Advances in Vision-Based Lane Detection: Algorithms, Integration, Assessment, and Perspectives on ACP-Based Parallel Vision

Lane detection is a fundamental aspect of most current advanced driver assistance systems &#x0028 ADASs &#x0029. A large number of existing results focus on the study of vision-based lane detection methods due to the extensive knowledge background and the low-cost of camera devices. In this...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE/CAA journal of automatica sinica Ročník 5; číslo 3; s. 645 - 661
Hlavní autoři: Xing, Yang, Lv, Chen, Chen, Long, Wang, Huaji, Wang, Hong, Cao, Dongpu, Velenis, Efstathios, Wang, Fei-Yue
Médium: Journal Article
Jazyk:angličtina
Vydáno: Chinese Association of Automation (CAA) 01.05.2018
Témata:
ISSN:2329-9266, 2329-9274
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Lane detection is a fundamental aspect of most current advanced driver assistance systems &#x0028 ADASs &#x0029. A large number of existing results focus on the study of vision-based lane detection methods due to the extensive knowledge background and the low-cost of camera devices. In this paper, previous vision-based lane detection studies are reviewed in terms of three aspects, which are lane detection algorithms, integration, and evaluation methods. Next, considering the inevitable limitations that exist in the camera-based lane detection system, the system integration methodologies for constructing more robust detection systems are reviewed and analyzed. The integration methods are further divided into three levels, namely, algorithm, system, and sensor. Algorithm level combines different lane detection algorithms while system level integrates other object detection systems to comprehensively detect lane positions. Sensor level uses multi-modal sensors to build a robust lane recognition system. In view of the complexity of evaluating the detection system, and the lack of common evaluation procedure and uniform metrics in past studies, the existing evaluation methods and metrics are analyzed and classified to propose a better evaluation of the lane detection system. Next, a comparison of representative studies is performed. Finally, a discussion on the limitations of current lane detection systems and the future developing trends toward an Artificial Society, Computational experiment-based parallel lane detection framework is proposed.
AbstractList Lane detection is a fundamental aspect of most current advanced driver assistance systems &#x0028 ADASs &#x0029. A large number of existing results focus on the study of vision-based lane detection methods due to the extensive knowledge background and the low-cost of camera devices. In this paper, previous vision-based lane detection studies are reviewed in terms of three aspects, which are lane detection algorithms, integration, and evaluation methods. Next, considering the inevitable limitations that exist in the camera-based lane detection system, the system integration methodologies for constructing more robust detection systems are reviewed and analyzed. The integration methods are further divided into three levels, namely, algorithm, system, and sensor. Algorithm level combines different lane detection algorithms while system level integrates other object detection systems to comprehensively detect lane positions. Sensor level uses multi-modal sensors to build a robust lane recognition system. In view of the complexity of evaluating the detection system, and the lack of common evaluation procedure and uniform metrics in past studies, the existing evaluation methods and metrics are analyzed and classified to propose a better evaluation of the lane detection system. Next, a comparison of representative studies is performed. Finally, a discussion on the limitations of current lane detection systems and the future developing trends toward an Artificial Society, Computational experiment-based parallel lane detection framework is proposed.
Author Velenis, Efstathios
Cao, Dongpu
Wang, Fei-Yue
Wang, Hong
Chen, Long
Xing, Yang
Wang, Huaji
Lv, Chen
Author_xml – sequence: 1
  givenname: Yang
  surname: Xing
  fullname: Xing, Yang
  organization: Advanced Vehicle Engineering Centre, Cranfield University, and also with Vehicle Intelligence Pioneers Ltd, China
– sequence: 2
  givenname: Chen
  surname: Lv
  fullname: Lv, Chen
  email: c.lyu@cranfield.ac.uk
  organization: Advanced Vehicle Engineering Centre, Cranfield University, UK
– sequence: 3
  givenname: Long
  surname: Chen
  fullname: Chen, Long
  email: chenl46@mail.sysu.edu.cn
  organization: School of Data and Computer Science, Sun Yat-Sen University, China
– sequence: 4
  givenname: Huaji
  surname: Wang
  fullname: Wang, Huaji
  email: huaji.wang@cranfield.ac.uk
  organization: Advanced Vehicle Engineering Centre, Cranfield University, UK
– sequence: 5
  givenname: Hong
  surname: Wang
  fullname: Wang, Hong
  email: hong.wang@uwaterloo.ca
  organization: Mechanical and Mechatronics Engineering, University of Waterloo, Canada
– sequence: 6
  givenname: Dongpu
  surname: Cao
  fullname: Cao, Dongpu
  email: dongpu.cao@uwaterloo.ca
  organization: Mechanical and Mechatronics Engineering, University of Waterloo, Canada
– sequence: 7
  givenname: Efstathios
  surname: Velenis
  fullname: Velenis, Efstathios
  email: e.velenis@cranfield.ac.uk
  organization: Advanced Vehicle Engineering Centre, Cranfield University, UK
– sequence: 8
  givenname: Fei-Yue
  surname: Wang
  fullname: Wang, Fei-Yue
  email: feiyue@ieee.org
  organization: State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, China
BookMark eNp9kEtLw0AQxxepYK29C172AzR1H9kk6y3WV6Vgwcc1jJtJjaSbsrsUxC9vYksPHmQO8-L3H-Z_Sga2tUjIOWdTzpm-fMyfp4LxbJqqrk_kERkKKXSkRRoPDnWSnJCx95-MMS5Umuh4SL7zcgvWoKe1pW-1r1sbXYPHki7AIr3BgCZ0wyuaN6vW1eFj7Sd0bgOuHPSLCc29R-_XaMOEgi3pEp3f9NS2U20tzWfLveQSHDQNNvtDZ-S4gsbjeJ9H5PXu9mX2EC2e7uezfBGZmCUhglipRGBqtMwYiEQhvCthutBximUWl6LCimsAUCV2M12qCljF-4JlRo4I2-ka13rvsCo2rl6D-yo4K3r_is6_ovev2PvXIckfxNTh99_goG7-Ay92YI2IhzuZlILLTP4AeWB_4Q
CODEN IJASJC
CitedBy_id crossref_primary_10_1007_s11042_018_6505_4
crossref_primary_10_1017_S175907872400117X
crossref_primary_10_1088_1361_6501_adfc86
crossref_primary_10_1109_TIV_2022_3196396
crossref_primary_10_1109_TIM_2024_3351240
crossref_primary_10_3390_app14188493
crossref_primary_10_3390_vehicles3040040
crossref_primary_10_1109_TCSS_2018_2871210
crossref_primary_10_1109_TITS_2021_3083526
crossref_primary_10_1109_TITS_2022_3227176
crossref_primary_10_1109_TIV_2023_3239903
crossref_primary_10_1109_ACCESS_2019_2893481
crossref_primary_10_1016_j_compeleceng_2022_108100
crossref_primary_10_1016_j_trpro_2023_11_718
crossref_primary_10_1111_mice_12829
crossref_primary_10_1109_TCSS_2021_3063841
crossref_primary_10_1109_TIV_2022_3221767
crossref_primary_10_1049_iet_its_2018_5479
crossref_primary_10_1109_TITS_2022_3149763
crossref_primary_10_1016_j_cscm_2023_e02048
crossref_primary_10_2478_ttj_2021_0029
crossref_primary_10_1007_s11042_020_10248_2
crossref_primary_10_1016_j_jvcir_2021_103373
crossref_primary_10_1038_s41598_024_70116_z
crossref_primary_10_1007_s41870_021_00747_2
crossref_primary_10_1109_TIP_2021_3057287
crossref_primary_10_1109_TIV_2022_3221927
crossref_primary_10_1109_JRFID_2022_3207014
crossref_primary_10_3390_sym10120707
crossref_primary_10_3390_futuretransp5020039
crossref_primary_10_1109_TMM_2024_3406146
crossref_primary_10_1109_TVT_2020_2998137
crossref_primary_10_3390_s23010327
crossref_primary_10_1109_TITS_2020_3040728
crossref_primary_10_1109_TITS_2025_3554695
crossref_primary_10_1109_ACCESS_2021_3078849
crossref_primary_10_3390_sym11101205
crossref_primary_10_1051_e3sconf_202130901117
crossref_primary_10_1109_JIOT_2023_3262640
crossref_primary_10_1109_JSEN_2023_3274194
crossref_primary_10_3390_s21030708
crossref_primary_10_7467_KSAE_2021_29_2_197
crossref_primary_10_3390_rs15235548
crossref_primary_10_1109_JSEN_2021_3082145
crossref_primary_10_1007_s11036_019_01409_1
crossref_primary_10_1016_j_tre_2022_102989
crossref_primary_10_1007_s11831_021_09670_y
crossref_primary_10_1109_ACCESS_2020_3000777
crossref_primary_10_1007_s41060_023_00481_x
crossref_primary_10_1007_s11042_019_7475_x
crossref_primary_10_1109_TITS_2022_3215892
crossref_primary_10_1109_TIV_2024_3457759
crossref_primary_10_1016_j_neucom_2025_130795
crossref_primary_10_1109_JIOT_2020_2973977
crossref_primary_10_1109_TITS_2020_3023541
crossref_primary_10_2478_ttj_2023_0010
crossref_primary_10_1016_j_neucom_2023_127032
crossref_primary_10_1177_14727978251361385
crossref_primary_10_1007_s41062_022_00887_9
crossref_primary_10_3390_su11164511
crossref_primary_10_1109_JSYST_2022_3209307
crossref_primary_10_1155_2021_8858902
crossref_primary_10_1145_3627160
crossref_primary_10_1109_ACCESS_2020_2970503
crossref_primary_10_1109_JAS_2022_105806
crossref_primary_10_1109_ACCESS_2021_3083890
crossref_primary_10_1109_TIV_2022_3195635
crossref_primary_10_1109_TIV_2022_3223131
crossref_primary_10_1109_TVT_2018_2882130
crossref_primary_10_46604_peti_2021_6074
crossref_primary_10_1049_itr2_12188
crossref_primary_10_1007_s11042_020_10370_1
crossref_primary_10_1016_j_cscm_2021_e00579
crossref_primary_10_1109_JAS_2020_1003324
crossref_primary_10_1109_TITS_2021_3070111
crossref_primary_10_1109_TIV_2019_2938092
crossref_primary_10_1109_TITS_2021_3072970
crossref_primary_10_1038_s41598_025_01167_z
crossref_primary_10_1109_JSEN_2020_3018319
crossref_primary_10_3390_wevj13100191
crossref_primary_10_1109_JAS_2021_1003907
crossref_primary_10_1109_TIV_2024_3353253
crossref_primary_10_1155_2021_4920212
crossref_primary_10_1049_cit2_12221
ContentType Journal Article
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
DOI 10.1109/JAS.2018.7511063
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2329-9274
EndPage 661
ExternalDocumentID 10_1109_JAS_2018_7511063
8332138
Genre orig-research
GroupedDBID -0I
-0Y
-SI
-S~
0R~
4.4
5VR
6IK
92M
97E
9D9
9DI
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AFUIB
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CAJEI
EBS
EJD
ESBDL
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
Q--
RIA
RIE
RT9
T8Y
TCJ
TGT
U1F
U1G
U5I
U5S
AAYXX
CITATION
ID FETCH-LOGICAL-c406t-a45562e7c9380a265eab52c2c2947ed84d2fef19aaa5de9479d5fa0f179d508c3
IEDL.DBID RIE
ISICitedReferencesCount 111
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000429673400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2329-9266
IngestDate Sat Nov 29 03:31:03 EST 2025
Tue Nov 18 22:43:02 EST 2025
Wed Aug 27 02:11:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-a45562e7c9380a265eab52c2c2947ed84d2fef19aaa5de9479d5fa0f179d508c3
OpenAccessLink https://ieeexplore.ieee.org/document/8332138
PageCount 17
ParticipantIDs crossref_primary_10_1109_JAS_2018_7511063
crossref_citationtrail_10_1109_JAS_2018_7511063
ieee_primary_8332138
PublicationCentury 2000
PublicationDate 2018-05-01
PublicationDateYYYYMMDD 2018-05-01
PublicationDate_xml – month: 05
  year: 2018
  text: 2018-05-01
  day: 01
PublicationDecade 2010
PublicationTitle IEEE/CAA journal of automatica sinica
PublicationTitleAbbrev JAS
PublicationYear 2018
Publisher Chinese Association of Automation (CAA)
Publisher_xml – name: Chinese Association of Automation (CAA)
SSID ssj0001257694
Score 2.4604259
SecondaryResourceType review_article
Snippet Lane detection is a fundamental aspect of most current advanced driver assistance systems &#x0028 ADASs &#x0029. A large number of existing results focus on...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 645
SubjectTerms ACP theory
Advanced driver assistance systems (ADASs)
benchmark
Detection algorithms
Feature extraction
Image color analysis
Image edge detection
lane detection
parallel vision
performance evaluation
Roads
Robustness
Transforms
Title Advances in Vision-Based Lane Detection: Algorithms, Integration, Assessment, and Perspectives on ACP-Based Parallel Vision
URI https://ieeexplore.ieee.org/document/8332138
Volume 5
WOSCitedRecordID wos000429673400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 2329-9274
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001257694
  issn: 2329-9266
  databaseCode: RIE
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8MwGA7b8KAHv6Y4v8jBi7BuXdM2ibc6HSoyBn6wW0mbVAezk7Xz4p_3TdrVCSJILyFN2tIn5X2a9-NB6IxT4UvXJZaKPNdyBffhk1KRRSNgcj2bSE8mRmyCDodsPOajGmpXuTBKKRN8pjq6aXz5chYv9FZZlxHi9AirozqlfpGrtbKfAszZ6B4CR-AWB8Oz9EravHsXPOgwLtahQDBsn_ywQiuyKsaqDLb-9zzbaLNkjzgo4N5BNZXuoo2VmoJN9BkUXv0MT1L8bDLHrUswVRLfi1ThK5Wb4Kv0AgfTl9l8kr--ZW18W1aNgBNtHFTVOttYpBKPvhMyMzxLcdAflZccibnWYpmWN9pDT4Prx_6NVSosWDEY8twSrgf8R9GYE2YLx_eUiDwnhoO7VEnmSidRSY8LITypoI9LLxF20tMNm8VkHzXSWaoOEJaOy2KfABsDFBilEawB32aJiHwpgce0UHf5xsO4LD-uVTCmofkNsXkIGIUao7DEqIXOqxnvRemNP8Y2NTzVuBKZw9-7j9C6nlzELR6jRj5fqBO0Fn_kk2x-atbVFyJGylQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JT-MwFH5ik4ADDDCIfXzgMlJD3dhJbG5hE0upKg0gbpETO0OlkqI2cOHP8-yEUiSEhHKxHMeJ8jl6X_yWD2BfRirUnDPPpAH3uJIhflIm9aIUmVyLMh3o3IlNRJ2OuL-X3SlojHNhjDEu-Mwc2Kbz5etB9my3ypqCMb_FxDTMBpz7tMrWmthRQe7slA-RJUhPoul590tS2byM_9lALnEQIcWgIftkhyaEVZxdOVv-2RP9gqWaP5K4AnwFpkyxCosTVQXX4DWu_Poj0ivIncsd947QWGnSVoUhJ6Z04VfFIYn7_wfDXvnwOGqQi7puBJ5okHhcr7NBVKFJ9yMlc0QGBYmPu_WUXTW0aiz9-ka_4fbs9Ob43Ks1FrwMTXnpKR4gAzJRJpmgyg8Do9LAz_CQPDJacO3nJm9JpVSgDfZJHeSK5i3boCJj6zBTDAqzAUT7XGQhQz6GKIgoSnEVhFTkKg21RiazCc33N55kdQFyq4PRT9yPCJUJYpRYjJIao034O77iqSq-8c3YNQvPeFyNzNbX3X9g_vzmup20LzpX27BgJ6qiGHdgphw-m12Yy17K3mi459bYG9KEzZs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advances+in+Vision-Based+Lane+Detection%3A+Algorithms%2C+Integration%2C+Assessment%2C+and+Perspectives+on+ACP-Based+Parallel+Vision&rft.jtitle=IEEE%2FCAA+journal+of+automatica+sinica&rft.au=Xing%2C+Yang&rft.au=Lv%2C+Chen&rft.au=Chen%2C+Long&rft.au=Wang%2C+Huaji&rft.date=2018-05-01&rft.pub=Chinese+Association+of+Automation+%28CAA%29&rft.issn=2329-9266&rft.volume=5&rft.issue=3&rft.spage=645&rft.epage=661&rft_id=info:doi/10.1109%2FJAS.2018.7511063&rft.externalDocID=8332138
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2329-9266&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2329-9266&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2329-9266&client=summon