Online probabilistic theory revision from examples with ProPPR

Handling relational data streams has become a crucial task, given the availability of pervasive sensors and Internet-produced content, such as social networks and knowledge graphs. In a relational environment, this is a particularly challenging task, since one cannot assure that the streams of examp...

Full description

Saved in:
Bibliographic Details
Published in:Machine learning Vol. 108; no. 7; pp. 1165 - 1189
Main Authors: Guimarães, Victor, Paes, Aline, Zaverucha, Gerson
Format: Journal Article
Language:English
Published: New York Springer US 01.07.2019
Springer Nature B.V
Subjects:
ISSN:0885-6125, 1573-0565
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Handling relational data streams has become a crucial task, given the availability of pervasive sensors and Internet-produced content, such as social networks and knowledge graphs. In a relational environment, this is a particularly challenging task, since one cannot assure that the streams of examples are independent along the iterations. Thus, most relational learning systems are still designed to learn only from closed batches of data. Furthermore, in case there is a previously acquired model, these systems either would discard it or assuming it as correct. In this work, we propose an online relational learning algorithm that can handle continuous, open-ended streams of relational examples as they arrive. We employ techniques of theory revision to take advantage of the previously acquired model as a starting point, by finding where it should be modified to cope with the new examples, and automatically update it. We rely on the Hoeffding’s bound statistical theory to decide if the model must, in fact, be updated in accordance with the new examples. The proposed algorithm is built upon ProPPR statistical relational language, aiming at contemplating the uncertainty inherent to real data. Experimental results in social networks and entity co-reference datasets show the potential of the proposed approach compared to other relational learners.
AbstractList Handling relational data streams has become a crucial task, given the availability of pervasive sensors and Internet-produced content, such as social networks and knowledge graphs. In a relational environment, this is a particularly challenging task, since one cannot assure that the streams of examples are independent along the iterations. Thus, most relational learning systems are still designed to learn only from closed batches of data. Furthermore, in case there is a previously acquired model, these systems either would discard it or assuming it as correct. In this work, we propose an online relational learning algorithm that can handle continuous, open-ended streams of relational examples as they arrive. We employ techniques of theory revision to take advantage of the previously acquired model as a starting point, by finding where it should be modified to cope with the new examples, and automatically update it. We rely on the Hoeffding’s bound statistical theory to decide if the model must, in fact, be updated in accordance with the new examples. The proposed algorithm is built upon ProPPR statistical relational language, aiming at contemplating the uncertainty inherent to real data. Experimental results in social networks and entity co-reference datasets show the potential of the proposed approach compared to other relational learners.
Author Guimarães, Victor
Paes, Aline
Zaverucha, Gerson
Author_xml – sequence: 1
  givenname: Victor
  surname: Guimarães
  fullname: Guimarães, Victor
  organization: Department of Systems Engineering and Computer Science, COPPE, Universidade Federal do Rio de Janeiro (UFRJ)
– sequence: 2
  givenname: Aline
  orcidid: 0000-0002-9089-7303
  surname: Paes
  fullname: Paes, Aline
  email: alinepaes@ic.uff.br
  organization: Department of Computer Science, Universidade Federal Fluminense (UFF)
– sequence: 3
  givenname: Gerson
  surname: Zaverucha
  fullname: Zaverucha, Gerson
  organization: Department of Systems Engineering and Computer Science, COPPE, Universidade Federal do Rio de Janeiro (UFRJ)
BookMark eNp9kEtLAzEUhYNUsK3-AVcDrkfzTmYjSPEFhRbRdchME5syndQkVeffGx1BcNHV5cL57jn3TMCo850B4BzBSwShuIoIVhUtIapKyEQly_4IjBETJK-cjcAYSslKjjA7AZMYNxBCzCUfg-tF17rOFLvga1271sXkmiKtjQ99Ecy7i853hQ1-W5hPvd21JhYfLq2LZfDL5dMpOLa6jebsd07By93t8-yhnC_uH2c387KhkKdSi7oizFq5sqS2jGGqa6a15pWuLRJENMTCFadYQ8SModYKslo1knGpJTWWTMHFcDfnfNubmNTG70OXLRXGmAoqCWdZhQdVE3yMwVi1C26rQ68QVN89qaEnlXtSPz2pPkPyH9S4pFN-OwXt2sMoGdCYfbpXE_5SHaC-AAHDgMY
CitedBy_id crossref_primary_10_1016_j_datak_2022_102040
crossref_primary_10_1017_S1471068421000107
crossref_primary_10_1007_s10270_022_01067_0
Cites_doi 10.1007/s10994-016-5595-3
10.1007/s10994-016-5596-2
10.2307/2981683
10.1021/ci700418f
10.1145/347090.347107
10.7551/mitpress/1192.001.0001
10.1007/11536314_18
10.1023/A:1009867806624
10.1007/978-3-540-68856-3
10.1016/S0004-3702(00)00004-7
10.1145/1529282.1529610
10.1109/ICDM.2006.70
10.1007/s10994-011-5244-9
10.1007/s10994-015-5481-4
10.1007/BF03037227
10.1007/s10994-009-5116-8
10.1093/logcom/exx015
10.1080/01621459.1963.10500830
10.1007/s10994-006-5833-1
10.2200/S00692ED1V01Y201601AIM032
10.1016/0743-1066(94)90035-3
10.1145/872734.806939
10.1145/1117454.1117456
10.1016/S0004-3702(98)00034-4
10.1109/FOCS.2006.44
10.1007/s10994-015-5488-x
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2019
Machine Learning is a copyright of Springer, (2019). All Rights Reserved.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2019
– notice: Machine Learning is a copyright of Springer, (2019). All Rights Reserved.
DBID AAYXX
CITATION
3V.
7SC
7XB
88I
8AL
8AO
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
M2P
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1007/s10994-019-05798-y
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
Proquest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList
Computer Science Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-0565
EndPage 1189
ExternalDocumentID 10_1007_s10994_019_05798_y
GroupedDBID -4Z
-59
-5G
-BR
-EM
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
203
29M
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
88I
8AO
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
BSONS
CCPQU
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
LAK
LLZTM
M0N
M2P
M4Y
MA-
N9A
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF-
PQQKQ
PROAC
PT4
Q2X
QF4
QM1
QN7
QO4
QOK
QOS
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TAE
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
VC2
W23
W48
WH7
WIP
WK8
YLTOR
Z45
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z87
Z88
Z8M
Z8N
Z8O
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z8Z
Z91
Z92
ZMTXR
-Y2
1SB
2.D
28-
2P1
2VQ
5QI
6TJ
AAEWM
AAOBN
AAPKM
AARHV
AAYTO
AAYXX
ABBRH
ABDBE
ABFSG
ABQSL
ABRTQ
ABULA
ACBXY
ACSTC
ADHKG
ADKFA
AEBTG
AEFIE
AEKMD
AEZWR
AFDZB
AFEXP
AFFHD
AFGCZ
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AJBLW
AMVHM
ATHPR
AYFIA
BBWZM
CAG
CITATION
COF
H13
KOW
MVM
N2Q
NDZJH
O9-
OVD
PHGZM
PHGZT
PQGLB
R4E
RNI
RZC
RZE
S1Z
S26
S28
SCJ
SCLPG
T16
TEORI
UZXMN
VFIZW
3V.
7SC
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c406t-a7b935ff8df3bf5524ab5aaa69abf1737c3f0d642a015ee4ff73ddc8568a84ef3
IEDL.DBID M2P
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000470684600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0885-6125
IngestDate Tue Nov 04 23:05:11 EST 2025
Sat Nov 29 01:43:27 EST 2025
Tue Nov 18 22:28:07 EST 2025
Fri Feb 21 02:28:46 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Mining data streams
Statistical relational learning
Inductive logic programming
Online learning
Theory revision from examples
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-a7b935ff8df3bf5524ab5aaa69abf1737c3f0d642a015ee4ff73ddc8568a84ef3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9089-7303
OpenAccessLink http://dx.doi.org/10.1007/s10994-019-05798-y
PQID 2224748365
PQPubID 54194
PageCount 25
ParticipantIDs proquest_journals_2224748365
crossref_primary_10_1007_s10994_019_05798_y
crossref_citationtrail_10_1007_s10994_019_05798_y
springer_journals_10_1007_s10994_019_05798_y
PublicationCentury 2000
PublicationDate 2019-07-01
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationTitle Machine learning
PublicationTitleAbbrev Mach Learn
PublicationYear 2019
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References BlockeelHDe RaedtLJacobsNDemoenBScaling up inductive logic programming by learning from interpretationsData Mining and Knowledge Discovery199931599310.1023/A:1009867806624
DawidAPPresent position and potential developments: Some personal views: Statistical theory: The prequential approachJournal of the Royal Statistical Society Series A (General)1984147227829276381110.2307/2981683
RichardsonMDomingosPMarkov logic networksMachine Learning200662110713610.1007/s10994-006-5833-1
HoeffdingWProbability inequalities for sums of bounded random variablesJournal of the American Statistical Association19635830113301443630127.1060210.1080/01621459.1963.10500830
NatarajanSKhotTKerstingKGutmannBShavlikJGradient-based boosting for statistical relational learning: The relational dependency network caseMachine Learning2012861255628906631243.6824510.1007/s10994-011-5244-9
Page, L., Brin, S., Motwani, R., & Winograd, T. (1999). The PageRank citation ranking: Bringing order to the web. Technical Report 1999-66, Stanford InfoLab.
Richards, B. L., & Mooney, R. J. (1992). Learning relations by pathfinding. In Proceedings of the tenth national conference on artificial intelligence (AAAI-92), San Jose, CA (pp. 50–55).
De RaedtLLogical and relational learning20081BerlinSpringer1203.6814510.1007/978-3-540-68856-3
Duboc, A. L., Paes, A., & Zaverucha, G. (2017). On the formal characterization of the forte_mbc theory revision operators. J Log Comput, 27(8), 2551–2580.
MurphyKPMachine learning: A probabilistic perspective2012CambridgeMIT Press1295.68003
ShapiroEYAlgorithmic program debugging1983CambridgeMIT Press0589.68003
De RaedtLKerstingKNatarajanSPooleDStatistical relational artificial intelligence: Logic, probability, and computationSynthesis Lectures on Artificial Intelligence and Machine Learning201610211891352.6800510.2200/S00692ED1V01Y201601AIM032
DubocALPaesAZaveruchaGUsing the bottom clause and modes declarations on FOL theory revision from examplesMachine Learning2009761731071156.6852610.1007/s10994-009-5116-8
AndersenRChungFLangKLocal partitioning for directed graphs using PageRank2007BerlinSpringer1661781136.68317
WrobelSConcept formation and knowledge revision2013New YorkSpringer0811.68035
BlockeelHDe RaedtLTop-down induction of first-order logical decision treesArtificial Intelligence19981011–228529716414750909.6803410.1016/S0004-3702(98)00034-4
Lopes, C., & Zaverucha, G. (2009). HTilde: Scaling up relational decision trees for very large databases. In Proceedings of the 2009 ACM symposium on applied computing, ACM, New York, NY, USA, SAC’09 (pp. 1475–1479).
Pujara, J., London, B., Getoor, L., & Cohen, W. (2015). Online inference for knowledge graph construction. In Workshop on statistical relational AI.
DriesADe RaedtLTowards clausal discovery for stream mining2010BerlinSpringer916
TsunoyamaKAminiASternbergMMuggletonSScaffold hopping in drug discovery using inductive logic programmingJournal of Chemical Information and Modeling200848594995710.1021/ci700418f
Cardoso, P. M., & Zaverucha, G. (2006). Comparative evaluation of approaches to scale up ILP. In 16th International Conference on Inductive Logic Programming (ILP 2006) (pp. 37–39). Corunna: UDC Press.
WangWYMazaitisKLaoNCohenWWEfficient inference and learning in a large knowledge baseMachine Learning2015100110112633721491346.6816810.1007/s10994-015-5488-x
Friedman, N. (1998). The Bayesian structural EM algorithm. In UAI’98: Proceedings of the fourteenth conference on uncertainty in artificial intelligence (pp 129–138). Morgan Kaufmann, Burlington
Domingos, P., & Hulten, G. (2000). Mining high-speed data streams. In Proceedings of the Sixth ACM SIGKDD international conference on knowledge discovery and data mining, ACM, New York, NY, USA, KDD’00 (pp. 71–80)
BifetAHolmesGKirkbyRPfahringerBMoa: Massive online analysisMachine Learning20101116011604
Hulten, G., Abe, Y., & Domingos, P. (2003). Mining massive relational database. In Proceedings of the IJCAI-2003 workshop on learning statistical models from relational Data (pp. 53–60).
De Raedt, L., Kimmig, A., & Toivonen, H. (2007). Problog: A probabilistic prolog and its application in link discovery. In Proceedings of the 20th international joint conference on artifical intelligence, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, IJCAI’07 (pp. 2468–2473).
Jensen, D. D., & Neville, J. (2003). Autocorrelation and linkage cause bias in evaluation of relational learners. In Inductive logic programming, 12th international conference, ILP. Revised papers, Lecture Notes in Computer Science (vol. 2583, pp. 101–116), Berlin: Springer.
MuggletonSInverse entailment and progolNew Generation Computing199513324528610.1007/BF03037227
Poon, H., & Domingos, P. (2007). Joint inference in information extraction. In Proceedings of the 22Nd national conference on artificial intelligence, AAAI Press, AAAI’07 (vol. 1, pp. 913–918).
WarrenDHDPereiraLMPereiraFProlog—The language and its implementation compared with LispSIGPLAN Not197712810911510.1145/872734.806939
Menezes, G. (2011). HTilde-RT: Um algoritmo de aprendizado de árvores de regressão de lógica de primeira ordem para fluxos de dados relacionais. Master’s thesis, PESC, COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
PaesAZaveruchaGCostaVSOn the use of stochastic local search techniques to revise first-order logic theories from examplesMachine Learning2017106219724135968780673782010.1007/s10994-016-5595-3
GetoorLDiehlCPLink mining: A surveyACM SIGKDD Explorations Newsletter20057231210.1145/1117454.1117456
MitchellTMMachine learning. McGraw Hill series in computer science1997New YorkMcGraw-Hill
SrinivasanABainMAn empirical study of on-line models for relational data streamsMachine Learning2017106224327635968790673782110.1007/s10994-016-5596-2
Jensen, D. D., & Neville, J. (2002). Linkage and autocorrelation cause feature selection bias in relational learning. In Machine learning, proceedings of the nineteenth international conference (ICML 2002) (pp. 259–266). Burlington: Morgan Kaufmann.
Paes, A., Revoredo, K., Zaverucha, G., Costa, V. S. (2005). Probabilistic first-order theory revision from examples. In Inductive Logic Programming, 15th International Conference, ILP 2005, Bonn, Germany, August 10–13, 2005, Proceedings (pp. 295–311).
Gama, J. A., & Kosina, P. (2011). Learning decision rules from data streams. In Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence—AAAI Press, IJCAI’11 (Vol. 2, pp. 1255–1260).
Tong, H., Faloutsos, C., & Pan, J. Y. (2006). Fast random walk with restart and its applications. In Proceedings of the sixth international conference on data mining, IEEE Computer Society, Washington, DC, USA, ICDM’06 (pp. 613–622).
MuggletonSDe RaedtLInductive logic programming: Theory and methodsJournal of Logic Programming1994192062967912799360816.6804310.1016/0743-1066(94)90035-3
Andersen, R., Chung, F., & Lang, K. (2006). Local graph partitioning using PageRank vectors. In Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science, IEEE Computer Society, Washington, DC, USA, FOCS’06 (pp. 475–486).
CravenMDiPasquoDFreitagDMcCallumAMitchellTNigamKSlatterySLearning to construct knowledge bases from the world wide webArtificial Intelligence20001181–2691130939.6874510.1016/S0004-3702(00)00004-7
Dries, A., Kimmig, A., Meert, W., Renkens, J., den Broeck, G.V., Vlasselaer, J., & De Raedt, L. (2015). Problog2: Probabilistic logic programming. In Machine learning and knowledge discovery in databases—European conference, ECML PKDD 2015, proceedings, Part III, LCNS (Vol 9286, pp. 312–315). New York: Springer.
RichardsBLMooneyRJAutomated refinement of first-order Horn-clause domain theoriesMachine Learning199519295131
KhotTNatarajanSKerstingKShavlikJGradient-based boosting for statistical relational learning: The Markov logic network and missing data casesMachine Learning201510017510033721481346.6815910.1007/s10994-015-5481-4
M Richardson (5798_CR39) 2006; 62
S Muggleton (5798_CR29) 1994; 19
L Getoor (5798_CR19) 2005; 7
5798_CR25
5798_CR26
EY Shapiro (5798_CR40) 1983
L De Raedt (5798_CR11) 2016; 10
5798_CR42
WY Wang (5798_CR44) 2015; 100
5798_CR21
KP Murphy (5798_CR30) 2012
5798_CR22
5798_CR23
T Khot (5798_CR24) 2015; 100
R Andersen (5798_CR2) 2007
AL Duboc (5798_CR15) 2009; 76
BL Richards (5798_CR38) 1995; 19
A Bifet (5798_CR3) 2010; 11
L De Raedt (5798_CR9) 2008
W Hoeffding (5798_CR20) 1963; 58
5798_CR14
5798_CR36
5798_CR37
5798_CR16
5798_CR17
5798_CR18
H Blockeel (5798_CR4) 1998; 101
S Wrobel (5798_CR46) 2013
AP Dawid (5798_CR8) 1984; 147
K Tsunoyama (5798_CR43) 2008; 48
DHD Warren (5798_CR45) 1977; 12
5798_CR6
5798_CR10
5798_CR32
S Natarajan (5798_CR31) 2012; 86
A Paes (5798_CR33) 2017; 106
5798_CR12
5798_CR34
TM Mitchell (5798_CR27) 1997
5798_CR35
A Srinivasan (5798_CR41) 2017; 106
H Blockeel (5798_CR5) 1999; 3
M Craven (5798_CR7) 2000; 118
A Dries (5798_CR13) 2010
S Muggleton (5798_CR28) 1995; 13
5798_CR1
References_xml – reference: MuggletonSDe RaedtLInductive logic programming: Theory and methodsJournal of Logic Programming1994192062967912799360816.6804310.1016/0743-1066(94)90035-3
– reference: BlockeelHDe RaedtLJacobsNDemoenBScaling up inductive logic programming by learning from interpretationsData Mining and Knowledge Discovery199931599310.1023/A:1009867806624
– reference: PaesAZaveruchaGCostaVSOn the use of stochastic local search techniques to revise first-order logic theories from examplesMachine Learning2017106219724135968780673782010.1007/s10994-016-5595-3
– reference: DriesADe RaedtLTowards clausal discovery for stream mining2010BerlinSpringer916
– reference: MurphyKPMachine learning: A probabilistic perspective2012CambridgeMIT Press1295.68003
– reference: DubocALPaesAZaveruchaGUsing the bottom clause and modes declarations on FOL theory revision from examplesMachine Learning2009761731071156.6852610.1007/s10994-009-5116-8
– reference: RichardsonMDomingosPMarkov logic networksMachine Learning200662110713610.1007/s10994-006-5833-1
– reference: DawidAPPresent position and potential developments: Some personal views: Statistical theory: The prequential approachJournal of the Royal Statistical Society Series A (General)1984147227829276381110.2307/2981683
– reference: Andersen, R., Chung, F., & Lang, K. (2006). Local graph partitioning using PageRank vectors. In Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science, IEEE Computer Society, Washington, DC, USA, FOCS’06 (pp. 475–486).
– reference: Cardoso, P. M., & Zaverucha, G. (2006). Comparative evaluation of approaches to scale up ILP. In 16th International Conference on Inductive Logic Programming (ILP 2006) (pp. 37–39). Corunna: UDC Press.
– reference: De Raedt, L., Kimmig, A., & Toivonen, H. (2007). Problog: A probabilistic prolog and its application in link discovery. In Proceedings of the 20th international joint conference on artifical intelligence, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, IJCAI’07 (pp. 2468–2473).
– reference: Jensen, D. D., & Neville, J. (2003). Autocorrelation and linkage cause bias in evaluation of relational learners. In Inductive logic programming, 12th international conference, ILP. Revised papers, Lecture Notes in Computer Science (vol. 2583, pp. 101–116), Berlin: Springer.
– reference: Duboc, A. L., Paes, A., & Zaverucha, G. (2017). On the formal characterization of the forte_mbc theory revision operators. J Log Comput, 27(8), 2551–2580.
– reference: RichardsBLMooneyRJAutomated refinement of first-order Horn-clause domain theoriesMachine Learning199519295131
– reference: HoeffdingWProbability inequalities for sums of bounded random variablesJournal of the American Statistical Association19635830113301443630127.1060210.1080/01621459.1963.10500830
– reference: Lopes, C., & Zaverucha, G. (2009). HTilde: Scaling up relational decision trees for very large databases. In Proceedings of the 2009 ACM symposium on applied computing, ACM, New York, NY, USA, SAC’09 (pp. 1475–1479).
– reference: NatarajanSKhotTKerstingKGutmannBShavlikJGradient-based boosting for statistical relational learning: The relational dependency network caseMachine Learning2012861255628906631243.6824510.1007/s10994-011-5244-9
– reference: Menezes, G. (2011). HTilde-RT: Um algoritmo de aprendizado de árvores de regressão de lógica de primeira ordem para fluxos de dados relacionais. Master’s thesis, PESC, COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
– reference: Richards, B. L., & Mooney, R. J. (1992). Learning relations by pathfinding. In Proceedings of the tenth national conference on artificial intelligence (AAAI-92), San Jose, CA (pp. 50–55).
– reference: Jensen, D. D., & Neville, J. (2002). Linkage and autocorrelation cause feature selection bias in relational learning. In Machine learning, proceedings of the nineteenth international conference (ICML 2002) (pp. 259–266). Burlington: Morgan Kaufmann.
– reference: BlockeelHDe RaedtLTop-down induction of first-order logical decision treesArtificial Intelligence19981011–228529716414750909.6803410.1016/S0004-3702(98)00034-4
– reference: Domingos, P., & Hulten, G. (2000). Mining high-speed data streams. In Proceedings of the Sixth ACM SIGKDD international conference on knowledge discovery and data mining, ACM, New York, NY, USA, KDD’00 (pp. 71–80)
– reference: GetoorLDiehlCPLink mining: A surveyACM SIGKDD Explorations Newsletter20057231210.1145/1117454.1117456
– reference: BifetAHolmesGKirkbyRPfahringerBMoa: Massive online analysisMachine Learning20101116011604
– reference: Gama, J. A., & Kosina, P. (2011). Learning decision rules from data streams. In Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence—AAAI Press, IJCAI’11 (Vol. 2, pp. 1255–1260).
– reference: MuggletonSInverse entailment and progolNew Generation Computing199513324528610.1007/BF03037227
– reference: De RaedtLKerstingKNatarajanSPooleDStatistical relational artificial intelligence: Logic, probability, and computationSynthesis Lectures on Artificial Intelligence and Machine Learning201610211891352.6800510.2200/S00692ED1V01Y201601AIM032
– reference: CravenMDiPasquoDFreitagDMcCallumAMitchellTNigamKSlatterySLearning to construct knowledge bases from the world wide webArtificial Intelligence20001181–2691130939.6874510.1016/S0004-3702(00)00004-7
– reference: TsunoyamaKAminiASternbergMMuggletonSScaffold hopping in drug discovery using inductive logic programmingJournal of Chemical Information and Modeling200848594995710.1021/ci700418f
– reference: Dries, A., Kimmig, A., Meert, W., Renkens, J., den Broeck, G.V., Vlasselaer, J., & De Raedt, L. (2015). Problog2: Probabilistic logic programming. In Machine learning and knowledge discovery in databases—European conference, ECML PKDD 2015, proceedings, Part III, LCNS (Vol 9286, pp. 312–315). New York: Springer.
– reference: Paes, A., Revoredo, K., Zaverucha, G., Costa, V. S. (2005). Probabilistic first-order theory revision from examples. In Inductive Logic Programming, 15th International Conference, ILP 2005, Bonn, Germany, August 10–13, 2005, Proceedings (pp. 295–311).
– reference: Page, L., Brin, S., Motwani, R., & Winograd, T. (1999). The PageRank citation ranking: Bringing order to the web. Technical Report 1999-66, Stanford InfoLab.
– reference: Hulten, G., Abe, Y., & Domingos, P. (2003). Mining massive relational database. In Proceedings of the IJCAI-2003 workshop on learning statistical models from relational Data (pp. 53–60).
– reference: WrobelSConcept formation and knowledge revision2013New YorkSpringer0811.68035
– reference: Poon, H., & Domingos, P. (2007). Joint inference in information extraction. In Proceedings of the 22Nd national conference on artificial intelligence, AAAI Press, AAAI’07 (vol. 1, pp. 913–918).
– reference: Friedman, N. (1998). The Bayesian structural EM algorithm. In UAI’98: Proceedings of the fourteenth conference on uncertainty in artificial intelligence (pp 129–138). Morgan Kaufmann, Burlington
– reference: AndersenRChungFLangKLocal partitioning for directed graphs using PageRank2007BerlinSpringer1661781136.68317
– reference: MitchellTMMachine learning. McGraw Hill series in computer science1997New YorkMcGraw-Hill
– reference: Pujara, J., London, B., Getoor, L., & Cohen, W. (2015). Online inference for knowledge graph construction. In Workshop on statistical relational AI.
– reference: De RaedtLLogical and relational learning20081BerlinSpringer1203.6814510.1007/978-3-540-68856-3
– reference: SrinivasanABainMAn empirical study of on-line models for relational data streamsMachine Learning2017106224327635968790673782110.1007/s10994-016-5596-2
– reference: WangWYMazaitisKLaoNCohenWWEfficient inference and learning in a large knowledge baseMachine Learning2015100110112633721491346.6816810.1007/s10994-015-5488-x
– reference: WarrenDHDPereiraLMPereiraFProlog—The language and its implementation compared with LispSIGPLAN Not197712810911510.1145/872734.806939
– reference: KhotTNatarajanSKerstingKShavlikJGradient-based boosting for statistical relational learning: The Markov logic network and missing data casesMachine Learning201510017510033721481346.6815910.1007/s10994-015-5481-4
– reference: Tong, H., Faloutsos, C., & Pan, J. Y. (2006). Fast random walk with restart and its applications. In Proceedings of the sixth international conference on data mining, IEEE Computer Society, Washington, DC, USA, ICDM’06 (pp. 613–622).
– reference: ShapiroEYAlgorithmic program debugging1983CambridgeMIT Press0589.68003
– start-page: 9
  volume-title: Towards clausal discovery for stream mining
  year: 2010
  ident: 5798_CR13
– ident: 5798_CR34
– ident: 5798_CR36
– start-page: 166
  volume-title: Local partitioning for directed graphs using PageRank
  year: 2007
  ident: 5798_CR2
– volume: 106
  start-page: 197
  issue: 2
  year: 2017
  ident: 5798_CR33
  publication-title: Machine Learning
  doi: 10.1007/s10994-016-5595-3
– volume-title: Concept formation and knowledge revision
  year: 2013
  ident: 5798_CR46
– ident: 5798_CR17
– volume: 106
  start-page: 243
  issue: 2
  year: 2017
  ident: 5798_CR41
  publication-title: Machine Learning
  doi: 10.1007/s10994-016-5596-2
– volume: 147
  start-page: 278
  issue: 2
  year: 1984
  ident: 5798_CR8
  publication-title: Journal of the Royal Statistical Society Series A (General)
  doi: 10.2307/2981683
– volume: 48
  start-page: 949
  issue: 5
  year: 2008
  ident: 5798_CR43
  publication-title: Journal of Chemical Information and Modeling
  doi: 10.1021/ci700418f
– ident: 5798_CR12
  doi: 10.1145/347090.347107
– volume-title: Algorithmic program debugging
  year: 1983
  ident: 5798_CR40
  doi: 10.7551/mitpress/1192.001.0001
– ident: 5798_CR32
  doi: 10.1007/11536314_18
– volume: 3
  start-page: 59
  issue: 1
  year: 1999
  ident: 5798_CR5
  publication-title: Data Mining and Knowledge Discovery
  doi: 10.1023/A:1009867806624
– volume-title: Logical and relational learning
  year: 2008
  ident: 5798_CR9
  doi: 10.1007/978-3-540-68856-3
– volume: 118
  start-page: 69
  issue: 1–2
  year: 2000
  ident: 5798_CR7
  publication-title: Artificial Intelligence
  doi: 10.1016/S0004-3702(00)00004-7
– ident: 5798_CR25
  doi: 10.1145/1529282.1529610
– ident: 5798_CR21
– ident: 5798_CR42
  doi: 10.1109/ICDM.2006.70
– ident: 5798_CR23
– volume: 86
  start-page: 25
  issue: 1
  year: 2012
  ident: 5798_CR31
  publication-title: Machine Learning
  doi: 10.1007/s10994-011-5244-9
– ident: 5798_CR10
– volume: 100
  start-page: 75
  issue: 1
  year: 2015
  ident: 5798_CR24
  publication-title: Machine Learning
  doi: 10.1007/s10994-015-5481-4
– ident: 5798_CR35
– volume: 13
  start-page: 245
  issue: 3
  year: 1995
  ident: 5798_CR28
  publication-title: New Generation Computing
  doi: 10.1007/BF03037227
– ident: 5798_CR37
– volume: 76
  start-page: 73
  issue: 1
  year: 2009
  ident: 5798_CR15
  publication-title: Machine Learning
  doi: 10.1007/s10994-009-5116-8
– volume: 11
  start-page: 1601
  year: 2010
  ident: 5798_CR3
  publication-title: Machine Learning
– volume-title: Machine learning. McGraw Hill series in computer science
  year: 1997
  ident: 5798_CR27
– ident: 5798_CR16
  doi: 10.1093/logcom/exx015
– volume: 58
  start-page: 13
  issue: 301
  year: 1963
  ident: 5798_CR20
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1963.10500830
– volume: 62
  start-page: 107
  issue: 1
  year: 2006
  ident: 5798_CR39
  publication-title: Machine Learning
  doi: 10.1007/s10994-006-5833-1
– volume: 10
  start-page: 1
  issue: 2
  year: 2016
  ident: 5798_CR11
  publication-title: Synthesis Lectures on Artificial Intelligence and Machine Learning
  doi: 10.2200/S00692ED1V01Y201601AIM032
– ident: 5798_CR18
– ident: 5798_CR6
– ident: 5798_CR14
– volume: 19
  start-page: 629
  issue: 20
  year: 1994
  ident: 5798_CR29
  publication-title: Journal of Logic Programming
  doi: 10.1016/0743-1066(94)90035-3
– volume: 12
  start-page: 109
  issue: 8
  year: 1977
  ident: 5798_CR45
  publication-title: SIGPLAN Not
  doi: 10.1145/872734.806939
– volume-title: Machine learning: A probabilistic perspective
  year: 2012
  ident: 5798_CR30
– volume: 7
  start-page: 3
  issue: 2
  year: 2005
  ident: 5798_CR19
  publication-title: ACM SIGKDD Explorations Newsletter
  doi: 10.1145/1117454.1117456
– volume: 101
  start-page: 285
  issue: 1–2
  year: 1998
  ident: 5798_CR4
  publication-title: Artificial Intelligence
  doi: 10.1016/S0004-3702(98)00034-4
– ident: 5798_CR1
  doi: 10.1109/FOCS.2006.44
– volume: 19
  start-page: 95
  issue: 2
  year: 1995
  ident: 5798_CR38
  publication-title: Machine Learning
– volume: 100
  start-page: 101
  issue: 1
  year: 2015
  ident: 5798_CR44
  publication-title: Machine Learning
  doi: 10.1007/s10994-015-5488-x
– ident: 5798_CR26
– ident: 5798_CR22
SSID ssj0002686
Score 2.3162558
Snippet Handling relational data streams has become a crucial task, given the availability of pervasive sensors and Internet-produced content, such as social networks...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1165
SubjectTerms Algorithms
Artificial Intelligence
Computer Science
Control
Data transmission
Digital media
Distance learning
Knowledge management
Machine learning
Mechatronics
Natural Language Processing (NLP)
Robotics
Simulation and Modeling
Social networks
Special Issue of the Inductive Logic Programming (ILP) 2017-2018
Statistical analysis
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH_o9ODF-YnTKTl408LWNE16EUQcnkaZH-xW8gmCbNJWcf-9SZZuKirouWko7-XlvfTl9_sBnErKWV9TExHfZlS2hmOxMFFmUt5TihrFpReboMMhG4-zPIDCqua2e9OS9Dv1B7Cbp7F1oBtCMxbNVmHNpjvmBBtGtw-L_TdOvb6jDR8SufwdoDLfz_E5HS1rzC9tUZ9tBu3_fecWbIbqEl3Ol8M2rOjJDrQb5QYUAnkXLuYMo8jJyXiKXcfWjDyocYbKADhHDnqC9Bt3BMIVcn9sUV5O83y0B_eD67urmygoKUTSJuw64lRkmBjDlMHCEBInXBDOeZpxYfoUU4lNT9mjCLfVgdaJMRQrJRlJGWeJNngfWpPpRB8AwjxmmuLY-dax9QlhTzzKqEQKgYmUHeg3Bi1koBl3ahdPxZIg2RmosAYqvIGKWQfOFu88z0k2fh3dbfxUhICrClvmJDRhOCUdOG_8snz882yHfxt-BBuxd627sNuFVl2-6GNYl6_1Y1We-IX4Dqly2eM
  priority: 102
  providerName: Springer Nature
Title Online probabilistic theory revision from examples with ProPPR
URI https://link.springer.com/article/10.1007/s10994-019-05798-y
https://www.proquest.com/docview/2224748365
Volume 108
WOSCitedRecordID wos000470684600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-0565
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002686
  issn: 0885-6125
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JSwMxGP1Q68GLu1iXkoM3DbaTySRzUVQsgliGulC8DFlBkFbbKvbfm6QZi4JevOQykzDMy7dk-d4DOFBM8JZhFtNwzKhdDscTaXFuM9HUmlktVBCbYJ0O7_XyIm64jeK1ysonBketB8rvkR-7OJaylJOMnr68Yq8a5U9Xo4TGPNRcZtPyV7pukuLLEydZUHp0hkSxj-SxaCaWzgVSXF_CQ1nO8eR7YJplmz8OSEPcaa_894tXYTlmnOhsOkXWYM7012GlUnNA0bg34GTKOoq8xEyg3fUMzigUOk7QMBahI1-OgsyH8KTCI-R3cVExHBRFdxPu25d3F1c4qitg5YL4GAsmc0Kt5doSaSlNUiGpECLLhbQtRpgitqnd8kS4jMGY1FpGtFacZlzw1FiyBQv9Qd9sAyIi4YaRxOPtGfykdKsgbXWqpCRUqTq0ql9bqkg97hUwnssZabKHo3RwlAGOclKHw68-L1PijT_f3qswKKMRjsoZAHU4qlCcPf59tJ2_R9uFpSRMHH9pdw8WxsM3sw-L6n38NBo2oHZ-2Sm6DZi_ZrgRJqRrC_ro2u7twycWDOdb
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JbtswEB24ToH20qRLUDdLeWhOrdCYFEXqkARBFthwYghFCvimcgUCBLZru238U_nGcGjJRgsktxx6lkRAesOZocj3HsAnI5RsO-ETHrcZbejhJNU-yX2m9q0V3ioTzSZEvy8Hg7xowF3NhcFjlXVOjInajgz-I_8a6lgqUskyfjT-maBrFO6u1hYai7DoufmfsGSbHnRPA757lJ6fXZ10kspVIDGheM0SJXTOuPfSeqY95zRVmiulslxp3xZMGOb3bWjLVaiUzqXeC2atkTyTSqbOszDuM1hLUVkMjwrSYpn5aRadJcPE5Ql2DhVJp6LqRRFepAxxkctk_nchXHW3_2zIxjp3vv6_faENeFV11OR4MQVeQ8MN38B67VZBquT1Fg4XqqoELXSirDAqVJNI5JyTSUWyJ0i3Ie5WoWjylOBfalJMRkXx7R18f5K32ITmcDR074EwRaUTjGI8o0Kh1mGVZ71NjdaMG9OCdg1laSppdXT4uClXotAIfxngLyP85bwFn5fPjBfCIo_evV1jXlZJZlquAG_BlzpqVpcfHu3D46N9hBedq8uL8qLb723BSxqDFg8ob0NzNvnlduC5-T27nk52Y_gT-PHU0XQPicJC8w
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NT9wwEB0tUKFegH4glkLrQ3tqo2XjOHYOgFBhVbTVKqpaCfWS-lNCQrs0uy3sX-uvw-N1NmqlcuPAOYklZ55nxvbMewBvNZeib7lLWLhmND6HE6lySeFyeWAMd0bqIDbBRyNxcVGUHfjT9MJgWWXjE4OjNhONZ-Q9H8cyngmas56LZRHl6eD4-meCClJ409rIaSwgMrTzG799mx6en3pbv0vTwdnXj5-SqDCQaB_IZonkqqDMOWEcVY6xNJOKSSnzQirX55Rr6g6MT9Glj5rWZs5xaowWLBdSZNZRP-4KrHG_x8RywpJ9X0aBNA8qk34RswSziNiwE9v2AiEvtg8xXohk_ndQbDPdfy5nQ8wbbD7mv7UFGzHTJieLpfEMOnb8HDYbFQsSndoLOFqwrRKU1gl0w8hcTUKD55zUsfmeYBsOsbcSyZSnBE-vSVlPyvLLS_j2ILPYhtXxZGx3gFCZCstpijhH5kKl_O7POJNppSjTugv9xqyVjpTrqPxxVbVk0QiFykOhClCo5l14v_zmekE4cu_be439q-h8plVr_C58aBDUPv7_aLv3j_YG1j2Iqs_no-EreJoG_GLd8h6szupfdh-e6N-zy2n9OqwEAj8eGkx3RGhL3w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Online+probabilistic+theory+revision+from+examples+with+ProPPR&rft.jtitle=Machine+learning&rft.au=Guimar%C3%A3es%2C+Victor&rft.au=Paes%2C+Aline&rft.au=Gerson+Zaverucha&rft.date=2019-07-01&rft.pub=Springer+Nature+B.V&rft.issn=0885-6125&rft.eissn=1573-0565&rft.volume=108&rft.issue=7&rft.spage=1165&rft.epage=1189&rft_id=info:doi/10.1007%2Fs10994-019-05798-y&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6125&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6125&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6125&client=summon