kMap.py: A Python program for simulation and data analysis in photoemission tomography

Ultra-violet photoemission spectroscopy is a widely-used experimental technique to investigate the valence electronic structure of surfaces and interfaces. When detecting the intensity of the emitted electrons not only as a function of their kinetic energy, but also depending on their emission angle...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computer physics communications Ročník 263; s. 107905
Hlavní autoři: Brandstetter, Dominik, Yang, Xiaosheng, Lüftner, Daniel, Tautz, F. Stefan, Puschnig, Peter
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.06.2021
Témata:
ISSN:0010-4655, 1879-2944
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Ultra-violet photoemission spectroscopy is a widely-used experimental technique to investigate the valence electronic structure of surfaces and interfaces. When detecting the intensity of the emitted electrons not only as a function of their kinetic energy, but also depending on their emission angle, as is done in angle-resolved photoemission spectroscopy (ARPES), extremely rich information about the electronic structure of the investigated sample can be extracted. For organic molecules adsorbed as well-oriented ultra-thin films on metallic surfaces, ARPES has evolved into a technique called photoemission tomography (PT). By approximating the final state of the photoemitted electron as a free electron, PT uses the angular dependence of the photocurrent, a so-called momentum map or k-map, and interprets it as the Fourier transform of the initial state’s molecular orbital, thereby gaining insights into the geometric and electronic structure of organic/metal interfaces. In this contribution, we present kMap.py which is a Python program that enables the user, via a PyQt-based graphical user interface, to simulate photoemission momentum maps of molecular orbitals and to perform a one-to-one comparison between simulation and experiment. Based on the plane wave approximation for the final state, simulated momentum maps are computed numerically from a fast Fourier transform (FFT) of real space molecular orbital distributions, which are used as program input and taken from density functional calculations. The program allows the user to vary a number of simulation parameters, such as the final state kinetic energy, the molecular orientation or the polarization state of the incident light field. Moreover, also experimental photoemission data can be loaded into the program, enabling a direct visual comparison as well as an automatic optimization procedure to determine structural parameters of the molecules or weights of molecular orbitals contributions. With an increasing number of experimental groups employing photoemission tomography to study molecular adsorbate layers, we expect kMap.py to serve as a helpful analysis software to further extend the applicability of PT. Program Title:kMap.py CPC Library link to program files:https://doi.org/10.17632/tnrm9jcccc.1 Developer’s respository link:https://github.com/brands-d/kMap/ Code Ocean capsule:https://codeocean.com/capsule/5788845 Licensing provisions: GPLv3 Programming language: Python 3.x Nature of problem: Photoemission tomography (PT) has evolved as a powerful experimental method to investigate the electronic and geometric structure of organic molecular films [1]. It is based on valence band angle-resolved photoemission spectroscopy and seeks an interpretation of the angular dependence of the photocurrent, a so-called momentum map, from a given initial state in terms of the spatial structure of molecular orbitals. For this purpose, PT heavily relies on a simulation platform which is capable of efficiently predicting momentum maps for a variety of organic molecules, which allows for a convenient way of treating the effect of molecular orientations, and which also accounts for other experimental parameters such as the geometrical setup and nature of the incident photon source. Thereby, PT has been used to determine molecular geometries, gain insight into the nature of the surface chemistry, unambiguously determine the orbital energy ordering in molecular homo- and heterostructures and even reconstruct the orbitals of adsorbed molecules [1–4]. Solution method:kMap.py is a Python program that enables the user, via a PyQt-based graphical user interface, to simulate photoemission momentum maps of molecular orbitals and to perform a one-to-one comparison between simulation and experiment. Based on the plane wave approximation for the final state, simulated momentum maps are computed numerically from a fast Fourier transform (FFT) of real space molecular orbital distributions [2] which are used as program input and which are usually obtained from density functional calculations. The user can vary a number of simulation parameters such as the final state kinetic energy, the molecular orientation or the polarization state of the incident light field. Moreover, also experimental photoemission data can be loaded into the program, enabling a direct visual comparison as well as an automatic optimization procedure to minimize the difference between simulated and measured momentum maps. Thereby, structural parameters of the molecules [2] and the weights of molecular orbitals to experimentally observed emission features can be determined [3]. References [1] P. Puschnig, M. Ramsey, Photoemission tomography: Valence band photoemission as a quantitative method for investigating molecular films, in: K. Wandelt (Ed.), Encyclopedia of Interfacial Chemistry, Elsevier, Oxford, 2018, pp. 380–391. [2] P. Puschnig, S. Berkebile, A. J. Fleming, G. Koller, K. Emtsev, T. Seyller, J. D. Riley, C. Ambrosch-Draxl, F. P. Netzer, M. G. Ramsey, Reconstruction of molecular orbital densities from photoemission data, Science 326 (2009) 702–706. [3] P. Puschnig, E.-M. Reinisch, T. Ules, G. Koller, S. Soubatch, M. Ostler, L. Romaner, F. S. Tautz, C. Ambrosch-Draxl, M. G. Ramsey, Orbital tomography: Deconvoluting photoemission spectra of organic molecules, Phys. Rev. B 84 (2011) 235427. [4] D. Lüftner, T. Ules, E. M. Reinisch, G. Koller, S. Soubatch, F. S. Tautz, M. G. Ramsey, P. Puschnig, Imaging the wave functions of adsorbed molecules, Proc. Nat. Acad. Sci. U. S. A. 111 (2) (2014) 605–610.
AbstractList Ultra-violet photoemission spectroscopy is a widely-used experimental technique to investigate the valence electronic structure of surfaces and interfaces. When detecting the intensity of the emitted electrons not only as a function of their kinetic energy, but also depending on their emission angle, as is done in angle-resolved photoemission spectroscopy (ARPES), extremely rich information about the electronic structure of the investigated sample can be extracted. For organic molecules adsorbed as well-oriented ultra-thin films on metallic surfaces, ARPES has evolved into a technique called photoemission tomography (PT). By approximating the final state of the photoemitted electron as a free electron, PT uses the angular dependence of the photocurrent, a so-called momentum map or k-map, and interprets it as the Fourier transform of the initial state’s molecular orbital, thereby gaining insights into the geometric and electronic structure of organic/metal interfaces. In this contribution, we present kMap.py which is a Python program that enables the user, via a PyQt-based graphical user interface, to simulate photoemission momentum maps of molecular orbitals and to perform a one-to-one comparison between simulation and experiment. Based on the plane wave approximation for the final state, simulated momentum maps are computed numerically from a fast Fourier transform (FFT) of real space molecular orbital distributions, which are used as program input and taken from density functional calculations. The program allows the user to vary a number of simulation parameters, such as the final state kinetic energy, the molecular orientation or the polarization state of the incident light field. Moreover, also experimental photoemission data can be loaded into the program, enabling a direct visual comparison as well as an automatic optimization procedure to determine structural parameters of the molecules or weights of molecular orbitals contributions. With an increasing number of experimental groups employing photoemission tomography to study molecular adsorbate layers, we expect kMap.py to serve as a helpful analysis software to further extend the applicability of PT. Program Title:kMap.py CPC Library link to program files:https://doi.org/10.17632/tnrm9jcccc.1 Developer’s respository link:https://github.com/brands-d/kMap/ Code Ocean capsule:https://codeocean.com/capsule/5788845 Licensing provisions: GPLv3 Programming language: Python 3.x Nature of problem: Photoemission tomography (PT) has evolved as a powerful experimental method to investigate the electronic and geometric structure of organic molecular films [1]. It is based on valence band angle-resolved photoemission spectroscopy and seeks an interpretation of the angular dependence of the photocurrent, a so-called momentum map, from a given initial state in terms of the spatial structure of molecular orbitals. For this purpose, PT heavily relies on a simulation platform which is capable of efficiently predicting momentum maps for a variety of organic molecules, which allows for a convenient way of treating the effect of molecular orientations, and which also accounts for other experimental parameters such as the geometrical setup and nature of the incident photon source. Thereby, PT has been used to determine molecular geometries, gain insight into the nature of the surface chemistry, unambiguously determine the orbital energy ordering in molecular homo- and heterostructures and even reconstruct the orbitals of adsorbed molecules [1–4]. Solution method:kMap.py is a Python program that enables the user, via a PyQt-based graphical user interface, to simulate photoemission momentum maps of molecular orbitals and to perform a one-to-one comparison between simulation and experiment. Based on the plane wave approximation for the final state, simulated momentum maps are computed numerically from a fast Fourier transform (FFT) of real space molecular orbital distributions [2] which are used as program input and which are usually obtained from density functional calculations. The user can vary a number of simulation parameters such as the final state kinetic energy, the molecular orientation or the polarization state of the incident light field. Moreover, also experimental photoemission data can be loaded into the program, enabling a direct visual comparison as well as an automatic optimization procedure to minimize the difference between simulated and measured momentum maps. Thereby, structural parameters of the molecules [2] and the weights of molecular orbitals to experimentally observed emission features can be determined [3]. References [1] P. Puschnig, M. Ramsey, Photoemission tomography: Valence band photoemission as a quantitative method for investigating molecular films, in: K. Wandelt (Ed.), Encyclopedia of Interfacial Chemistry, Elsevier, Oxford, 2018, pp. 380–391. [2] P. Puschnig, S. Berkebile, A. J. Fleming, G. Koller, K. Emtsev, T. Seyller, J. D. Riley, C. Ambrosch-Draxl, F. P. Netzer, M. G. Ramsey, Reconstruction of molecular orbital densities from photoemission data, Science 326 (2009) 702–706. [3] P. Puschnig, E.-M. Reinisch, T. Ules, G. Koller, S. Soubatch, M. Ostler, L. Romaner, F. S. Tautz, C. Ambrosch-Draxl, M. G. Ramsey, Orbital tomography: Deconvoluting photoemission spectra of organic molecules, Phys. Rev. B 84 (2011) 235427. [4] D. Lüftner, T. Ules, E. M. Reinisch, G. Koller, S. Soubatch, F. S. Tautz, M. G. Ramsey, P. Puschnig, Imaging the wave functions of adsorbed molecules, Proc. Nat. Acad. Sci. U. S. A. 111 (2) (2014) 605–610.
ArticleNumber 107905
Author Lüftner, Daniel
Yang, Xiaosheng
Tautz, F. Stefan
Puschnig, Peter
Brandstetter, Dominik
Author_xml – sequence: 1
  givenname: Dominik
  orcidid: 0000-0002-0434-1289
  surname: Brandstetter
  fullname: Brandstetter, Dominik
  organization: Karl-Franzens-Universität Graz, Institut für Physik, NAWI Graz, 8010 Graz, Austria
– sequence: 2
  givenname: Xiaosheng
  orcidid: 0000-0002-7632-0401
  surname: Yang
  fullname: Yang, Xiaosheng
  organization: Karl-Franzens-Universität Graz, Institut für Physik, NAWI Graz, 8010 Graz, Austria
– sequence: 3
  givenname: Daniel
  surname: Lüftner
  fullname: Lüftner, Daniel
  organization: Karl-Franzens-Universität Graz, Institut für Physik, NAWI Graz, 8010 Graz, Austria
– sequence: 4
  givenname: F. Stefan
  orcidid: 0000-0003-3583-2379
  surname: Tautz
  fullname: Tautz, F. Stefan
  organization: Peter Grünberg Institut (PGI-3), Forschungszentrum Jülich, 52425 Jülich, Germany
– sequence: 5
  givenname: Peter
  orcidid: 0000-0002-8057-7795
  surname: Puschnig
  fullname: Puschnig, Peter
  email: peter.puschnig@uni-graz.at
  organization: Karl-Franzens-Universität Graz, Institut für Physik, NAWI Graz, 8010 Graz, Austria
BookMark eNp9kE1OwzAQhS1UJNrCAdj5Agl26tg1rKqKP6kIFsDWmjoOdUniyDZIuT0OZcWiq5l5et9o5s3QpHOdQeiSkpwSyq_2ue51XpCCpllIUp6gKV0KmRWSsQmaEkJJxnhZnqFZCHtCiBByMUXvn0_Q5_1wjVf4ZYg71-Heuw8PLa6dx8G2Xw1Em2ToKlxBhNRAMwQbsE3enYvOtDaE0RJdO6L9bjhHpzU0wVz81Tl6u7t9XT9km-f7x_Vqk2lGeMxgK7e82rIShAZhNAMBFGohOCWyThoHUzBpiOaLEmq-LIQoDQNgqUApF3MkDnu1dyF4Uytt4--90YNtFCVqjEftVYpHjfGoQzyJpP_I3tsW_HCUuTkwJr30bY1XQVvTaVNZb3RUlbNH6B8FT4EL
CitedBy_id crossref_primary_10_1016_j_carbon_2023_118215
crossref_primary_10_1088_1367_2630_ad3e22
crossref_primary_10_1002_smll_202304803
crossref_primary_10_1002_adfm_202208507
crossref_primary_10_1039_D5NR00700C
crossref_primary_10_1103_2k7h_h8jm
crossref_primary_10_1016_j_ica_2023_121705
crossref_primary_10_1103_PhysRevB_111_165402
Cites_doi 10.1016/j.cpc.2010.04.018
10.1088/1367-2630/17/1/013033
10.1103/PhysRevLett.107.193002
10.1103/PhysRevB.51.13614
10.1038/s41586-020-2649-2
10.1016/j.tsf.2008.06.053
10.1088/1367-2630/16/10/103005
10.1016/j.elspec.2016.11.007
10.1073/pnas.1315716110
10.1103/PhysRevB.86.045417
10.1016/j.elspec.2014.06.003
10.1038/s41467-017-00402-0
10.1063/5.0018597
10.1088/1367-2630/ab0781
10.1038/s41535-019-0194-8
10.1140/epjb/e2019-100015-x
10.1103/PhysRevB.94.205144
10.1126/science.1176105
10.1103/PhysRevLett.117.183001
10.1039/C4CP04595E
10.1088/1367-2630/ab8aae
10.1038/s41467-019-13254-7
10.1016/j.susc.2013.10.020
10.1103/PhysRevB.98.085426
10.1002/ange.201904609
10.1088/1367-2630/18/9/093041
10.1103/PhysRevB.96.125402
10.1021/acs.analchem.6b00986
10.1103/PhysRevB.10.4932
10.1021/acsnano.7b02449
10.1016/j.chemphys.2005.10.023
10.1038/ncomms9287
10.1103/PhysRev.140.A1133
10.1016/0038-1098(78)90838-4
10.1016/j.elspec.2005.01.022
10.1103/PhysRevB.84.235427
10.1103/PhysRevB.10.5030
10.1002/sia.740010103
ContentType Journal Article
Copyright 2021 The Author(s)
Copyright_xml – notice: 2021 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.cpc.2021.107905
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1879-2944
ExternalDocumentID 10_1016_j_cpc_2021_107905
S0010465521000461
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABNEU
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACLVX
ACNNM
ACRLP
ACSBN
ACZNC
ADBBV
ADECG
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AI.
AIALX
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HME
HMV
HVGLF
HZ~
IHE
IMUCA
J1W
KOM
LG9
LZ4
M38
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SCB
SDF
SDG
SES
SEW
SHN
SPC
SPCBC
SPD
SPG
SSE
SSK
SSQ
SSV
SSZ
T5K
TN5
UPT
VH1
WUQ
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c406t-ab9b6db45a7ca7ec4a7a1af776109f7ca6ae249e0c635af682775e4aa475ea593
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000642455800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0010-4655
IngestDate Tue Nov 18 21:58:09 EST 2025
Sat Nov 29 07:32:09 EST 2025
Fri Feb 23 02:41:29 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Python-based simulation tool
Angle-resolved photoemission spectroscopy
Photoemission tomography
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c406t-ab9b6db45a7ca7ec4a7a1af776109f7ca6ae249e0c635af682775e4aa475ea593
ORCID 0000-0002-0434-1289
0000-0002-7632-0401
0000-0002-8057-7795
0000-0003-3583-2379
OpenAccessLink https://dx.doi.org/10.1016/j.cpc.2021.107905
ParticipantIDs crossref_citationtrail_10_1016_j_cpc_2021_107905
crossref_primary_10_1016_j_cpc_2021_107905
elsevier_sciencedirect_doi_10_1016_j_cpc_2021_107905
PublicationCentury 2000
PublicationDate June 2021
2021-06-00
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: June 2021
PublicationDecade 2020
PublicationTitle Computer physics communications
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Puschnig, Reinisch, Ules, Koller, Soubatch, Ostler, Romaner, Tautz, Ambrosch-Draxl, Ramsey (b11) 2011; 84
Moser (b17) 2017; 214
Harris, Millman, van der Walt, Gommers, Virtanen, Cournapeau, Wieser, Taylor, Berg, Smith, Kern, Picus, Hoyer, van Kerkwijk, Brett, Haldane, del Rio, Wiebe, Peterson, Gerard-Marchant, Sheppard, Reddy, Weckesser, Abbasi, Gohlke, Oliphant (b33) 2020; 585
Jones, Oliphant, Peterson (b34) 2001
M. Newville, R. Otten, T. Stensitzki, A.R.J. Nelson, A. Ingargiola, D.B. Allen, M. Rawlik, Lmfit - non-linear least-squares minimization and curve-fitting for python, copyright 2020, URL
Zamborlini, Lüftner, Feng, Kollmann, Puschnig, Dri, Panighel, Santo, Goldoni, Comelli, Jugovac, Feyer, Schneider (b9) 2017; 8
(b31) 2003
Hollerer, Lüftner, Hurdax, Ules, Soubatch, Tautz, Koller, Puschnig, Sterrer, Ramsey (b45) 2017; 11
Puschnig, Berkebile, Fleming, Koller, Emtsev, Seyller, Riley, Ambrosch-Draxl, Netzer, Ramsey (b4) 2009; 326
Feibelman, Eastman (b23) 1974; 10
Park, Kwon (b14) 2016; 88
Kliuiev, Latychevskaia, Osterwalder, Hengsberger, Castiglioni (b46) 2016; 18
.
Graus, Metzger, Grimm, Nigge, Feyer, Schöll, Reinert (b26) 2019; 92
Egger, Kollmann, Hurdax, Lüftner, Yang, Weiß, Gottwald, Richter, Koller, Soubatch, Tautz, Puschnig, Ramsey (b6) 2019; 21
Krylov (b21) 2020; 153
Broekman, Tadich, Huwald, Riley, Leckey, Seyller, Emtsev, Ley (b35) 2005; 144–147
Kohn, Sham (b30) 1965; 140
Valiev, Bylaska, Govind, Kowalski, Straatsma, Dam, Wang, Nieplocha, Apra, Windus, de Jong (b41) 2010; 181
Dauth, Körzdörfer, Kümmel, Ziroff, Wiessner, Schöll, Reinert, Arita, Shimada (b12) 2011; 107
Sholl, Steckel (b32) 2009
Gadzuk (b3) 1974; 10
Seah, Dench (b38) 1979; 1
Koini, Haber, Werzer, Berkebile, Koller, Oehzelt, Ramsey, Resel (b44) 2008; 517
Puschnig (b43) 2020
Liu, Ikeda, Nagamatsu, Nishi, Ueno, Kera (b8) 2014; 195
Kliuiev, Zamborlini, Jugovac, Gurdal, von Arx, Waltar, Schnidrig, Alberto, Iannuzzi, Feyer, Hengsberger, Castiglioni (b10) 2019; 10
Wießner, Hauschild, Schöll, Reinert, Feyer, Winkler, Krömker (b7) 2012; 86
Wallauer, Raths, Stallberg, Münster, Brandstetter, Yang, Güdde, Puschnig, Soubatch, Kumpf, Bocquet, Tautz, Höfer (b16) 2021
Woodruff (b1) 2016
Puschnig, Ramsey (b2) 2018
Feidt, Mathias, Aeschlimann (b18) 2019; 3
Shirley, Terminello, Santoni, Himpsel (b28) 1995; 51
Dauth, Wiessner, Feyer, Schöll, Puschnig, Reinert, Kümmel (b22) 2014; 16
Dauth, Graus, Schelter, Wießner, Schöll, Reinert, Kümmel (b36) 2016; 117
Willenbockel, Lüftner, Stadtmüller, Koller, Kumpf, Puschnig, Soubatch, Ramsey, Tautz (b39) 2015; 17
Lüftner, Hurdax, Koller, Puschnig, Ramsey, Weiß, Yang, Soubatch, Tautz, Feyer, Gottwald (b37) 2017; 96
Truhlar, Hiberty, Shaik, Gordon, Danovich (b20) 2019; 131
Lüftner, Ules, Reinisch, Koller, Soubatch, Tautz, Ramsey, Puschnig (b24) 2014; 111
Feyer, Graus, Nigge, Wießner, Acres, Wiemann, Schneider, Schöll, Reinert (b13) 2014; 621
Day, Zwartsenberg, Elfimov, Damascelli (b19) 2019; 4
Larsen, Mortensen, Blomqvist, Castelli, Christensen, Dulak, Friis, Groves, Hammer, Hargus, Hermes, Jennings, Jensen, Kermode, Kitchin, Kolsbjerg, Kubal, Kaasbjerg, Lysgaard, Maronsson, Maxson, Olsen, Pastewka, Peterson, Rostgaard, Schiotz, Schütt, Strange, Thygesen, Vegge, Vilhelmsen, Walter, Zeng, Jacobsen (b42) 2017; 29
Schönauer, Weiss, Feyer, Lüftner, Stadtmüller, Schwarz, Sueyoshi, Kumpf, Puschnig, Ramsey, Tautz, Soubatch (b15) 2016; 94
Kera, Tanaka, Yamane, Yoshimura, Okudaira, Seki, Ueno (b29) 2006; 325
Kliuiev, Latychevskaia, Zamborlini, Jugovac, Metzger, Grimm, Schöll, Osterwalder, Hengsberger, Castiglioni (b47) 2018; 98
Goldberg, Fadley, Kono (b27) 1978; 28
Weiß, Lüftner, Ules, Reinisch, Kaser, Gottwald, Richter, Soubatch, Koller, Ramsey, Tautz, Puschnig (b25) 2015; 6
Bradshaw, Woodruff (b5) 2015; 17
Jansen, Keunecke, Düvel, Möller, Schmitt, Bennecke, Kappert, Steil, Luke, Steil (b48) 2020; 22
Sholl (10.1016/j.cpc.2021.107905_b32) 2009
Park (10.1016/j.cpc.2021.107905_b14) 2016; 88
Shirley (10.1016/j.cpc.2021.107905_b28) 1995; 51
Puschnig (10.1016/j.cpc.2021.107905_b2) 2018
Weiß (10.1016/j.cpc.2021.107905_b25) 2015; 6
Broekman (10.1016/j.cpc.2021.107905_b35) 2005; 144–147
10.1016/j.cpc.2021.107905_b40
Dauth (10.1016/j.cpc.2021.107905_b12) 2011; 107
(10.1016/j.cpc.2021.107905_b31) 2003
Hollerer (10.1016/j.cpc.2021.107905_b45) 2017; 11
Puschnig (10.1016/j.cpc.2021.107905_b11) 2011; 84
Schönauer (10.1016/j.cpc.2021.107905_b15) 2016; 94
Egger (10.1016/j.cpc.2021.107905_b6) 2019; 21
Puschnig (10.1016/j.cpc.2021.107905_b4) 2009; 326
Harris (10.1016/j.cpc.2021.107905_b33) 2020; 585
Day (10.1016/j.cpc.2021.107905_b19) 2019; 4
Wießner (10.1016/j.cpc.2021.107905_b7) 2012; 86
Feyer (10.1016/j.cpc.2021.107905_b13) 2014; 621
Goldberg (10.1016/j.cpc.2021.107905_b27) 1978; 28
Dauth (10.1016/j.cpc.2021.107905_b36) 2016; 117
Graus (10.1016/j.cpc.2021.107905_b26) 2019; 92
Kera (10.1016/j.cpc.2021.107905_b29) 2006; 325
Jones (10.1016/j.cpc.2021.107905_b34) 2001
Krylov (10.1016/j.cpc.2021.107905_b21) 2020; 153
Dauth (10.1016/j.cpc.2021.107905_b22) 2014; 16
Kohn (10.1016/j.cpc.2021.107905_b30) 1965; 140
Wallauer (10.1016/j.cpc.2021.107905_b16) 2021
Liu (10.1016/j.cpc.2021.107905_b8) 2014; 195
Feibelman (10.1016/j.cpc.2021.107905_b23) 1974; 10
Woodruff (10.1016/j.cpc.2021.107905_b1) 2016
Truhlar (10.1016/j.cpc.2021.107905_b20) 2019; 131
Kliuiev (10.1016/j.cpc.2021.107905_b10) 2019; 10
Larsen (10.1016/j.cpc.2021.107905_b42) 2017; 29
Valiev (10.1016/j.cpc.2021.107905_b41) 2010; 181
Zamborlini (10.1016/j.cpc.2021.107905_b9) 2017; 8
Moser (10.1016/j.cpc.2021.107905_b17) 2017; 214
Lüftner (10.1016/j.cpc.2021.107905_b24) 2014; 111
Puschnig (10.1016/j.cpc.2021.107905_b43) 2020
Kliuiev (10.1016/j.cpc.2021.107905_b47) 2018; 98
Bradshaw (10.1016/j.cpc.2021.107905_b5) 2015; 17
Koini (10.1016/j.cpc.2021.107905_b44) 2008; 517
Willenbockel (10.1016/j.cpc.2021.107905_b39) 2015; 17
Kliuiev (10.1016/j.cpc.2021.107905_b46) 2016; 18
Jansen (10.1016/j.cpc.2021.107905_b48) 2020; 22
Lüftner (10.1016/j.cpc.2021.107905_b37) 2017; 96
Feidt (10.1016/j.cpc.2021.107905_b18) 2019; 3
Seah (10.1016/j.cpc.2021.107905_b38) 1979; 1
Gadzuk (10.1016/j.cpc.2021.107905_b3) 1974; 10
References_xml – year: 2021
  ident: b16
  publication-title: Science
– reference: M. Newville, R. Otten, T. Stensitzki, A.R.J. Nelson, A. Ingargiola, D.B. Allen, M. Rawlik, Lmfit - non-linear least-squares minimization and curve-fitting for python, copyright 2020, URL
– volume: 111
  start-page: 605
  year: 2014
  end-page: 610
  ident: b24
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 181
  start-page: 1477
  year: 2010
  end-page: 1489
  ident: b41
  publication-title: Comput. Phys. Comm.
– volume: 140
  start-page: A1133
  year: 1965
  end-page: A1138
  ident: b30
  publication-title: Phys. Rev.
– volume: 131
  start-page: 12460
  year: 2019
  end-page: 12466
  ident: b20
  publication-title: Angew. Chem.
– year: 2001
  ident: b34
  article-title: SciPy: Open source scientific tools for Python
– volume: 51
  start-page: 13614
  year: 1995
  ident: b28
  publication-title: Phys. Rev. B
– start-page: 380
  year: 2018
  end-page: 391
  ident: b2
  publication-title: Encyclopedia of Interfacial Chemistry
– volume: 10
  start-page: 5255
  year: 2019
  ident: b10
  publication-title: Nature Commun.
– volume: 94
  year: 2016
  ident: b15
  publication-title: Phys. Rev. B
– volume: 585
  start-page: 357
  year: 2020
  end-page: 362
  ident: b33
  publication-title: Nature
– volume: 1
  start-page: 2
  year: 1979
  end-page: 11
  ident: b38
  publication-title: Surf. Interface Anal.
– volume: 4
  start-page: 54
  year: 2019
  ident: b19
  publication-title: npj Quantum Mater.
– volume: 88
  start-page: 4565
  year: 2016
  end-page: 4570
  ident: b14
  publication-title: Anal. Chem.
– year: 2003
  ident: b31
  publication-title: A Primer in Density Functional Theory
– volume: 6
  start-page: 8287
  year: 2015
  ident: b25
  publication-title: Nature Commun.
– volume: 10
  start-page: 4932
  year: 1974
  ident: b23
  publication-title: Phys. Rev. B
– volume: 214
  start-page: 29
  year: 2017
  end-page: 52
  ident: b17
  publication-title: J. Electron Spectrosc. Relat. Phenom.
– volume: 11
  start-page: 6252
  year: 2017
  end-page: 6260
  ident: b45
  publication-title: ACS Nano
– volume: 107
  year: 2011
  ident: b12
  publication-title: Phys. Rev. Lett.
– volume: 92
  start-page: 80
  year: 2019
  ident: b26
  publication-title: Eur. Phys. J. B
– volume: 21
  year: 2019
  ident: b6
  publication-title: New J. Phys.
– year: 2009
  ident: b32
  article-title: Density Functional Theory: A Practical Introduction
– volume: 3
  year: 2019
  ident: b18
  publication-title: Phys. Rev. Mater.
– volume: 517
  start-page: 483
  year: 2008
  end-page: 487
  ident: b44
  publication-title: Thin Solid Films
– volume: 621
  start-page: 64
  year: 2014
  end-page: 68
  ident: b13
  publication-title: Surf. Sci.
– volume: 86
  year: 2012
  ident: b7
  publication-title: Phys. Rev. B
– volume: 144–147
  start-page: 1001
  year: 2005
  end-page: 1004
  ident: b35
  publication-title: J. Electron. Spectrosc. Relat. Phenom.
– volume: 17
  year: 2015
  ident: b5
  publication-title: New J. Phys.
– volume: 117
  year: 2016
  ident: b36
  publication-title: Phys. Rev. Lett.
– volume: 98
  year: 2018
  ident: b47
  publication-title: Phys. Rev. B
– volume: 153
  year: 2020
  ident: b21
  publication-title: J. Chem. Phys.
– volume: 16
  year: 2014
  ident: b22
  publication-title: New J. Phys.
– volume: 325
  start-page: 113
  year: 2006
  end-page: 120
  ident: b29
  publication-title: Chem. Phys.
– volume: 8
  start-page: 335
  year: 2017
  ident: b9
  publication-title: Nature Commun.
– volume: 326
  start-page: 702
  year: 2009
  end-page: 706
  ident: b4
  publication-title: Science
– volume: 84
  year: 2011
  ident: b11
  publication-title: Phys. Rev. B
– year: 2020
  ident: b43
  article-title: Organic Molecule Database: a database for molecular orbitals of
– volume: 17
  start-page: 1530
  year: 2015
  end-page: 1548
  ident: b39
  publication-title: Phys. Chem. Chem. Phys.
– year: 2016
  ident: b1
  article-title: Modern Techniques of Surface Science
– volume: 29
  year: 2017
  ident: b42
  publication-title: J. Phys.: Condens. Matter
– reference: .
– volume: 28
  start-page: 459
  year: 1978
  end-page: 463
  ident: b27
  publication-title: Solid State Commun.
– volume: 96
  year: 2017
  ident: b37
  publication-title: Phys. Rev. B
– volume: 195
  start-page: 287
  year: 2014
  end-page: 292
  ident: b8
  publication-title: J. Electron Spectrosc. Relat. Phenom.
– volume: 18
  year: 2016
  ident: b46
  publication-title: New J. Phys.
– volume: 10
  start-page: 5030
  year: 1974
  end-page: 5044
  ident: b3
  publication-title: Phys. Rev. B
– volume: 22
  year: 2020
  ident: b48
  publication-title: New J. Phys.
– year: 2009
  ident: 10.1016/j.cpc.2021.107905_b32
– volume: 181
  start-page: 1477
  issue: 9
  year: 2010
  ident: 10.1016/j.cpc.2021.107905_b41
  publication-title: Comput. Phys. Comm.
  doi: 10.1016/j.cpc.2010.04.018
– volume: 17
  year: 2015
  ident: 10.1016/j.cpc.2021.107905_b5
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/17/1/013033
– volume: 107
  year: 2011
  ident: 10.1016/j.cpc.2021.107905_b12
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.107.193002
– volume: 51
  start-page: 13614
  year: 1995
  ident: 10.1016/j.cpc.2021.107905_b28
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.51.13614
– volume: 585
  start-page: 357
  issue: 7825
  year: 2020
  ident: 10.1016/j.cpc.2021.107905_b33
  publication-title: Nature
  doi: 10.1038/s41586-020-2649-2
– volume: 3
  year: 2019
  ident: 10.1016/j.cpc.2021.107905_b18
  publication-title: Phys. Rev. Mater.
– volume: 517
  start-page: 483
  year: 2008
  ident: 10.1016/j.cpc.2021.107905_b44
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2008.06.053
– volume: 16
  year: 2014
  ident: 10.1016/j.cpc.2021.107905_b22
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/16/10/103005
– volume: 214
  start-page: 29
  year: 2017
  ident: 10.1016/j.cpc.2021.107905_b17
  publication-title: J. Electron Spectrosc. Relat. Phenom.
  doi: 10.1016/j.elspec.2016.11.007
– volume: 111
  start-page: 605
  issue: 2
  year: 2014
  ident: 10.1016/j.cpc.2021.107905_b24
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1315716110
– ident: 10.1016/j.cpc.2021.107905_b40
– volume: 86
  year: 2012
  ident: 10.1016/j.cpc.2021.107905_b7
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.86.045417
– volume: 195
  start-page: 287
  year: 2014
  ident: 10.1016/j.cpc.2021.107905_b8
  publication-title: J. Electron Spectrosc. Relat. Phenom.
  doi: 10.1016/j.elspec.2014.06.003
– volume: 8
  start-page: 335
  year: 2017
  ident: 10.1016/j.cpc.2021.107905_b9
  publication-title: Nature Commun.
  doi: 10.1038/s41467-017-00402-0
– volume: 153
  year: 2020
  ident: 10.1016/j.cpc.2021.107905_b21
  publication-title: J. Chem. Phys.
  doi: 10.1063/5.0018597
– year: 2003
  ident: 10.1016/j.cpc.2021.107905_b31
– volume: 21
  year: 2019
  ident: 10.1016/j.cpc.2021.107905_b6
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/ab0781
– year: 2021
  ident: 10.1016/j.cpc.2021.107905_b16
  publication-title: Science
– volume: 29
  issue: 27
  year: 2017
  ident: 10.1016/j.cpc.2021.107905_b42
  publication-title: J. Phys.: Condens. Matter
– volume: 4
  start-page: 54
  year: 2019
  ident: 10.1016/j.cpc.2021.107905_b19
  publication-title: npj Quantum Mater.
  doi: 10.1038/s41535-019-0194-8
– volume: 92
  start-page: 80
  year: 2019
  ident: 10.1016/j.cpc.2021.107905_b26
  publication-title: Eur. Phys. J. B
  doi: 10.1140/epjb/e2019-100015-x
– year: 2001
  ident: 10.1016/j.cpc.2021.107905_b34
– volume: 94
  year: 2016
  ident: 10.1016/j.cpc.2021.107905_b15
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.94.205144
– volume: 326
  start-page: 702
  year: 2009
  ident: 10.1016/j.cpc.2021.107905_b4
  publication-title: Science
  doi: 10.1126/science.1176105
– volume: 117
  year: 2016
  ident: 10.1016/j.cpc.2021.107905_b36
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.117.183001
– volume: 17
  start-page: 1530
  year: 2015
  ident: 10.1016/j.cpc.2021.107905_b39
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C4CP04595E
– volume: 22
  year: 2020
  ident: 10.1016/j.cpc.2021.107905_b48
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/ab8aae
– volume: 10
  start-page: 5255
  year: 2019
  ident: 10.1016/j.cpc.2021.107905_b10
  publication-title: Nature Commun.
  doi: 10.1038/s41467-019-13254-7
– volume: 621
  start-page: 64
  issue: 0
  year: 2014
  ident: 10.1016/j.cpc.2021.107905_b13
  publication-title: Surf. Sci.
  doi: 10.1016/j.susc.2013.10.020
– volume: 98
  year: 2018
  ident: 10.1016/j.cpc.2021.107905_b47
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.98.085426
– volume: 131
  start-page: 12460
  issue: 36
  year: 2019
  ident: 10.1016/j.cpc.2021.107905_b20
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201904609
– volume: 18
  year: 2016
  ident: 10.1016/j.cpc.2021.107905_b46
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/18/9/093041
– volume: 96
  year: 2017
  ident: 10.1016/j.cpc.2021.107905_b37
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.96.125402
– volume: 88
  start-page: 4565
  issue: 0
  year: 2016
  ident: 10.1016/j.cpc.2021.107905_b14
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.6b00986
– year: 2016
  ident: 10.1016/j.cpc.2021.107905_b1
– volume: 10
  start-page: 4932
  year: 1974
  ident: 10.1016/j.cpc.2021.107905_b23
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.10.4932
– year: 2020
  ident: 10.1016/j.cpc.2021.107905_b43
– volume: 11
  start-page: 6252
  year: 2017
  ident: 10.1016/j.cpc.2021.107905_b45
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b02449
– start-page: 380
  year: 2018
  ident: 10.1016/j.cpc.2021.107905_b2
– volume: 325
  start-page: 113
  year: 2006
  ident: 10.1016/j.cpc.2021.107905_b29
  publication-title: Chem. Phys.
  doi: 10.1016/j.chemphys.2005.10.023
– volume: 6
  start-page: 8287
  year: 2015
  ident: 10.1016/j.cpc.2021.107905_b25
  publication-title: Nature Commun.
  doi: 10.1038/ncomms9287
– volume: 140
  start-page: A1133
  issue: 4A
  year: 1965
  ident: 10.1016/j.cpc.2021.107905_b30
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.140.A1133
– volume: 28
  start-page: 459
  year: 1978
  ident: 10.1016/j.cpc.2021.107905_b27
  publication-title: Solid State Commun.
  doi: 10.1016/0038-1098(78)90838-4
– volume: 144–147
  start-page: 1001
  year: 2005
  ident: 10.1016/j.cpc.2021.107905_b35
  publication-title: J. Electron. Spectrosc. Relat. Phenom.
  doi: 10.1016/j.elspec.2005.01.022
– volume: 84
  year: 2011
  ident: 10.1016/j.cpc.2021.107905_b11
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.84.235427
– volume: 10
  start-page: 5030
  year: 1974
  ident: 10.1016/j.cpc.2021.107905_b3
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.10.5030
– volume: 1
  start-page: 2
  year: 1979
  ident: 10.1016/j.cpc.2021.107905_b38
  publication-title: Surf. Interface Anal.
  doi: 10.1002/sia.740010103
SSID ssj0007793
Score 2.4577916
Snippet Ultra-violet photoemission spectroscopy is a widely-used experimental technique to investigate the valence electronic structure of surfaces and interfaces....
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 107905
SubjectTerms Angle-resolved photoemission spectroscopy
Photoemission tomography
Python-based simulation tool
Title kMap.py: A Python program for simulation and data analysis in photoemission tomography
URI https://dx.doi.org/10.1016/j.cpc.2021.107905
Volume 263
WOSCitedRecordID wos000642455800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2944
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007793
  issn: 0010-4655
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWFiQuiKcoL_nACZRVNi_H3JaqFSBR7aGg5RQ5Xlvd0maj3bRqfwT_mZl4nIRCET1wSSLLcaLMl_F4PPMNY69zrWKtkygA6UYBIGQRlKFeBGGqdKKsMtKGbbEJcXCQz-dyNhr98Lkw5yeiqvKLC1n_V1FDGwgbU2dvIO5uUGiAaxA6HEHscPwnwX__rOpxfelSzmeXyA3go7DamMLN8pRKdrUbBxgiChdETYIx5UerZoVV4NCPBqbp6ZDU2nMaUC0IcoxsMDK9zzPpPe9rTCRu2owhZ60jk0mXG_SNfNXzpVptjgzNoRgdhNv373dtQ9k4Lg--dzKctUVo3-6PMUjNEr7JdRENQqy8OoZJAAnchuo4IoXnFCqsTmWbl_27rnduh-OxrpGKMpqM-76_8mpfme-6KEQf4HZcwBAFDlG4IW6x7UikEpTk9vTj3vxTN7ULQSzO9N5-m7wNGLzyHn82dAbGy-F9do9WHXzq0PKAjUz1kN2ZOeE9Yl8JM-_4lDvEcEIMB8TwHjEc5MkRMdwjhi-h7xAxvEfMY_Zlf-9w90NABTcCDXZdE6hSltmiTFIltBIGflahJsoKgZz8FtoyZWC5bkINZqqyWR4JkZpEqQROKpXxE7ZVrSrzlPFYmRgWF5mMJiaxmSoneVlKJAOyuozzcIeF_usUmtjosSjKSXGtVHbYm-6W2lGx_K1z4j95QbaksxELgM_1tz27yTOes7s9ql-wrWZ9Zl6y2_q8WW7Wrwg7PwF59ZZh
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=kMap.py%3A+A+Python+program+for+simulation+and+data+analysis+in+photoemission+tomography&rft.jtitle=Computer+physics+communications&rft.au=Brandstetter%2C+Dominik&rft.au=Yang%2C+Xiaosheng&rft.au=L%C3%BCftner%2C+Daniel&rft.au=Tautz%2C+F.+Stefan&rft.date=2021-06-01&rft.issn=0010-4655&rft.volume=263&rft.spage=107905&rft_id=info:doi/10.1016%2Fj.cpc.2021.107905&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cpc_2021_107905
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4655&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4655&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4655&client=summon