Equidistant prototypes embedding for single sample based face recognition with generic learning and incremental learning
We develop a parameter-free face recognition algorithm which is insensitive to large variations in lighting, expression, occlusion, and age using a single gallery sample per subject. We take advantage of the observation that equidistant prototypes embedding is an optimal embedding that maximizes the...
Uloženo v:
| Vydáno v: | Pattern recognition Ročník 47; číslo 12; s. 3738 - 3749 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Kidlington
Elsevier Ltd
01.12.2014
Elsevier |
| Témata: | |
| ISSN: | 0031-3203, 1873-5142 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | We develop a parameter-free face recognition algorithm which is insensitive to large variations in lighting, expression, occlusion, and age using a single gallery sample per subject. We take advantage of the observation that equidistant prototypes embedding is an optimal embedding that maximizes the minimum one-against-the-rest margin between the classes. Rather than preserving the global or the local structure of the training data, our method, called linear regression analysis (LRA), applies a least-square regression technique to map gallery samples to the equally distant locations, regardless of the true structure of training data. Further, a novel generic learning method, which maps the intraclass facial differences of the generic faces to the zero vectors, is incorporated to enhance the generalization capability of LRA. Using this novel method, learning based on only a handful of generic classes can largely improve the face recognition performance, even when the generic data are collected from a different database and camera set-up. The incremental learning based on the Greville algorithm makes the mapping matrix efficiently updated from the newly coming gallery classes, training samples, or generic variations. Although it is fairly simple and parameter-free, LRA, combined with commonly used local descriptors, such as Gabor representation and local binary patterns, outperforms the state-of-the-art methods for several standard experiments on the Extended Yale B, CMU PIE, AR, and FERET databases.
•Equidistant prototypes embedding that maximizes the minimum one-against-the-rest margin between the classes.•A parameter-free model for the practical usage on one sample problem.•Effective generic learning based on the training samples collected from a different database.•An incremental learning algorithm that makes the model efficiently updated.•Extensive experimental results on the Extended Yale B, CMU PIE, AR, and FERET databases. |
|---|---|
| AbstractList | We develop a parameter-free face recognition algorithm which is insensitive to large variations in lighting, expression, occlusion, and age using a single gallery sample per subject. We take advantage of the observation that equidistant prototypes embedding is an optimal embedding that maximizes the minimum one-against-the-rest margin between the classes. Rather than preserving the global or the local structure of the training data, our method, called linear regression analysis (LRA), applies a least-square regression technique to map gallery samples to the equally distant locations, regardless of the true structure of training data. Further, a novel generic learning method, which maps the intraclass facial differences of the generic faces to the zero vectors, is incorporated to enhance the generalization capability of LRA. Using this novel method, learning based on only a handful of generic classes can largely improve the face recognition performance, even when the generic data are collected from a different database and camera set-up. The incremental learning based on the Greville algorithm makes the mapping matrix efficiently updated from the newly coming gallery classes, training samples, or generic variations. Although it is fairly simple and parameter-free, LRA, combined with commonly used local descriptors, such as Gabor representation and local binary patterns, outperforms the state-of-the-art methods for several standard experiments on the Extended Yale B, CMU PIE, AR, and FERET databases.
•Equidistant prototypes embedding that maximizes the minimum one-against-the-rest margin between the classes.•A parameter-free model for the practical usage on one sample problem.•Effective generic learning based on the training samples collected from a different database.•An incremental learning algorithm that makes the model efficiently updated.•Extensive experimental results on the Extended Yale B, CMU PIE, AR, and FERET databases. |
| Author | Deng, Weihong Zhou, Xiuzhuang Guo, Jun Hu, Jiani |
| Author_xml | – sequence: 1 givenname: Weihong surname: Deng fullname: Deng, Weihong organization: School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China – sequence: 2 givenname: Jiani surname: Hu fullname: Hu, Jiani organization: School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China – sequence: 3 givenname: Xiuzhuang surname: Zhou fullname: Zhou, Xiuzhuang email: xiuzhuangzhou@126.com, zxz@xeehoo.com organization: College of Information Engineering, Capital Normal University, Beijing 100048, China – sequence: 4 givenname: Jun surname: Guo fullname: Guo, Jun organization: School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28785198$$DView record in Pascal Francis |
| BookMark | eNqFkE1LJDEQhoMoOH78Aw-5eOy2ks5093hYEPELhL2s51CTVMYMPeneJLrrvzfDqAcPu4dQgarnLeo5YvthDMTYmYBagGgv1vWE2YyrWoJQNbQ1SNhjM9F3TTUXSu6zGUAjqkZCc8iOUloDiK40Zuzvze8Xb33KGDKf4pjH_DZR4rRZkrU-rLgbI0_lMxBPuJlKWWIiyx0a4pHK2uCzHwP_4_MzX1Gg6A0fCGPY4hgs98FE2lDIOHw1TtiBwyHR6Uc9Zk-3N7-u76vHn3cP11ePlVHQ5gqNcdgu5s4QtBKd6hdWOtUtOmfmVgpseimcsD30S5SNteUBKGg6I1Ep1xyz813uhMng4CIG45Oeot9gfNOy7_q5WPRl7nI3Z-KYUiSnjc-4PSxH9IMWoLeu9VrvXOutaw2tLq4LrL7Bn_n_wX7sMCoCXj1FnYynYMj6IjZrO_p_B7wDZFigSQ |
| CODEN | PTNRA8 |
| CitedBy_id | crossref_primary_10_1109_TNNLS_2016_2522431 crossref_primary_10_1016_j_patcog_2016_11_023 crossref_primary_10_1007_s10489_020_01717_0 crossref_primary_10_3390_s19010146 crossref_primary_10_1007_s12652_021_03255_0 crossref_primary_10_1016_j_patcog_2017_03_024 crossref_primary_10_1109_TIFS_2016_2567318 crossref_primary_10_1016_j_patcog_2017_09_014 crossref_primary_10_1109_TIFS_2015_2408431 crossref_primary_10_1016_j_neucom_2014_10_111 crossref_primary_10_1016_j_cogsys_2020_09_004 crossref_primary_10_1016_j_patcog_2016_12_028 crossref_primary_10_1016_j_patrec_2015_05_001 crossref_primary_10_1145_2733383 crossref_primary_10_1016_j_compeleceng_2022_108003 crossref_primary_10_1109_ACCESS_2019_2903333 crossref_primary_10_1007_s10462_022_10240_2 crossref_primary_10_1109_TPAMI_2017_2757923 crossref_primary_10_1109_ACCESS_2020_3017479 crossref_primary_10_3390_app9061189 crossref_primary_10_3233_JIFS_169278 crossref_primary_10_1016_j_patcog_2017_09_022 crossref_primary_10_1007_s00371_020_01802_y crossref_primary_10_1109_TCYB_2017_2739338 crossref_primary_10_1007_s11042_018_7002_5 crossref_primary_10_1016_j_neucom_2024_128708 crossref_primary_10_1016_j_knosys_2019_05_033 crossref_primary_10_1109_TPAMI_2018_2800008 crossref_primary_10_3390_app10020601 crossref_primary_10_1016_j_imavis_2016_08_007 crossref_primary_10_1109_TIFS_2018_2866295 crossref_primary_10_1016_j_neucom_2016_12_059 crossref_primary_10_1049_iet_cvi_2016_0322 crossref_primary_10_3390_math10050752 crossref_primary_10_1109_LSP_2020_2989670 crossref_primary_10_1016_j_neucom_2022_06_113 crossref_primary_10_1049_iet_spr_2015_0213 crossref_primary_10_1007_s10462_017_9578_y crossref_primary_10_1016_j_ins_2016_02_001 |
| Cites_doi | 10.1109/34.927464 10.1109/TIP.2002.999679 10.1109/TPAMI.2006.244 10.1016/j.patcog.2009.12.004 10.1016/j.patcog.2006.03.013 10.2307/1914166 10.1109/TPAMI.2005.55 10.1109/CVPR.2010.5539990 10.1007/11564386_26 10.1016/j.patcog.2009.12.026 10.1016/j.patcog.2012.06.010 10.1109/TPAMI.2010.230 10.1109/TPAMI.2005.250 10.1109/AFGR.1998.670921 10.1109/TPAMI.2008.79 10.1109/TPAMI.2010.128 10.1109/CVPR.2013.58 10.1214/aos/1176342503 10.1109/CVPR.2011.5995556 10.1109/TPAMI.2003.1251154 10.1109/TPAMI.2002.1008382 10.1016/j.patcog.2006.03.010 10.1109/TPAMI.2004.1261097 10.1109/TPAMI.2012.30 10.1109/TNN.2005.849817 10.1109/TPAMI.2007.1033 10.1162/jocn.1991.3.1.71 10.1109/34.598228 10.1109/TPAMI.2010.220 10.1109/TC.1968.226881 10.1109/34.879790 |
| ContentType | Journal Article |
| Copyright | 2014 Elsevier Ltd 2015 INIST-CNRS |
| Copyright_xml | – notice: 2014 Elsevier Ltd – notice: 2015 INIST-CNRS |
| DBID | AAYXX CITATION IQODW |
| DOI | 10.1016/j.patcog.2014.06.020 |
| DatabaseName | CrossRef Pascal-Francis |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science Applied Sciences |
| EISSN | 1873-5142 |
| EndPage | 3749 |
| ExternalDocumentID | 28785198 10_1016_j_patcog_2014_06_020 S0031320314002428 |
| GroupedDBID | --K --M -D8 -DT -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABEFU ABFNM ABFRF ABHFT ABJNI ABMAC ABTAH ABXDB ABYKQ ACBEA ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADMXK ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FD6 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM KZ1 LG9 LMP LY1 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SST SSV SSZ T5K TN5 UNMZH VOH WUQ XJE XPP ZMT ZY4 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD BNPGV IQODW SSH |
| ID | FETCH-LOGICAL-c406t-accfa695fce062af489d2f4797fc5d21a3821f1d808ba23dd23d004037c2a44f3 |
| ISICitedReferencesCount | 61 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000342870900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0031-3203 |
| IngestDate | Wed Apr 02 07:21:52 EDT 2025 Sat Nov 29 03:52:14 EST 2025 Tue Nov 18 20:41:47 EST 2025 Fri Feb 23 02:25:25 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Keywords | One sample problem Feature extraction Generic learning Face recognition Linear regression Biometrics Performance evaluation State of the art Prototype Image processing Updating Mapping Regression analysis Pattern recognition Algorithm Learning Least squares method Database Signal processing Localization Automatic recognition |
| Language | English |
| License | CC BY 4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c406t-accfa695fce062af489d2f4797fc5d21a3821f1d808ba23dd23d004037c2a44f3 |
| PageCount | 12 |
| ParticipantIDs | pascalfrancis_primary_28785198 crossref_citationtrail_10_1016_j_patcog_2014_06_020 crossref_primary_10_1016_j_patcog_2014_06_020 elsevier_sciencedirect_doi_10_1016_j_patcog_2014_06_020 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-12-01 |
| PublicationDateYYYYMMDD | 2014-12-01 |
| PublicationDate_xml | – month: 12 year: 2014 text: 2014-12-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Kidlington |
| PublicationPlace_xml | – name: Kidlington |
| PublicationTitle | Pattern recognition |
| PublicationYear | 2014 |
| Publisher | Elsevier Ltd Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
| References | Naseem, Togneri, Bennamoun (bib19) 2010 W. Deng, J. Hu, J. Lu, J. Guo, Transform-invariant PCA: a unified approach to fully automatic face alignment, representation, and recognition, IEEE Trans. Pattern Anal. Mach. Intell. 36 (6) (2014) 1275–1284. Bekker (bib22) 1986 Meytlis, Sirovich (bib27) 2007; 29 Turk, Pentland (bib2) 1991; 3 Huber (bib23) 1973 W. Deng, J. Hu, J. Guo, Gabor-eigen-whiten-cosine: a robust scheme for face recognition, in: Analysis and Modelling of Faces and Gestures, Springer, 2005, pp. 336–349. W. Deng, J. Hu, J. Guo, In defense of sparsity based face recognition, in: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2013, pp. 399–406. Q. Shi, A. Eriksson, A. van den Hengel, C. Shen, Is face recognition really a compressive sensing problem? in: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2011, pp. 553–560. Phillips, Moon, Rizvi, Rauss (bib31) 2000; 22 Deng, Liu, Hu, Guo (bib1) 2012; 45 Wang, Plataniotis, Lu, Venetsanopoulos (bib11) 2006; 39 Martínez (bib9) 2002 Yang, Zhang (bib4) 2004; 26 T. Sim, S. Baker, M. Bsat, The CMU pose, illumination, and expression (PIE) database, in: Proceedings of the Fifth IEEE International Conference on Automatic Face and Gesture Recognition, IEEE, 2002, pp. 46–51. Deng, Hu, Guo, Cai, Feng (bib7) 2010; 43 Liu, Wechsler (bib6) 2002; 11 V. Vapnik, Statistical Learning Theory, 1998. Deng, Hu, Guo, Cai, Feng (bib33) 2010; 43 Ahonen, Hadid, Pietikinen (bib8) 2006; 28 He, Yan, Hu, Niyogi, Zhang (bib15) 2005; 27 Ben-Israel, Greville (bib17) 2003; vol. 15 Deng, Hu, Guo (bib12) 2012; 34 Tan, Chen, Zhou, Zhang (bib14) 2006; 39 Georghiades, Belhumeur, Kriegman (bib28) 2001; 23 Belhumeour, Hespanha, Kriegman (bib36) 1997; 19 Martinez, Zhu (bib25) 2005; 27 Wee (bib18) 1968; 100 Friedman, Hastie, Tibshirani (bib21) 2001 B. Moghaddam, W. Wahid, A. Pentland, Beyond eigenfaces: probabilistic matching for face recognition, in: Proceedings of the Third IEEE International Conference on Automatic Face and Gesture Recognition, April 1998, pp. 30–35. A.M. Martinez, R. Benavente, The AR Face Database, CVC Technical Report #24, June 1998. Wolf, Hassner, Taigman (bib37) 2011; 33 Wright, Yang, Ganesh, Sastry, Ma (bib35) 2009; 31 Y. Su, S. Shan, X. Chen, W. Gao, Adaptive generic learning for face recognition from a single sample per person, in: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2010, pp. 2699–2706. Zhang, Zhou, Chen (bib10) 2005; 16 He, Zheng, Hu (bib24) 2011; 33 Sim, Baker, Bsat (bib29) 2003; 25 Naseem (10.1016/j.patcog.2014.06.020_bib19) 2010 Turk (10.1016/j.patcog.2014.06.020_bib2) 1991; 3 Ben-Israel (10.1016/j.patcog.2014.06.020_bib17) 2003; vol. 15 Deng (10.1016/j.patcog.2014.06.020_bib1) 2012; 45 Deng (10.1016/j.patcog.2014.06.020_bib7) 2010; 43 Wang (10.1016/j.patcog.2014.06.020_bib11) 2006; 39 Wolf (10.1016/j.patcog.2014.06.020_bib37) 2011; 33 Friedman (10.1016/j.patcog.2014.06.020_bib21) 2001 Tan (10.1016/j.patcog.2014.06.020_bib14) 2006; 39 Yang (10.1016/j.patcog.2014.06.020_bib4) 2004; 26 Huber (10.1016/j.patcog.2014.06.020_bib23) 1973 Georghiades (10.1016/j.patcog.2014.06.020_bib28) 2001; 23 10.1016/j.patcog.2014.06.020_bib20 Wright (10.1016/j.patcog.2014.06.020_bib35) 2009; 31 Deng (10.1016/j.patcog.2014.06.020_bib33) 2010; 43 10.1016/j.patcog.2014.06.020_bib3 Bekker (10.1016/j.patcog.2014.06.020_bib22) 1986 Martinez (10.1016/j.patcog.2014.06.020_bib25) 2005; 27 10.1016/j.patcog.2014.06.020_bib26 Liu (10.1016/j.patcog.2014.06.020_bib6) 2002; 11 10.1016/j.patcog.2014.06.020_bib5 He (10.1016/j.patcog.2014.06.020_bib15) 2005; 27 Ahonen (10.1016/j.patcog.2014.06.020_bib8) 2006; 28 Deng (10.1016/j.patcog.2014.06.020_bib12) 2012; 34 Sim (10.1016/j.patcog.2014.06.020_bib29) 2003; 25 Phillips (10.1016/j.patcog.2014.06.020_bib31) 2000; 22 He (10.1016/j.patcog.2014.06.020_bib24) 2011; 33 Martínez (10.1016/j.patcog.2014.06.020_bib9) 2002 10.1016/j.patcog.2014.06.020_bib30 Zhang (10.1016/j.patcog.2014.06.020_bib10) 2005; 16 Wee (10.1016/j.patcog.2014.06.020_bib18) 1968; 100 Belhumeour (10.1016/j.patcog.2014.06.020_bib36) 1997; 19 10.1016/j.patcog.2014.06.020_bib16 10.1016/j.patcog.2014.06.020_bib32 10.1016/j.patcog.2014.06.020_bib34 10.1016/j.patcog.2014.06.020_bib13 Meytlis (10.1016/j.patcog.2014.06.020_bib27) 2007; 29 |
| References_xml | – year: 2001 ident: bib21 article-title: The Elements of Statistical Learning – volume: 3 start-page: 71 year: 1991 end-page: 86 ident: bib2 article-title: Eigenfaces for recognition publication-title: J. Cogn. Neurosci. – start-page: 215 year: 1986 end-page: 217 ident: bib22 article-title: Comment on identification in the linear errors in variables model publication-title: Econom.: J. Econom. Soc. – volume: 25 start-page: 1615 year: 2003 end-page: 1618 ident: bib29 article-title: The CMU pose, illumination, and expression database publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: T. Sim, S. Baker, M. Bsat, The CMU pose, illumination, and expression (PIE) database, in: Proceedings of the Fifth IEEE International Conference on Automatic Face and Gesture Recognition, IEEE, 2002, pp. 46–51. – reference: B. Moghaddam, W. Wahid, A. Pentland, Beyond eigenfaces: probabilistic matching for face recognition, in: Proceedings of the Third IEEE International Conference on Automatic Face and Gesture Recognition, April 1998, pp. 30–35. – volume: 31 start-page: 210 year: 2009 end-page: 227 ident: bib35 article-title: Robust face recognition via sparse representation publication-title: IEEE Trans. Pattern Anal. Machine Intell. – reference: W. Deng, J. Hu, J. Guo, Gabor-eigen-whiten-cosine: a robust scheme for face recognition, in: Analysis and Modelling of Faces and Gestures, Springer, 2005, pp. 336–349. – volume: 100 start-page: 1157 year: 1968 end-page: 1164 ident: bib18 article-title: Generalized inverse approach to adaptive multiclass pattern classification publication-title: IEEE Trans. Comput. – volume: 23 start-page: 643 year: 2001 end-page: 660 ident: bib28 article-title: From few to many publication-title: IEEE Trans. Pattern Anal. Machine Intell. – reference: A.M. Martinez, R. Benavente, The AR Face Database, CVC Technical Report #24, June 1998. – volume: 34 start-page: 1864 year: 2012 end-page: 1870 ident: bib12 article-title: Extended SRC publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 39 start-page: 1746 year: 2006 end-page: 1762 ident: bib14 article-title: Face recognition from a single image per person publication-title: Pattern Recognit. – volume: 39 start-page: 1725 year: 2006 end-page: 1745 ident: bib11 article-title: On solving the face recognition problem with one training sample per subject publication-title: Pattern Recognit. – volume: 29 start-page: 1262 year: 2007 end-page: 1267 ident: bib27 article-title: On the dimensionality of face space publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 27 start-page: 328 year: 2005 end-page: 340 ident: bib15 article-title: Face recognition using Laplacianfaces publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: Y. Su, S. Shan, X. Chen, W. Gao, Adaptive generic learning for face recognition from a single sample per person, in: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2010, pp. 2699–2706. – reference: Q. Shi, A. Eriksson, A. van den Hengel, C. Shen, Is face recognition really a compressive sensing problem? in: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2011, pp. 553–560. – volume: 43 start-page: 1748 year: 2010 end-page: 1762 ident: bib33 article-title: Robust, accurate and efficient face recognition from a single training image publication-title: Pattern Recognit. – volume: 11 start-page: 467 year: 2002 end-page: 476 ident: bib6 article-title: Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition publication-title: IEEE Trans. Image Process. – volume: vol. 15 year: 2003 ident: bib17 publication-title: Generalized Inverses: Theory and Applications – volume: 33 start-page: 1978 year: 2011 end-page: 1990 ident: bib37 article-title: Effective unconstrained face recognition by combining multiple descriptors and learned background statistics publication-title: IEEE Trans. Pattern Anal. Machine Intell. – volume: 43 start-page: 2210 year: 2010 end-page: 2223 ident: bib7 article-title: Emulating biological strategies for uncontrolled face recognition publication-title: Pattern Recognit. – volume: 28 start-page: 2037 year: 2006 end-page: 2041 ident: bib8 article-title: Face description with local binary patterns publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: W. Deng, J. Hu, J. Guo, In defense of sparsity based face recognition, in: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2013, pp. 399–406. – volume: 33 start-page: 1561 year: 2011 end-page: 1576 ident: bib24 article-title: Maximum correntropy criterion for robust face recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 22 start-page: 162 year: 2000 end-page: 8828 ident: bib31 article-title: The feret evaluation method for face recognition algorithms publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: W. Deng, J. Hu, J. Lu, J. Guo, Transform-invariant PCA: a unified approach to fully automatic face alignment, representation, and recognition, IEEE Trans. Pattern Anal. Mach. Intell. 36 (6) (2014) 1275–1284. – start-page: 799 year: 1973 end-page: 821 ident: bib23 article-title: Robust regression publication-title: Ann. Stat. – volume: 26 start-page: 131 year: 2004 end-page: 137 ident: bib4 article-title: Two-dimensional PCA publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 45 start-page: 4438 year: 2012 end-page: 4450 ident: bib1 article-title: The small sample size problem of ICA publication-title: Pattern Recognit. – start-page: 2106 year: 2010 end-page: 2112 ident: bib19 article-title: Linear regression for face recognition publication-title: IEEE Trans. Pattern Anal. Machine Intell. – volume: 16 start-page: 875 year: 2005 end-page: 886 ident: bib10 article-title: Recognizing partially occluded, expression variant faces from single training image per person with SOM and soft KNN ensemble publication-title: IEEE Trans. Neural Netw. – volume: 19 start-page: 711 year: 1997 end-page: 720 ident: bib36 article-title: Eigenfaces vs. Fisherfaces publication-title: IEEE Trans. Pattern Anal. Machine Intell. – volume: 27 start-page: 1934 year: 2005 end-page: 1944 ident: bib25 article-title: Where are linear feature extraction methods applicable? publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: V. Vapnik, Statistical Learning Theory, 1998. – start-page: 748 year: 2002 end-page: 763 ident: bib9 article-title: Recognizing imprecisely localized, partially occluded, and expression variant faces from a single sample per class publication-title: IEEE Trans. Pattern Anal. Machine Intell. – volume: 23 start-page: 643 issue: 6 year: 2001 ident: 10.1016/j.patcog.2014.06.020_bib28 article-title: From few to many publication-title: IEEE Trans. Pattern Anal. Machine Intell. doi: 10.1109/34.927464 – volume: 11 start-page: 467 issue: 4 year: 2002 ident: 10.1016/j.patcog.2014.06.020_bib6 article-title: Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2002.999679 – volume: 28 start-page: 2037 issue: 12 year: 2006 ident: 10.1016/j.patcog.2014.06.020_bib8 article-title: Face description with local binary patterns publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2006.244 – volume: 43 start-page: 1748 issue: 5 year: 2010 ident: 10.1016/j.patcog.2014.06.020_bib33 article-title: Robust, accurate and efficient face recognition from a single training image publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2009.12.004 – volume: 39 start-page: 1746 issue: 9 year: 2006 ident: 10.1016/j.patcog.2014.06.020_bib14 article-title: Face recognition from a single image per person publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2006.03.013 – start-page: 215 year: 1986 ident: 10.1016/j.patcog.2014.06.020_bib22 article-title: Comment on identification in the linear errors in variables model publication-title: Econom.: J. Econom. Soc. doi: 10.2307/1914166 – volume: 27 start-page: 328 issue: 3 year: 2005 ident: 10.1016/j.patcog.2014.06.020_bib15 article-title: Face recognition using Laplacianfaces publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2005.55 – year: 2001 ident: 10.1016/j.patcog.2014.06.020_bib21 – ident: 10.1016/j.patcog.2014.06.020_bib16 – ident: 10.1016/j.patcog.2014.06.020_bib34 doi: 10.1109/CVPR.2010.5539990 – ident: 10.1016/j.patcog.2014.06.020_bib3 doi: 10.1007/11564386_26 – volume: 43 start-page: 2210 issue: 6 year: 2010 ident: 10.1016/j.patcog.2014.06.020_bib7 article-title: Emulating biological strategies for uncontrolled face recognition publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2009.12.026 – volume: 45 start-page: 4438 issue: 12 year: 2012 ident: 10.1016/j.patcog.2014.06.020_bib1 article-title: The small sample size problem of ICA publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2012.06.010 – volume: 33 start-page: 1978 issue: October (10) year: 2011 ident: 10.1016/j.patcog.2014.06.020_bib37 article-title: Effective unconstrained face recognition by combining multiple descriptors and learned background statistics publication-title: IEEE Trans. Pattern Anal. Machine Intell. doi: 10.1109/TPAMI.2010.230 – volume: 27 start-page: 1934 issue: 12 year: 2005 ident: 10.1016/j.patcog.2014.06.020_bib25 article-title: Where are linear feature extraction methods applicable? publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2005.250 – ident: 10.1016/j.patcog.2014.06.020_bib26 doi: 10.1109/AFGR.1998.670921 – volume: 31 start-page: 210 issue: 2 year: 2009 ident: 10.1016/j.patcog.2014.06.020_bib35 article-title: Robust face recognition via sparse representation publication-title: IEEE Trans. Pattern Anal. Machine Intell. doi: 10.1109/TPAMI.2008.79 – start-page: 2106 year: 2010 ident: 10.1016/j.patcog.2014.06.020_bib19 article-title: Linear regression for face recognition publication-title: IEEE Trans. Pattern Anal. Machine Intell. doi: 10.1109/TPAMI.2010.128 – ident: 10.1016/j.patcog.2014.06.020_bib13 doi: 10.1109/CVPR.2013.58 – start-page: 799 issue: 5 year: 1973 ident: 10.1016/j.patcog.2014.06.020_bib23 article-title: Robust regression publication-title: Ann. Stat. doi: 10.1214/aos/1176342503 – ident: 10.1016/j.patcog.2014.06.020_bib20 doi: 10.1109/CVPR.2011.5995556 – ident: 10.1016/j.patcog.2014.06.020_bib30 – ident: 10.1016/j.patcog.2014.06.020_bib5 – volume: 25 start-page: 1615 issue: 12 year: 2003 ident: 10.1016/j.patcog.2014.06.020_bib29 article-title: The CMU pose, illumination, and expression database publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2003.1251154 – start-page: 748 year: 2002 ident: 10.1016/j.patcog.2014.06.020_bib9 article-title: Recognizing imprecisely localized, partially occluded, and expression variant faces from a single sample per class publication-title: IEEE Trans. Pattern Anal. Machine Intell. doi: 10.1109/TPAMI.2002.1008382 – volume: 39 start-page: 1725 issue: 9 year: 2006 ident: 10.1016/j.patcog.2014.06.020_bib11 article-title: On solving the face recognition problem with one training sample per subject publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2006.03.010 – volume: 26 start-page: 131 issue: 1 year: 2004 ident: 10.1016/j.patcog.2014.06.020_bib4 article-title: Two-dimensional PCA publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2004.1261097 – volume: 34 start-page: 1864 issue: 9 year: 2012 ident: 10.1016/j.patcog.2014.06.020_bib12 article-title: Extended SRC publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2012.30 – volume: vol. 15 year: 2003 ident: 10.1016/j.patcog.2014.06.020_bib17 – volume: 16 start-page: 875 issue: 4 year: 2005 ident: 10.1016/j.patcog.2014.06.020_bib10 article-title: Recognizing partially occluded, expression variant faces from single training image per person with SOM and soft KNN ensemble publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2005.849817 – ident: 10.1016/j.patcog.2014.06.020_bib32 – volume: 29 start-page: 1262 issue: 7 year: 2007 ident: 10.1016/j.patcog.2014.06.020_bib27 article-title: On the dimensionality of face space publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2007.1033 – volume: 3 start-page: 71 issue: 1 year: 1991 ident: 10.1016/j.patcog.2014.06.020_bib2 article-title: Eigenfaces for recognition publication-title: J. Cogn. Neurosci. doi: 10.1162/jocn.1991.3.1.71 – volume: 19 start-page: 711 issue: 7 year: 1997 ident: 10.1016/j.patcog.2014.06.020_bib36 article-title: Eigenfaces vs. Fisherfaces publication-title: IEEE Trans. Pattern Anal. Machine Intell. doi: 10.1109/34.598228 – volume: 33 start-page: 1561 issue: 8 year: 2011 ident: 10.1016/j.patcog.2014.06.020_bib24 article-title: Maximum correntropy criterion for robust face recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2010.220 – volume: 100 start-page: 1157 issue: 12 year: 1968 ident: 10.1016/j.patcog.2014.06.020_bib18 article-title: Generalized inverse approach to adaptive multiclass pattern classification publication-title: IEEE Trans. Comput. doi: 10.1109/TC.1968.226881 – volume: 22 start-page: 162 year: 2000 ident: 10.1016/j.patcog.2014.06.020_bib31 article-title: The feret evaluation method for face recognition algorithms publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.879790 |
| SSID | ssj0017142 |
| Score | 2.3908243 |
| Snippet | We develop a parameter-free face recognition algorithm which is insensitive to large variations in lighting, expression, occlusion, and age using a single... |
| SourceID | pascalfrancis crossref elsevier |
| SourceType | Index Database Enrichment Source Publisher |
| StartPage | 3738 |
| SubjectTerms | Applied sciences Detection, estimation, filtering, equalization, prediction Exact sciences and technology Face recognition Feature extraction Generic learning Image processing Information, signal and communications theory Linear regression One sample problem Pattern recognition Signal and communications theory Signal processing Signal, noise Telecommunications and information theory |
| Title | Equidistant prototypes embedding for single sample based face recognition with generic learning and incremental learning |
| URI | https://dx.doi.org/10.1016/j.patcog.2014.06.020 |
| Volume | 47 |
| WOSCitedRecordID | wos000342870900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-5142 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017142 issn: 0031-3203 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZKlwMS4o1YHisfuFVBie3EznGFyuuw2sMieotcP9iuuknZJquK_8P_xI7txLCCZQ8cGlVO7KSdLzPj8fgbAF7Lpba0ajTJJCoSQmSZGKdeJJgb-5IzLTOV9sUm6NERWyzK48nkR9gLc7mmdc12u3LzX0Vt2oyw7dbZG4h7GNQ0mO9G6OZoxG6O_yT4-bduJa1XWLc2-6ptbJR1O1PnSyVlyJu0EYK1mm25JQeeWVMmbekdW0PFJxQ1bn-3LbHcZ9uvQwzF0TUJF1c0Ag4nYjf3uGftrOPRBo9ZOe3yRa1OG9-rh1WPJwPW1RjLbvrGxar7ftrx8dr3nVsu6uo4ZpGRKP_D62GcJRilONbDjnkz4A1FWtWyL0UWGlPHcnpF-7tAxNmbjbFizVebt0d6claUjtYurPD_ZgSH1MSQ9XZWuVEqO0plk_9QegvsIZqXbAr2Dj_OF5-G5SqaEUdL739W2KPZJxJefZo_-UB3N3xr3kztSqpEfs7JA3DPT1DgoQPWQzBR9SNwPxT_gN4WPAa7CGdwxBkccAYNzqDDGXQ4gz3OoMUZjJABLc6gxxkMcIIGZzDC2XDiCfj8bn7y9kPiy3gkwniLbcKF0Lwocy1UWiCuCSsl0oSWVItcooxjhjKdSZayJUdYSvOxtgVTgTghGj8F07qp1TMAecELYafoVChSKMI0FbpcphgLJnOi9gEOf2wlPMe9LbWyrv4m1n2QDL02juPlmutpkFnl_VTnf1YGiNf0PPhFxMPtEKNm6lOy5zd8lBfgzvh-vQTT9qJTr8BtcdmuthcHHqY_AThpx-w |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Equidistant+prototypes+embedding+for+single+sample+based+face+recognition+with+generic+learning+and+incremental+learning&rft.jtitle=Pattern+recognition&rft.au=Deng%2C+Weihong&rft.au=Hu%2C+Jiani&rft.au=Zhou%2C+Xiuzhuang&rft.au=Guo%2C+Jun&rft.date=2014-12-01&rft.issn=0031-3203&rft.volume=47&rft.issue=12&rft.spage=3738&rft.epage=3749&rft_id=info:doi/10.1016%2Fj.patcog.2014.06.020&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_patcog_2014_06_020 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon |