037c2a44f3
PageCount 12
ParticipantIDs pascalfrancis_primary_28785198
crossref_citationtrail_10_1016_j_patcog_2014_06_020
crossref_primary_10_1016_j_patcog_2014_06_020
elsevier_sciencedirect_doi_10_1016_j_patcog_2014_06_020
PublicationCentury 2000
PublicationDate 2014-12-01
PublicationDateYYYYMMDD 2014-12-01
PublicationDate_xml – month: 12
  year: 2014
  text: 2014-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Pattern recognition
PublicationYear 2014
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Naseem, Togneri, Bennamoun (bib19) 2010
W. Deng, J. Hu, J. Lu, J. Guo, Transform-invariant PCA: a unified approach to fully automatic face alignment, representation, and recognition, IEEE Trans. Pattern Anal. Mach. Intell. 36 (6) (2014) 1275–1284.
Bekker (bib22) 1986
Meytlis, Sirovich (bib27) 2007; 29
Turk, Pentland (bib2) 1991; 3
Huber (bib23) 1973
W. Deng, J. Hu, J. Guo, Gabor-eigen-whiten-cosine: a robust scheme for face recognition, in: Analysis and Modelling of Faces and Gestures, Springer, 2005, pp. 336–349.
W. Deng, J. Hu, J. Guo, In defense of sparsity based face recognition, in: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2013, pp. 399–406.
Q. Shi, A. Eriksson, A. van den Hengel, C. Shen, Is face recognition really a compressive sensing problem? in: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2011, pp. 553–560.
Phillips, Moon, Rizvi, Rauss (bib31) 2000; 22
Deng, Liu, Hu, Guo (bib1) 2012; 45
Wang, Plataniotis, Lu, Venetsanopoulos (bib11) 2006; 39
Martínez (bib9) 2002
Yang, Zhang (bib4) 2004; 26
T. Sim, S. Baker, M. Bsat, The CMU pose, illumination, and expression (PIE) database, in: Proceedings of the Fifth IEEE International Conference on Automatic Face and Gesture Recognition, IEEE, 2002, pp. 46–51.
Deng, Hu, Guo, Cai, Feng (bib7) 2010; 43
Liu, Wechsler (bib6) 2002; 11
V. Vapnik, Statistical Learning Theory, 1998.
Deng, Hu, Guo, Cai, Feng (bib33) 2010; 43
Ahonen, Hadid, Pietikinen (bib8) 2006; 28
He, Yan, Hu, Niyogi, Zhang (bib15) 2005; 27
Ben-Israel, Greville (bib17) 2003; vol. 15
Deng, Hu, Guo (bib12) 2012; 34
Tan, Chen, Zhou, Zhang (bib14) 2006; 39
Georghiades, Belhumeur, Kriegman (bib28) 2001; 23
Belhumeour, Hespanha, Kriegman (bib36) 1997; 19
Martinez, Zhu (bib25) 2005; 27
Wee (bib18) 1968; 100
Friedman, Hastie, Tibshirani (bib21) 2001
B. Moghaddam, W. Wahid, A. Pentland, Beyond eigenfaces: probabilistic matching for face recognition, in: Proceedings of the Third IEEE International Conference on Automatic Face and Gesture Recognition, April 1998, pp. 30–35.
A.M. Martinez, R. Benavente, The AR Face Database, CVC Technical Report #24, June 1998.
Wolf, Hassner, Taigman (bib37) 2011; 33
Wright, Yang, Ganesh, Sastry, Ma (bib35) 2009; 31
Y. Su, S. Shan, X. Chen, W. Gao, Adaptive generic learning for face recognition from a single sample per person, in: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2010, pp. 2699–2706.
Zhang, Zhou, Chen (bib10) 2005; 16
He, Zheng, Hu (bib24) 2011; 33
Sim, Baker, Bsat (bib29) 2003; 25
Naseem (10.1016/j.patcog.2014.06.020_bib19) 2010
Turk (10.1016/j.patcog.2014.06.020_bib2) 1991; 3
Ben-Israel (10.1016/j.patcog.2014.06.020_bib17) 2003; vol. 15
Deng (10.1016/j.patcog.2014.06.020_bib1) 2012; 45
Deng (10.1016/j.patcog.2014.06.020_bib7) 2010; 43
Wang (10.1016/j.patcog.2014.06.020_bib11) 2006; 39
Wolf (10.1016/j.patcog.2014.06.020_bib37) 2011; 33
Friedman (10.1016/j.patcog.2014.06.020_bib21) 2001
Tan (10.1016/j.patcog.2014.06.020_bib14) 2006; 39
Yang (10.1016/j.patcog.2014.06.020_bib4) 2004; 26
Huber (10.1016/j.patcog.2014.06.020_bib23) 1973
Georghiades (10.1016/j.patcog.2014.06.020_bib28) 2001; 23
10.1016/j.patcog.2014.06.020_bib20
Wright (10.1016/j.patcog.2014.06.020_bib35) 2009; 31
Deng (10.1016/j.patcog.2014.06.020_bib33) 2010; 43
10.1016/j.patcog.2014.06.020_bib3
Bekker (10.1016/j.patcog.2014.06.020_bib22) 1986
Martinez (10.1016/j.patcog.2014.06.020_bib25) 2005; 27
10.1016/j.patcog.2014.06.020_bib26
Liu (10.1016/j.patcog.2014.06.020_bib6) 2002; 11
10.1016/j.patcog.2014.06.020_bib5
He (10.1016/j.patcog.2014.06.020_bib15) 2005; 27
Ahonen (10.1016/j.patcog.2014.06.020_bib8) 2006; 28
Deng (10.1016/j.patcog.2014.06.020_bib12) 2012; 34
Sim (10.1016/j.patcog.2014.06.020_bib29) 2003; 25
Phillips (10.1016/j.patcog.2014.06.020_bib31) 2000; 22
He (10.1016/j.patcog.2014.06.020_bib24) 2011; 33
Martínez (10.1016/j.patcog.2014.06.020_bib9) 2002
10.1016/j.patcog.2014.06.020_bib30
Zhang (10.1016/j.patcog.2014.06.020_bib10) 2005; 16
Wee (10.1016/j.patcog.2014.06.020_bib18) 1968; 100
Belhumeour (10.1016/j.patcog.2014.06.020_bib36) 1997; 19
10.1016/j.patcog.2014.06.020_bib16
10.1016/j.patcog.2014.06.020_bib32
10.1016/j.patcog.2014.06.020_bib34
10.1016/j.patcog.2014.06.020_bib13
Meytlis (10.1016/j.patcog.2014.06.020_bib27) 2007; 29
References_xml – year: 2001
  ident: bib21
  article-title: The Elements of Statistical Learning
– volume: 3
  start-page: 71
  year: 1991
  end-page: 86
  ident: bib2
  article-title: Eigenfaces for recognition
  publication-title: J. Cogn. Neurosci.
– start-page: 215
  year: 1986
  end-page: 217
  ident: bib22
  article-title: Comment on identification in the linear errors in variables model
  publication-title: Econom.: J. Econom. Soc.
– volume: 25
  start-page: 1615
  year: 2003
  end-page: 1618
  ident: bib29
  article-title: The CMU pose, illumination, and expression database
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: T. Sim, S. Baker, M. Bsat, The CMU pose, illumination, and expression (PIE) database, in: Proceedings of the Fifth IEEE International Conference on Automatic Face and Gesture Recognition, IEEE, 2002, pp. 46–51.
– reference: B. Moghaddam, W. Wahid, A. Pentland, Beyond eigenfaces: probabilistic matching for face recognition, in: Proceedings of the Third IEEE International Conference on Automatic Face and Gesture Recognition, April 1998, pp. 30–35.
– volume: 31
  start-page: 210
  year: 2009
  end-page: 227
  ident: bib35
  article-title: Robust face recognition via sparse representation
  publication-title: IEEE Trans. Pattern Anal. Machine Intell.
– reference: W. Deng, J. Hu, J. Guo, Gabor-eigen-whiten-cosine: a robust scheme for face recognition, in: Analysis and Modelling of Faces and Gestures, Springer, 2005, pp. 336–349.
– volume: 100
  start-page: 1157
  year: 1968
  end-page: 1164
  ident: bib18
  article-title: Generalized inverse approach to adaptive multiclass pattern classification
  publication-title: IEEE Trans. Comput.
– volume: 23
  start-page: 643
  year: 2001
  end-page: 660
  ident: bib28
  article-title: From few to many
  publication-title: IEEE Trans. Pattern Anal. Machine Intell.
– reference: A.M. Martinez, R. Benavente, The AR Face Database, CVC Technical Report #24, June 1998.
– volume: 34
  start-page: 1864
  year: 2012
  end-page: 1870
  ident: bib12
  article-title: Extended SRC
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 39
  start-page: 1746
  year: 2006
  end-page: 1762
  ident: bib14
  article-title: Face recognition from a single image per person
  publication-title: Pattern Recognit.
– volume: 39
  start-page: 1725
  year: 2006
  end-page: 1745
  ident: bib11
  article-title: On solving the face recognition problem with one training sample per subject
  publication-title: Pattern Recognit.
– volume: 29
  start-page: 1262
  year: 2007
  end-page: 1267
  ident: bib27
  article-title: On the dimensionality of face space
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 27
  start-page: 328
  year: 2005
  end-page: 340
  ident: bib15
  article-title: Face recognition using Laplacianfaces
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: Y. Su, S. Shan, X. Chen, W. Gao, Adaptive generic learning for face recognition from a single sample per person, in: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2010, pp. 2699–2706.
– reference: Q. Shi, A. Eriksson, A. van den Hengel, C. Shen, Is face recognition really a compressive sensing problem? in: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2011, pp. 553–560.
– volume: 43
  start-page: 1748
  year: 2010
  end-page: 1762
  ident: bib33
  article-title: Robust, accurate and efficient face recognition from a single training image
  publication-title: Pattern Recognit.
– volume: 11
  start-page: 467
  year: 2002
  end-page: 476
  ident: bib6
  article-title: Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition
  publication-title: IEEE Trans. Image Process.
– volume: vol. 15
  year: 2003
  ident: bib17
  publication-title: Generalized Inverses: Theory and Applications
– volume: 33
  start-page: 1978
  year: 2011
  end-page: 1990
  ident: bib37
  article-title: Effective unconstrained face recognition by combining multiple descriptors and learned background statistics
  publication-title: IEEE Trans. Pattern Anal. Machine Intell.
– volume: 43
  start-page: 2210
  year: 2010
  end-page: 2223
  ident: bib7
  article-title: Emulating biological strategies for uncontrolled face recognition
  publication-title: Pattern Recognit.
– volume: 28
  start-page: 2037
  year: 2006
  end-page: 2041
  ident: bib8
  article-title: Face description with local binary patterns
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: W. Deng, J. Hu, J. Guo, In defense of sparsity based face recognition, in: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2013, pp. 399–406.
– volume: 33
  start-page: 1561
  year: 2011
  end-page: 1576
  ident: bib24
  article-title: Maximum correntropy criterion for robust face recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 22
  start-page: 162
  year: 2000
  end-page: 8828
  ident: bib31
  article-title: The feret evaluation method for face recognition algorithms
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: W. Deng, J. Hu, J. Lu, J. Guo, Transform-invariant PCA: a unified approach to fully automatic face alignment, representation, and recognition, IEEE Trans. Pattern Anal. Mach. Intell. 36 (6) (2014) 1275–1284.
– start-page: 799
  year: 1973
  end-page: 821
  ident: bib23
  article-title: Robust regression
  publication-title: Ann. Stat.
– volume: 26
  start-page: 131
  year: 2004
  end-page: 137
  ident: bib4
  article-title: Two-dimensional PCA
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 45
  start-page: 4438
  year: 2012
  end-page: 4450
  ident: bib1
  article-title: The small sample size problem of ICA
  publication-title: Pattern Recognit.
– start-page: 2106
  year: 2010
  end-page: 2112
  ident: bib19
  article-title: Linear regression for face recognition
  publication-title: IEEE Trans. Pattern Anal. Machine Intell.
– volume: 16
  start-page: 875
  year: 2005
  end-page: 886
  ident: bib10
  article-title: Recognizing partially occluded, expression variant faces from single training image per person with SOM and soft KNN ensemble
  publication-title: IEEE Trans. Neural Netw.
– volume: 19
  start-page: 711
  year: 1997
  end-page: 720
  ident: bib36
  article-title: Eigenfaces vs. Fisherfaces
  publication-title: IEEE Trans. Pattern Anal. Machine Intell.
– volume: 27
  start-page: 1934
  year: 2005
  end-page: 1944
  ident: bib25
  article-title: Where are linear feature extraction methods applicable?
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: V. Vapnik, Statistical Learning Theory, 1998.
– start-page: 748
  year: 2002
  end-page: 763
  ident: bib9
  article-title: Recognizing imprecisely localized, partially occluded, and expression variant faces from a single sample per class
  publication-title: IEEE Trans. Pattern Anal. Machine Intell.
– volume: 23
  start-page: 643
  issue: 6
  year: 2001
  ident: 10.1016/j.patcog.2014.06.020_bib28
  article-title: From few to many
  publication-title: IEEE Trans. Pattern Anal. Machine Intell.
  doi: 10.1109/34.927464
– volume: 11
  start-page: 467
  issue: 4
  year: 2002
  ident: 10.1016/j.patcog.2014.06.020_bib6
  article-title: Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2002.999679
– volume: 28
  start-page: 2037
  issue: 12
  year: 2006
  ident: 10.1016/j.patcog.2014.06.020_bib8
  article-title: Face description with local binary patterns
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2006.244
– volume: 43
  start-page: 1748
  issue: 5
  year: 2010
  ident: 10.1016/j.patcog.2014.06.020_bib33
  article-title: Robust, accurate and efficient face recognition from a single training image
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2009.12.004
– volume: 39
  start-page: 1746
  issue: 9
  year: 2006
  ident: 10.1016/j.patcog.2014.06.020_bib14
  article-title: Face recognition from a single image per person
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2006.03.013
– start-page: 215
  year: 1986
  ident: 10.1016/j.patcog.2014.06.020_bib22
  article-title: Comment on identification in the linear errors in variables model
  publication-title: Econom.: J. Econom. Soc.
  doi: 10.2307/1914166
– volume: 27
  start-page: 328
  issue: 3
  year: 2005
  ident: 10.1016/j.patcog.2014.06.020_bib15
  article-title: Face recognition using Laplacianfaces
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2005.55
– year: 2001
  ident: 10.1016/j.patcog.2014.06.020_bib21
– ident: 10.1016/j.patcog.2014.06.020_bib16
– ident: 10.1016/j.patcog.2014.06.020_bib34
  doi: 10.1109/CVPR.2010.5539990
– ident: 10.1016/j.patcog.2014.06.020_bib3
  doi: 10.1007/11564386_26
– volume: 43
  start-page: 2210
  issue: 6
  year: 2010
  ident: 10.1016/j.patcog.2014.06.020_bib7
  article-title: Emulating biological strategies for uncontrolled face recognition
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2009.12.026
– volume: 45
  start-page: 4438
  issue: 12
  year: 2012
  ident: 10.1016/j.patcog.2014.06.020_bib1
  article-title: The small sample size problem of ICA
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2012.06.010
– volume: 33
  start-page: 1978
  issue: October (10)
  year: 2011
  ident: 10.1016/j.patcog.2014.06.020_bib37
  article-title: Effective unconstrained face recognition by combining multiple descriptors and learned background statistics
  publication-title: IEEE Trans. Pattern Anal. Machine Intell.
  doi: 10.1109/TPAMI.2010.230
– volume: 27
  start-page: 1934
  issue: 12
  year: 2005
  ident: 10.1016/j.patcog.2014.06.020_bib25
  article-title: Where are linear feature extraction methods applicable?
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2005.250
– ident: 10.1016/j.patcog.2014.06.020_bib26
  doi: 10.1109/AFGR.1998.670921
– volume: 31
  start-page: 210
  issue: 2
  year: 2009
  ident: 10.1016/j.patcog.2014.06.020_bib35
  article-title: Robust face recognition via sparse representation
  publication-title: IEEE Trans. Pattern Anal. Machine Intell.
  doi: 10.1109/TPAMI.2008.79
– start-page: 2106
  year: 2010
  ident: 10.1016/j.patcog.2014.06.020_bib19
  article-title: Linear regression for face recognition
  publication-title: IEEE Trans. Pattern Anal. Machine Intell.
  doi: 10.1109/TPAMI.2010.128
– ident: 10.1016/j.patcog.2014.06.020_bib13
  doi: 10.1109/CVPR.2013.58
– start-page: 799
  issue: 5
  year: 1973
  ident: 10.1016/j.patcog.2014.06.020_bib23
  article-title: Robust regression
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1176342503
– ident: 10.1016/j.patcog.2014.06.020_bib20
  doi: 10.1109/CVPR.2011.5995556
– ident: 10.1016/j.patcog.2014.06.020_bib30
– ident: 10.1016/j.patcog.2014.06.020_bib5
– volume: 25
  start-page: 1615
  issue: 12
  year: 2003
  ident: 10.1016/j.patcog.2014.06.020_bib29
  article-title: The CMU pose, illumination, and expression database
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2003.1251154
– start-page: 748
  year: 2002
  ident: 10.1016/j.patcog.2014.06.020_bib9
  article-title: Recognizing imprecisely localized, partially occluded, and expression variant faces from a single sample per class
  publication-title: IEEE Trans. Pattern Anal. Machine Intell.
  doi: 10.1109/TPAMI.2002.1008382
– volume: 39
  start-page: 1725
  issue: 9
  year: 2006
  ident: 10.1016/j.patcog.2014.06.020_bib11
  article-title: On solving the face recognition problem with one training sample per subject
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2006.03.010
– volume: 26
  start-page: 131
  issue: 1
  year: 2004
  ident: 10.1016/j.patcog.2014.06.020_bib4
  article-title: Two-dimensional PCA
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2004.1261097
– volume: 34
  start-page: 1864
  issue: 9
  year: 2012
  ident: 10.1016/j.patcog.2014.06.020_bib12
  article-title: Extended SRC
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2012.30
– volume: vol. 15
  year: 2003
  ident: 10.1016/j.patcog.2014.06.020_bib17
– volume: 16
  start-page: 875
  issue: 4
  year: 2005
  ident: 10.1016/j.patcog.2014.06.020_bib10
  article-title: Recognizing partially occluded, expression variant faces from single training image per person with SOM and soft KNN ensemble
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2005.849817
– ident: 10.1016/j.patcog.2014.06.020_bib32
– volume: 29
  start-page: 1262
  issue: 7
  year: 2007
  ident: 10.1016/j.patcog.2014.06.020_bib27
  article-title: On the dimensionality of face space
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2007.1033
– volume: 3
  start-page: 71
  issue: 1
  year: 1991
  ident: 10.1016/j.patcog.2014.06.020_bib2
  article-title: Eigenfaces for recognition
  publication-title: J. Cogn. Neurosci.
  doi: 10.1162/jocn.1991.3.1.71
– volume: 19
  start-page: 711
  issue: 7
  year: 1997
  ident: 10.1016/j.patcog.2014.06.020_bib36
  article-title: Eigenfaces vs. Fisherfaces
  publication-title: IEEE Trans. Pattern Anal. Machine Intell.
  doi: 10.1109/34.598228
– volume: 33
  start-page: 1561
  issue: 8
  year: 2011
  ident: 10.1016/j.patcog.2014.06.020_bib24
  article-title: Maximum correntropy criterion for robust face recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2010.220
– volume: 100
  start-page: 1157
  issue: 12
  year: 1968
  ident: 10.1016/j.patcog.2014.06.020_bib18
  article-title: Generalized inverse approach to adaptive multiclass pattern classification
  publication-title: IEEE Trans. Comput.
  doi: 10.1109/TC.1968.226881
– volume: 22
  start-page: 162
  year: 2000
  ident: 10.1016/j.patcog.2014.06.020_bib31
  article-title: The feret evaluation method for face recognition algorithms
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.879790
SSID ssj0017142
Score 2.3908243
Snippet We develop a parameter-free face recognition algorithm which is insensitive to large variations in lighting, expression, occlusion, and age using a single...
SourceID pascalfrancis
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 3738
SubjectTerms Applied sciences
Detection, estimation, filtering, equalization, prediction
Exact sciences and technology
Face recognition
Feature extraction
Generic learning
Image processing
Information, signal and communications theory
Linear regression
One sample problem
Pattern recognition
Signal and communications theory
Signal processing
Signal, noise
Telecommunications and information theory
Title Equidistant prototypes embedding for single sample based face recognition with generic learning and incremental learning
URI https://dx.doi.org/10.1016/j.patcog.2014.06.020
Volume 47
WOSCitedRecordID wos000342870900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-5142
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017142
  issn: 0031-3203
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb5swFLeydodJ076nfVY-7IaYwCYBH6ONFaKJ9FCmqBdEbFy1ykhWaJW_ZH_vnjEmXqsp22GHoPCwQcn78d7z8_tA6AObBEJFLbpySSsX9LXnLpeSuxKMByEpF2WXt_bta5hl0WLBTkajnyYX5mYV1nW03bLNf2U10IDZKnX2H9g93BQI8B2YDkdgOxz_ivHxj-sLoazCulXRV-1aeVkbp_q-rIQwcZPKQ7CqnKZUxYEdpcqEar2jeqj0AUVrnd-tWix30fYr40PR5Zq49isCg80F28w96ap21vbdBukfp8k8O3Y-x9nQ1muWTrPUSXJzvkjzsySfwqizZD5QZ3nmHOdz20_hB7diPkwCjS2Mqe9S4lFbGOvymwZ0xBKtqgSTpaZpqEud3lEB2htx-XEDqmx9roL3gq5CK_F2Ks9s89_ShEN8IiwjwRJl0T10SMIxA2l5OE3jxWzYnwr9QNeh73-CScrsIgfvPvlPRs_DTdnAqyh1DxXLsDl9gh71KxI81Uh6ikZV_Qw97lcnuJf9DZBMAxBDe462FtbwDmt4wBoGrGGNNayxhjusYYU1bKEDK6zhHmvYQAoD1rCFteHCC5R_iU8_JW7fysPlYDG2bsm5LCdsLHnlTUgpg4gJIoOQhZKPBfFLGhFf-iLyomVJqBDwUfqFhpyUQSDpS3RQr-vqFcJgvzIv4qTiYxZItU_NmU9DNpGMwuLbe42o-a8L3te5V-1WVoUJaLwsNIcKxaFCxXUSmOUOsza6zsue8aFhY9HbqtoGLQCHe2Ye_cb14XEGdG_2DXiLHuxesHfooL26rt6j-_ymvWiujnqo_gIzLcLz
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Equidistant+prototypes+embedding+for+single+sample+based+face+recognition+with+generic+learning+and+incremental+learning&rft.jtitle=Pattern+recognition&rft.au=WEIHONG+DENG&rft.au=JIANI+HU&rft.au=XIUZHUANG+ZHOU&rft.au=JUN+GUO&rft.date=2014-12-01&rft.pub=Elsevier&rft.issn=0031-3203&rft.volume=47&rft.issue=12&rft.spage=3738&rft.epage=3749&rft_id=info:doi/10.1016%2Fj.patcog.2014.06.020&rft.externalDBID=n%2Fa&rft.externalDocID=28785198
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon