Learning higher-order logic programs

A key feature of inductive logic programming is its ability to learn first-order programs, which are intrinsically more expressive than propositional programs. In this paper, we introduce techniques to learn higher-order programs. Specifically, we extend meta-interpretive learning (MIL) to support l...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Machine learning Ročník 109; číslo 7; s. 1289 - 1322
Hlavní autoři: Cropper, Andrew, Morel, Rolf, Muggleton, Stephen
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.07.2020
Springer Nature B.V
Témata:
ISSN:0885-6125, 1573-0565
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract A key feature of inductive logic programming is its ability to learn first-order programs, which are intrinsically more expressive than propositional programs. In this paper, we introduce techniques to learn higher-order programs. Specifically, we extend meta-interpretive learning (MIL) to support learning higher-order programs by allowing for higher-order definitions to be used as background knowledge. Our theoretical results show that learning higher-order programs, rather than first-order programs, can reduce the textual complexity required to express programs, which in turn reduces the size of the hypothesis space and sample complexity. We implement our idea in two new MIL systems: the Prolog system Metagol ho and the ASP system HEXMIL ho . Both systems support learning higher-order programs and higher-order predicate invention, such as inventing functions for map/3 and conditions for filter/3. We conduct experiments on four domains (robot strategies, chess playing, list transformations, and string decryption) that compare learning first-order and higher-order programs. Our experimental results support our theoretical claims and show that, compared to learning first-order programs, learning higher-order programs can significantly improve predictive accuracies and reduce learning times.
AbstractList A key feature of inductive logic programming is its ability to learn first-order programs, which are intrinsically more expressive than propositional programs. In this paper, we introduce techniques to learn higher-order programs. Specifically, we extend meta-interpretive learning (MIL) to support learning higher-order programs by allowing for higher-order definitions to be used as background knowledge. Our theoretical results show that learning higher-order programs, rather than first-order programs, can reduce the textual complexity required to express programs, which in turn reduces the size of the hypothesis space and sample complexity. We implement our idea in two new MIL systems: the Prolog system $$\text {Metagol}_{ho}$$ Metagol ho and the ASP system $$\text {HEXMIL}_{ho}$$ HEXMIL ho . Both systems support learning higher-order programs and higher-order predicate invention, such as inventing functions for and conditions for . We conduct experiments on four domains (robot strategies, chess playing, list transformations, and string decryption) that compare learning first-order and higher-order programs. Our experimental results support our theoretical claims and show that, compared to learning first-order programs, learning higher-order programs can significantly improve predictive accuracies and reduce learning times.
A key feature of inductive logic programming is its ability to learn first-order programs, which are intrinsically more expressive than propositional programs. In this paper, we introduce techniques to learn higher-order programs. Specifically, we extend meta-interpretive learning (MIL) to support learning higher-order programs by allowing for higher-order definitions to be used as background knowledge. Our theoretical results show that learning higher-order programs, rather than first-order programs, can reduce the textual complexity required to express programs, which in turn reduces the size of the hypothesis space and sample complexity. We implement our idea in two new MIL systems: the Prolog system Metagolho and the ASP system HEXMILho. Both systems support learning higher-order programs and higher-order predicate invention, such as inventing functions for map/3 and conditions for filter/3. We conduct experiments on four domains (robot strategies, chess playing, list transformations, and string decryption) that compare learning first-order and higher-order programs. Our experimental results support our theoretical claims and show that, compared to learning first-order programs, learning higher-order programs can significantly improve predictive accuracies and reduce learning times.
A key feature of inductive logic programming is its ability to learn first-order programs, which are intrinsically more expressive than propositional programs. In this paper, we introduce techniques to learn higher-order programs. Specifically, we extend meta-interpretive learning (MIL) to support learning higher-order programs by allowing for higher-order definitions to be used as background knowledge. Our theoretical results show that learning higher-order programs, rather than first-order programs, can reduce the textual complexity required to express programs, which in turn reduces the size of the hypothesis space and sample complexity. We implement our idea in two new MIL systems: the Prolog system Metagol ho and the ASP system HEXMIL ho . Both systems support learning higher-order programs and higher-order predicate invention, such as inventing functions for map/3 and conditions for filter/3. We conduct experiments on four domains (robot strategies, chess playing, list transformations, and string decryption) that compare learning first-order and higher-order programs. Our experimental results support our theoretical claims and show that, compared to learning first-order programs, learning higher-order programs can significantly improve predictive accuracies and reduce learning times.
Author Morel, Rolf
Cropper, Andrew
Muggleton, Stephen
Author_xml – sequence: 1
  givenname: Andrew
  orcidid: 0000-0002-4543-7199
  surname: Cropper
  fullname: Cropper, Andrew
  email: andrew.cropper@cs.ox.ac.uk
  organization: University of Oxford
– sequence: 2
  givenname: Rolf
  surname: Morel
  fullname: Morel, Rolf
  organization: University of Oxford
– sequence: 3
  givenname: Stephen
  surname: Muggleton
  fullname: Muggleton, Stephen
  organization: Imperial College London
BookMark eNp9kM1LAzEQxYNUsK3-A54Keo1ONpuPPUrxCxa86Dmk2dltSputyfbgf2_qCoKHnoZh3u-94c3IJPQBCblmcMcA1H1iUFUlBVZREFoWVJ2RKROK51WKCZmC1oJKVogLMktpAwCF1HJKbmu0MfjQLda-W2OkfWwwLrZ9591iH_su2l26JOet3Sa8-p1z8vH0-L58ofXb8-vyoaauBDlQq1tQWmHOFw00TMuVWyEANs7pBhVohly6amWRZSVWrVJWaQ7Hg-Kaz8nN6JuDPw-YBrPpDzHkSFOURcnLbCmySo8qF_uUIrbG-cEOvg9DtH5rGJhjJ2bsxOROzE8nRmW0-Ifuo9_Z-HUa4iOUsjh0GP--OkF9A0UbdLo
CitedBy_id crossref_primary_10_1109_ACCESS_2025_3577238
crossref_primary_10_1016_j_tics_2020_07_005
crossref_primary_10_1016_j_artint_2020_103438
crossref_primary_10_1007_s10994_021_06016_4
crossref_primary_10_1007_s10994_020_05934_z
crossref_primary_10_3233_NAI_240712
crossref_primary_10_1007_s10994_023_06320_1
crossref_primary_10_1038_s41467_024_50966_x
crossref_primary_10_1007_s10994_021_06089_1
Cites_doi 10.1007/s10994-011-5259-2
10.1017/S1471068411000494
10.1007/s10994-013-5341-z
10.1007/BF03037169
10.1016/S0743-1066(99)00028-X
10.1007/s10994-013-5358-3
10.1145/6041.6042
10.1007/978-3-662-08406-9
10.1007/978-1-4614-7052-6
10.1145/357084.357090
10.1007/BF03037227
10.1007/s10994-014-5471-y
10.1016/0020-0190(87)90114-1
10.1016/S0004-3702(98)00034-4
10.1145/2837614.2837629
10.1145/2737924.2738007
10.1145/2737924.2737977
10.1016/B978-0-934613-64-4.50040-2
10.1007/978-3-319-99960-9_1
10.1145/1926385.1926423
10.1007/978-3-030-19570-0_13
ContentType Journal Article
Copyright The Author(s) 2019
The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2019
– notice: The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7SC
7XB
88I
8AL
8AO
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
M2P
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1007/s10994-019-05862-7
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Computer Science Database

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-0565
EndPage 1322
ExternalDocumentID 10_1007_s10994_019_05862_7
GrantInformation_xml – fundername: Engineering and Physical Sciences Research Council
  grantid: EP/N509711/1
  funderid: http://dx.doi.org/10.13039/501100000266
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
88I
8AO
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAEWM
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
LAK
LLZTM
M0N
M2P
M4Y
MA-
MVM
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF-
PQQKQ
PROAC
PT4
Q2X
QF4
QM1
QN7
QO4
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TAE
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VXZ
W23
W48
WH7
WIP
WK8
XJT
YLTOR
Z45
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z87
Z88
Z8M
Z8N
Z8O
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z8Z
Z91
Z92
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c406t-a8f0787e8625d0d186bcbe00edcc8de7081e36c9bae1f07e9f77a7830081e7383
IEDL.DBID M2P
ISICitedReferencesCount 20
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000500279800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0885-6125
IngestDate Tue Nov 04 23:17:21 EST 2025
Sat Nov 29 01:43:27 EST 2025
Tue Nov 18 21:13:29 EST 2025
Fri Feb 21 02:28:50 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-a8f0787e8625d0d186bcbe00edcc8de7081e36c9bae1f07e9f77a7830081e7383
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4543-7199
OpenAccessLink https://link.springer.com/10.1007/s10994-019-05862-7
PQID 2424341865
PQPubID 54194
PageCount 34
ParticipantIDs proquest_journals_2424341865
crossref_citationtrail_10_1007_s10994_019_05862_7
crossref_primary_10_1007_s10994_019_05862_7
springer_journals_10_1007_s10994_019_05862_7
PublicationCentury 2000
PublicationDate 2020-07-01
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationTitle Machine learning
PublicationTitleAbbrev Mach Learn
PublicationYear 2020
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Muggleton, Lin, Tamaddoni-Nezhad (CR35) 2015; 100
Quinlan (CR37) 1990; 5
Blockeel, De Raedt (CR1) 1998; 101
Manna, Waldinger (CR27) 1980; 2
CR18
CR16
Flener, Yilmaz (CR17) 1999; 41
CR15
Schapire (CR40) 1990; 5
CR14
CR36
Saitta, Zucker (CR39) 2013
CR12
CR11
CR10
CR32
CR30
Blumer, Ehrenfeucht, Haussler, Warmuth (CR2) 1987; 24
Eiter, Fink, Ianni, Krennwallner, Redl, Schüller (CR13) 2016; 16
Muggleton (CR31) 1995; 13
Wielemaker, Schrijvers, Triska, Lager (CR43) 2012; 12
Bratko, Michie (CR3) 1980; 2
Gelfond, Lifschitz (CR19) 1991; 9
Muggleton, De Raedt, Poole, Bratko, Flach, Inoue, Srinivasan (CR33) 2012; 86
Clark, Ginsberg (CR5) 1987
Inoue, Doncescu, Nabeshima (CR22) 2013; 91
Kaminski, Eiter, Inoue (CR23) 2018; 18
Lloyd (CR26) 2003
De Raedt, Bruynooghe (CR38) 1992; 8
CR6
CR8
Muggleton, Lin, Pahlavi, Tamaddoni-Nezhad (CR34) 2014; 94
CR7
CR29
CR28
CR9
CR25
CR24
CR21
CR20
Cardelli, Wegner (CR4) 1985; 17
CR41
Stahl (CR42) 1995; 20
5862_CR8
5862_CR10
5862_CR32
KL Clark (5862_CR5) 1987
5862_CR7
5862_CR11
5862_CR30
5862_CR9
I Stahl (5862_CR42) 1995; 20
5862_CR6
RE Schapire (5862_CR40) 1990; 5
S Muggleton (5862_CR31) 1995; 13
A Blumer (5862_CR2) 1987; 24
L De Raedt (5862_CR38) 1992; 8
M Gelfond (5862_CR19) 1991; 9
L Cardelli (5862_CR4) 1985; 17
5862_CR14
5862_CR36
JR Quinlan (5862_CR37) 1990; 5
5862_CR15
5862_CR12
5862_CR18
T Eiter (5862_CR13) 2016; 16
5862_CR16
K Inoue (5862_CR22) 2013; 91
L Saitta (5862_CR39) 2013
I Bratko (5862_CR3) 1980; 2
5862_CR21
5862_CR41
5862_CR20
SH Muggleton (5862_CR34) 2014; 94
T Kaminski (5862_CR23) 2018; 18
S Muggleton (5862_CR33) 2012; 86
JW Lloyd (5862_CR26) 2003
H Blockeel (5862_CR1) 1998; 101
SH Muggleton (5862_CR35) 2015; 100
5862_CR25
Z Manna (5862_CR27) 1980; 2
J Wielemaker (5862_CR43) 2012; 12
P Flener (5862_CR17) 1999; 41
5862_CR24
5862_CR29
5862_CR28
References_xml – ident: CR18
– volume: 86
  start-page: 3
  issue: 1
  year: 2012
  end-page: 23
  ident: CR33
  article-title: ILP turns 20 - biography and future challenges
  publication-title: Machine Learning
  doi: 10.1007/s10994-011-5259-2
– volume: 12
  start-page: 67
  issue: 1–2
  year: 2012
  end-page: 96
  ident: CR43
  article-title: SWI-Prolog
  publication-title: Theory and Practice of Logic Programming
  doi: 10.1017/S1471068411000494
– volume: 5
  start-page: 239
  year: 1990
  end-page: 266
  ident: CR37
  article-title: Learning logical definitions from relations
  publication-title: Machine Learning
– ident: CR14
– ident: CR16
– ident: CR12
– volume: 91
  start-page: 239
  issue: 2
  year: 2013
  end-page: 277
  ident: CR22
  article-title: Completing causal networks by meta-level abduction
  publication-title: Machine Learning
  doi: 10.1007/s10994-013-5341-z
– ident: CR30
– volume: 9
  start-page: 365
  issue: 3/4
  year: 1991
  end-page: 386
  ident: CR19
  article-title: Classical negation in logic programs and disjunctive databases
  publication-title: New Generation Computing
  doi: 10.1007/BF03037169
– volume: 41
  start-page: 141
  issue: 2–3
  year: 1999
  end-page: 195
  ident: CR17
  article-title: Inductive synthesis of recursive logic programs: Achievements and prospects
  publication-title: The Journal of Logic Programming
  doi: 10.1016/S0743-1066(99)00028-X
– volume: 94
  start-page: 25
  issue: 1
  year: 2014
  end-page: 49
  ident: CR34
  article-title: Meta-interpretive learning: Application to grammatical inference
  publication-title: Machine Learning
  doi: 10.1007/s10994-013-5358-3
– ident: CR10
– volume: 2
  start-page: 31
  year: 1980
  end-page: 56
  ident: CR3
  article-title: A representation for pattern-knowledge in chess endgames
  publication-title: Advances in Computer Chess
– ident: CR6
– ident: CR29
– ident: CR8
– ident: CR25
– volume: 17
  start-page: 471
  issue: 4
  year: 1985
  end-page: 522
  ident: CR4
  article-title: On understanding types, data abstraction, and polymorphism
  publication-title: ACM Computing Surveys
  doi: 10.1145/6041.6042
– volume: 5
  start-page: 197
  year: 1990
  end-page: 227
  ident: CR40
  article-title: The strength of weak learnability
  publication-title: Machine Learning
– ident: CR21
– volume: 8
  start-page: 107
  year: 1992
  end-page: 150
  ident: CR38
  article-title: Interactive concept-learning and constructive induction by analogy
  publication-title: Machine Learning
– year: 2003
  ident: CR26
  publication-title: Logic for learning
  doi: 10.1007/978-3-662-08406-9
– ident: CR15
– volume: 18
  start-page: 571
  issue: 3–4
  year: 2018
  end-page: 588
  ident: CR23
  article-title: Exploiting answer set programming with external sources for meta-interpretive learning
  publication-title: TPLP
– volume: 16
  start-page: 418
  issue: 4
  year: 2016
  end-page: 464
  ident: CR13
  article-title: A model building framework for answer set programming with external computations
  publication-title: TPLP
– year: 2013
  ident: CR39
  publication-title: Abstraction in artificial intelligence and complex systems
  doi: 10.1007/978-1-4614-7052-6
– ident: CR11
– ident: CR9
– volume: 2
  start-page: 90
  issue: 1
  year: 1980
  end-page: 121
  ident: CR27
  article-title: A deductive approach to program synthesis
  publication-title: ACM Transactions on Programming Languages and Systems
  doi: 10.1145/357084.357090
– ident: CR32
– volume: 13
  start-page: 245
  issue: 3&4
  year: 1995
  end-page: 286
  ident: CR31
  article-title: Inverse entailment and progol
  publication-title: New Generation Computing
  doi: 10.1007/BF03037227
– ident: CR36
– volume: 100
  start-page: 49
  issue: 1
  year: 2015
  end-page: 73
  ident: CR35
  article-title: Meta-interpretive learning of higher-order dyadic datalog: Predicate invention revisited
  publication-title: Machine Learning
  doi: 10.1007/s10994-014-5471-y
– ident: CR7
– ident: CR28
– ident: CR41
– volume: 20
  start-page: 95
  issue: 1–2
  year: 1995
  end-page: 117
  ident: CR42
  article-title: The appropriateness of predicate invention as bias shift operation in ILP
  publication-title: Machine Learning
– volume: 24
  start-page: 377
  issue: 6
  year: 1987
  end-page: 380
  ident: CR2
  article-title: Occam’s razor
  publication-title: Information Processing Letters
  doi: 10.1016/0020-0190(87)90114-1
– start-page: 311
  year: 1987
  end-page: 325
  ident: CR5
  article-title: Negation as failure
  publication-title: Readings in nonmonotonic reasoning
– ident: CR24
– volume: 101
  start-page: 285
  issue: 1–2
  year: 1998
  end-page: 297
  ident: CR1
  article-title: Top-down induction of first-order logical decision trees
  publication-title: Artificial Intelligence
  doi: 10.1016/S0004-3702(98)00034-4
– ident: CR20
– volume: 2
  start-page: 31
  year: 1980
  ident: 5862_CR3
  publication-title: Advances in Computer Chess
– ident: 5862_CR24
– ident: 5862_CR18
  doi: 10.1145/2837614.2837629
– ident: 5862_CR8
– ident: 5862_CR28
– ident: 5862_CR41
– volume: 24
  start-page: 377
  issue: 6
  year: 1987
  ident: 5862_CR2
  publication-title: Information Processing Letters
  doi: 10.1016/0020-0190(87)90114-1
– volume: 5
  start-page: 239
  year: 1990
  ident: 5862_CR37
  publication-title: Machine Learning
– ident: 5862_CR36
  doi: 10.1145/2737924.2738007
– ident: 5862_CR16
  doi: 10.1145/2737924.2737977
– ident: 5862_CR11
– ident: 5862_CR32
  doi: 10.1016/B978-0-934613-64-4.50040-2
– ident: 5862_CR29
– ident: 5862_CR15
– ident: 5862_CR12
  doi: 10.1007/978-3-319-99960-9_1
– volume: 2
  start-page: 90
  issue: 1
  year: 1980
  ident: 5862_CR27
  publication-title: ACM Transactions on Programming Languages and Systems
  doi: 10.1145/357084.357090
– volume: 8
  start-page: 107
  year: 1992
  ident: 5862_CR38
  publication-title: Machine Learning
– volume: 20
  start-page: 95
  issue: 1–2
  year: 1995
  ident: 5862_CR42
  publication-title: Machine Learning
– volume-title: Logic for learning
  year: 2003
  ident: 5862_CR26
  doi: 10.1007/978-3-662-08406-9
– ident: 5862_CR9
– ident: 5862_CR21
– volume: 12
  start-page: 67
  issue: 1–2
  year: 2012
  ident: 5862_CR43
  publication-title: Theory and Practice of Logic Programming
  doi: 10.1017/S1471068411000494
– ident: 5862_CR7
– ident: 5862_CR25
– start-page: 311
  volume-title: Readings in nonmonotonic reasoning
  year: 1987
  ident: 5862_CR5
– volume: 18
  start-page: 571
  issue: 3–4
  year: 2018
  ident: 5862_CR23
  publication-title: TPLP
– volume: 100
  start-page: 49
  issue: 1
  year: 2015
  ident: 5862_CR35
  publication-title: Machine Learning
  doi: 10.1007/s10994-014-5471-y
– volume: 5
  start-page: 197
  year: 1990
  ident: 5862_CR40
  publication-title: Machine Learning
– ident: 5862_CR20
  doi: 10.1145/1926385.1926423
– volume: 91
  start-page: 239
  issue: 2
  year: 2013
  ident: 5862_CR22
  publication-title: Machine Learning
  doi: 10.1007/s10994-013-5341-z
– volume: 101
  start-page: 285
  issue: 1–2
  year: 1998
  ident: 5862_CR1
  publication-title: Artificial Intelligence
  doi: 10.1016/S0004-3702(98)00034-4
– volume: 13
  start-page: 245
  issue: 3&4
  year: 1995
  ident: 5862_CR31
  publication-title: New Generation Computing
  doi: 10.1007/BF03037227
– volume: 86
  start-page: 3
  issue: 1
  year: 2012
  ident: 5862_CR33
  publication-title: Machine Learning
  doi: 10.1007/s10994-011-5259-2
– volume: 16
  start-page: 418
  issue: 4
  year: 2016
  ident: 5862_CR13
  publication-title: TPLP
– volume: 41
  start-page: 141
  issue: 2–3
  year: 1999
  ident: 5862_CR17
  publication-title: The Journal of Logic Programming
  doi: 10.1016/S0743-1066(99)00028-X
– volume: 17
  start-page: 471
  issue: 4
  year: 1985
  ident: 5862_CR4
  publication-title: ACM Computing Surveys
  doi: 10.1145/6041.6042
– ident: 5862_CR10
– volume-title: Abstraction in artificial intelligence and complex systems
  year: 2013
  ident: 5862_CR39
  doi: 10.1007/978-1-4614-7052-6
– volume: 9
  start-page: 365
  issue: 3/4
  year: 1991
  ident: 5862_CR19
  publication-title: New Generation Computing
  doi: 10.1007/BF03037169
– ident: 5862_CR6
– ident: 5862_CR30
  doi: 10.1007/978-3-030-19570-0_13
– volume: 94
  start-page: 25
  issue: 1
  year: 2014
  ident: 5862_CR34
  publication-title: Machine Learning
  doi: 10.1007/s10994-013-5358-3
– ident: 5862_CR14
SSID ssj0002686
Score 2.4692855
Snippet A key feature of inductive logic programming is its ability to learn first-order programs, which are intrinsically more expressive than propositional programs....
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1289
SubjectTerms Artificial Intelligence
Complexity
Computer Science
Control
Encryption
Learning
Logic programming
Logic programs
Machine Learning
Mechatronics
Natural Language Processing (NLP)
Prolog
Robotics
Simulation and Modeling
Special Issue of the Inductive Logic Programming (ILP) 2019
SummonAdditionalLinks – databaseName: Springer Nature Consortium list (Orbis Cascade Alliance)
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgcODCeIrCQD3sBpHarmnSI0JMnCbES7tFSZoCEipoLfx-nCxdAQESnOu6rRv7cxT7M8CQp5wikqZEW5pLyz5CpEoKkvOSR5JhSFSpGzbBJhM-neaXvimsbqvd2yNJF6k_NLs5GlvbdEMxDydsGVYQ7rgd2HB1fbeIv0nm5jui-1Bi8du3ynyv4zMcdTnml2NRhzbj_v_ecwPWfXYZns6XwyYsmWoL-u3khtA78jYMPa3qffjg6jyIY-AMXRwMfclWvQO34_Obswvi5yUQjbDcEMlLBHxm8KG0iIqYZ0orE0Wm0JoXhiH6m1GmcyVNjJImLxmTjI9sWmAYblV3oVc9V2YPQsxbFMsig8pwC8UiWeK30FTJRI3yIlcBxK3ZhPZk4namxZPoaJCtGQSaQTgzCBbA8eKelzmVxq_Sg_ZvCO9WtbC9LAi7PKMBnLTW7y7_rG3_b-IHsJbYfbUryx1Ar5m9mkNY1W_NYz07csvtHfHeywo
  priority: 102
  providerName: Springer Nature
Title Learning higher-order logic programs
URI https://link.springer.com/article/10.1007/s10994-019-05862-7
https://www.proquest.com/docview/2424341865
Volume 109
WOSCitedRecordID wos000500279800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Nature Link Journals
  customDbUrl:
  eissn: 1573-0565
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002686
  issn: 0885-6125
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT8IwFH8R8OBF_Iwokh24aeMY29qdjBqIiZEs-BHiZWm7Dk0MIEP_fl9Lx6KJXLz0su6le2vf-7V97_cA2sxnAXpSn0hNc6nZRwgXXkoiljGXUzSJwjfFJuhgwEajKLYHbrkNqyxsojHU6VTqM_ILncaAFpeFweXsg-iqUfp21ZbQqEANkU1Hh3Tde_HKEnuhqfSICykg2pPbpBmbOmdIcXUKT4ContCfjqlEm78uSI3f6df_O-Id2LaI07laTpFd2FCTPagX1Rwcu7j3oW2pVsfOq4n9IIaV0zG20bFhXPkBPPV7jze3xNZQIBJd9YJwliEIoAo_MUjdFEcjpFCuq1IpWaooIgLVDWUkuOpgTxVllHLKuhoqKIrb10OoTqYTdQQOYhlBQ1ehMNxWUZdnqLnAF9wT3SiNRAM6hQITaQnGdZ2L96SkRtZKT1DpiVF6QhtwtnpntqTXWNu7WWg6sUstT0o1N-C8-Ffl47-lHa-XdgJbnt5bm9DcJlQX8091Cpvya_GWz1tQu-4N4mELKneUtMy0wzYOXrAdPjx_A4SB2VQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NT8JAEJ0gmuhF_Iwoag940o2ltN3twRijEghIOGDCrXa3WzUxgBQ1_il_o7PLFqKJ3Dh47nba9O2-me3OvAEoM5d56EldIpTMpVIfIRF3YhKwhNkRRUrkrm42Qdtt1usFnRx8ZbUwKq0y40RN1PFAqH_k56qMARmX-d7l8JWorlHqdDVroTGZFk35-YFbtvSicYP4njhO7bZ7XSemqwAR6LzGJGIJukUqMZT3YjtGi1xwadsyFoLFkqKPlFVfBDySFRwpg4TSiLKqcp6S4oYO7S7BsquUxVSqoNOZMr_j686SuHA9oiIHU6RjSvW0CK8qGfLw0YT-dISz6PbXgaz2c7XCf_tCG7BuImrrarIENiEn-1tQyLpVWIa8tqFspGQfrSed20K06qilud8yaWrpDtwv5F13Id8f9OUeWBircerbEo3htpHaUYJIeS6PHF4N4oAXoZIBFgojoK76eLyEM-lnBXKIIIca5JAW4XR6z3AiHzJ3dClDNjRUkoYzWItwls2N2eW_re3Pt3YMq_XuXStsNdrNA1hz1H8EnYZcgvx49CYPYUW8j5_T0ZGe5BY8LHrOfAPLRzI3
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NT8JAEJ0oGuNF_Iwoag940g2ltN3twRgjEgmGcNCEeKnd7VZNDCBFjX_NX-fssqXRRG4cPHc7bTqz82a6M28AKsxlHiKpS4SiuVTsIyTiTkwCljA7ougSuauHTdBOh_V6QXcBvrJeGFVWmflE7ajjgVD_yKuqjQE9LvO9amLKIrqN5vnwlagJUuqkNRunMTGRtvz8wPQtPWs1UNfHjtO8ur28JmbCABEIZGMSsQQhkkoM673YjlE6F1zatoyFYLGkiJey7ouAR7KGK2WQUBpRVldAKikmdyh3EZYo5piqnLDr3U9RwPH1lEncxB5RUYRp2DFte5qQV7UPefhoQn-CYh7p_jqc1ZjXLP7nr7UOaybSti4mW2MDFmR_E4rZFAvLOLUtqBiK2UfrSde8EM1GamlMsEz5WroNd3N51x0o9Ad9uQsWxnCc-rZEYZhOUjtKUGueyyOH14M44CWoZcoLhSFWV_M9XsKcElopPESFh1rhIS3ByfSe4YRWZObqcqbl0LiYNMxVXILTzE7yy39L25st7QhW0FTCm1anvQ-rjvq9oKuTy1AYj97kASyL9_FzOjrU9m7Bw7xN5htx5zsj
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+higher-order+logic+programs&rft.jtitle=Machine+learning&rft.au=Cropper%2C+Andrew&rft.au=Morel+Rolf&rft.au=Muggleton%2C+Stephen&rft.date=2020-07-01&rft.pub=Springer+Nature+B.V&rft.issn=0885-6125&rft.eissn=1573-0565&rft.volume=109&rft.issue=7&rft.spage=1289&rft.epage=1322&rft_id=info:doi/10.1007%2Fs10994-019-05862-7&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6125&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6125&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6125&client=summon