Advances in Vision-Based Lane Detection: Algorithms, Integration, Assessment, and Perspectives on ACP-Based Parallel Vision
Lane detection is a fundamental aspect of most current advanced driver assistance systems ( ADASs ). A large number of existing results focus on the study of vision-based lane detection methods due to the extensive knowledge background and the low-cost of camera devices. In this...
Uloženo v:
| Vydáno v: | IEEE/CAA journal of automatica sinica Ročník 5; číslo 3; s. 645 - 661 |
|---|---|
| Hlavní autoři: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Chinese Association of Automation (CAA)
01.05.2018
|
| Témata: | |
| ISSN: | 2329-9266, 2329-9274 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Lane detection is a fundamental aspect of most current advanced driver assistance systems ( ADASs ). A large number of existing results focus on the study of vision-based lane detection methods due to the extensive knowledge background and the low-cost of camera devices. In this paper, previous vision-based lane detection studies are reviewed in terms of three aspects, which are lane detection algorithms, integration, and evaluation methods. Next, considering the inevitable limitations that exist in the camera-based lane detection system, the system integration methodologies for constructing more robust detection systems are reviewed and analyzed. The integration methods are further divided into three levels, namely, algorithm, system, and sensor. Algorithm level combines different lane detection algorithms while system level integrates other object detection systems to comprehensively detect lane positions. Sensor level uses multi-modal sensors to build a robust lane recognition system. In view of the complexity of evaluating the detection system, and the lack of common evaluation procedure and uniform metrics in past studies, the existing evaluation methods and metrics are analyzed and classified to propose a better evaluation of the lane detection system. Next, a comparison of representative studies is performed. Finally, a discussion on the limitations of current lane detection systems and the future developing trends toward an Artificial Society, Computational experiment-based parallel lane detection framework is proposed. |
|---|---|
| AbstractList | Lane detection is a fundamental aspect of most current advanced driver assistance systems ( ADASs ). A large number of existing results focus on the study of vision-based lane detection methods due to the extensive knowledge background and the low-cost of camera devices. In this paper, previous vision-based lane detection studies are reviewed in terms of three aspects, which are lane detection algorithms, integration, and evaluation methods. Next, considering the inevitable limitations that exist in the camera-based lane detection system, the system integration methodologies for constructing more robust detection systems are reviewed and analyzed. The integration methods are further divided into three levels, namely, algorithm, system, and sensor. Algorithm level combines different lane detection algorithms while system level integrates other object detection systems to comprehensively detect lane positions. Sensor level uses multi-modal sensors to build a robust lane recognition system. In view of the complexity of evaluating the detection system, and the lack of common evaluation procedure and uniform metrics in past studies, the existing evaluation methods and metrics are analyzed and classified to propose a better evaluation of the lane detection system. Next, a comparison of representative studies is performed. Finally, a discussion on the limitations of current lane detection systems and the future developing trends toward an Artificial Society, Computational experiment-based parallel lane detection framework is proposed. |
| Author | Velenis, Efstathios Cao, Dongpu Wang, Fei-Yue Wang, Hong Chen, Long Xing, Yang Wang, Huaji Lv, Chen |
| Author_xml | – sequence: 1 givenname: Yang surname: Xing fullname: Xing, Yang organization: Advanced Vehicle Engineering Centre, Cranfield University, and also with Vehicle Intelligence Pioneers Ltd, China – sequence: 2 givenname: Chen surname: Lv fullname: Lv, Chen email: c.lyu@cranfield.ac.uk organization: Advanced Vehicle Engineering Centre, Cranfield University, UK – sequence: 3 givenname: Long surname: Chen fullname: Chen, Long email: chenl46@mail.sysu.edu.cn organization: School of Data and Computer Science, Sun Yat-Sen University, China – sequence: 4 givenname: Huaji surname: Wang fullname: Wang, Huaji email: huaji.wang@cranfield.ac.uk organization: Advanced Vehicle Engineering Centre, Cranfield University, UK – sequence: 5 givenname: Hong surname: Wang fullname: Wang, Hong email: hong.wang@uwaterloo.ca organization: Mechanical and Mechatronics Engineering, University of Waterloo, Canada – sequence: 6 givenname: Dongpu surname: Cao fullname: Cao, Dongpu email: dongpu.cao@uwaterloo.ca organization: Mechanical and Mechatronics Engineering, University of Waterloo, Canada – sequence: 7 givenname: Efstathios surname: Velenis fullname: Velenis, Efstathios email: e.velenis@cranfield.ac.uk organization: Advanced Vehicle Engineering Centre, Cranfield University, UK – sequence: 8 givenname: Fei-Yue surname: Wang fullname: Wang, Fei-Yue email: feiyue@ieee.org organization: State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, China |
| BookMark | eNp9kEtLw0AQxxepYK29C172AzR1H9kk6y3WV6Vgwcc1jJtJjaSbsrsUxC9vYksPHmQO8-L3H-Z_Sga2tUjIOWdTzpm-fMyfp4LxbJqqrk_kERkKKXSkRRoPDnWSnJCx95-MMS5Umuh4SL7zcgvWoKe1pW-1r1sbXYPHki7AIr3BgCZ0wyuaN6vW1eFj7Sd0bgOuHPSLCc29R-_XaMOEgi3pEp3f9NS2U20tzWfLveQSHDQNNvtDZ-S4gsbjeJ9H5PXu9mX2EC2e7uezfBGZmCUhglipRGBqtMwYiEQhvCthutBximUWl6LCimsAUCV2M12qCljF-4JlRo4I2-ka13rvsCo2rl6D-yo4K3r_is6_ovev2PvXIckfxNTh99_goG7-Ay92YI2IhzuZlILLTP4AeWB_4Q |
| CODEN | IJASJC |
| CitedBy_id | crossref_primary_10_1007_s11042_018_6505_4 crossref_primary_10_1017_S175907872400117X crossref_primary_10_1088_1361_6501_adfc86 crossref_primary_10_1109_TIV_2022_3196396 crossref_primary_10_1109_TIM_2024_3351240 crossref_primary_10_3390_app14188493 crossref_primary_10_3390_vehicles3040040 crossref_primary_10_1109_TCSS_2018_2871210 crossref_primary_10_1109_TITS_2021_3083526 crossref_primary_10_1109_TITS_2022_3227176 crossref_primary_10_1109_TIV_2023_3239903 crossref_primary_10_1109_ACCESS_2019_2893481 crossref_primary_10_1016_j_compeleceng_2022_108100 crossref_primary_10_1016_j_trpro_2023_11_718 crossref_primary_10_1111_mice_12829 crossref_primary_10_1109_TCSS_2021_3063841 crossref_primary_10_1109_TIV_2022_3221767 crossref_primary_10_1049_iet_its_2018_5479 crossref_primary_10_1109_TITS_2022_3149763 crossref_primary_10_1016_j_cscm_2023_e02048 crossref_primary_10_2478_ttj_2021_0029 crossref_primary_10_1007_s11042_020_10248_2 crossref_primary_10_1016_j_jvcir_2021_103373 crossref_primary_10_1038_s41598_024_70116_z crossref_primary_10_1007_s41870_021_00747_2 crossref_primary_10_1109_TIP_2021_3057287 crossref_primary_10_1109_TIV_2022_3221927 crossref_primary_10_1109_JRFID_2022_3207014 crossref_primary_10_3390_sym10120707 crossref_primary_10_3390_futuretransp5020039 crossref_primary_10_1109_TMM_2024_3406146 crossref_primary_10_1109_TVT_2020_2998137 crossref_primary_10_3390_s23010327 crossref_primary_10_1109_TITS_2020_3040728 crossref_primary_10_1109_TITS_2025_3554695 crossref_primary_10_1109_ACCESS_2021_3078849 crossref_primary_10_3390_sym11101205 crossref_primary_10_1051_e3sconf_202130901117 crossref_primary_10_1109_JIOT_2023_3262640 crossref_primary_10_1109_JSEN_2023_3274194 crossref_primary_10_3390_s21030708 crossref_primary_10_7467_KSAE_2021_29_2_197 crossref_primary_10_3390_rs15235548 crossref_primary_10_1109_JSEN_2021_3082145 crossref_primary_10_1007_s11036_019_01409_1 crossref_primary_10_1016_j_tre_2022_102989 crossref_primary_10_1007_s11831_021_09670_y crossref_primary_10_1109_ACCESS_2020_3000777 crossref_primary_10_1007_s41060_023_00481_x crossref_primary_10_1007_s11042_019_7475_x crossref_primary_10_1109_TITS_2022_3215892 crossref_primary_10_1109_TIV_2024_3457759 crossref_primary_10_1016_j_neucom_2025_130795 crossref_primary_10_1109_JIOT_2020_2973977 crossref_primary_10_1109_TITS_2020_3023541 crossref_primary_10_2478_ttj_2023_0010 crossref_primary_10_1016_j_neucom_2023_127032 crossref_primary_10_1177_14727978251361385 crossref_primary_10_1007_s41062_022_00887_9 crossref_primary_10_3390_su11164511 crossref_primary_10_1109_JSYST_2022_3209307 crossref_primary_10_1155_2021_8858902 crossref_primary_10_1145_3627160 crossref_primary_10_1109_ACCESS_2020_2970503 crossref_primary_10_1109_JAS_2022_105806 crossref_primary_10_1109_ACCESS_2021_3083890 crossref_primary_10_1109_TIV_2022_3195635 crossref_primary_10_1109_TIV_2022_3223131 crossref_primary_10_1109_TVT_2018_2882130 crossref_primary_10_46604_peti_2021_6074 crossref_primary_10_1049_itr2_12188 crossref_primary_10_1007_s11042_020_10370_1 crossref_primary_10_1016_j_cscm_2021_e00579 crossref_primary_10_1109_JAS_2020_1003324 crossref_primary_10_1109_TITS_2021_3070111 crossref_primary_10_1109_TIV_2019_2938092 crossref_primary_10_1109_TITS_2021_3072970 crossref_primary_10_1038_s41598_025_01167_z crossref_primary_10_1109_JSEN_2020_3018319 crossref_primary_10_3390_wevj13100191 crossref_primary_10_1109_JAS_2021_1003907 crossref_primary_10_1109_TIV_2024_3353253 crossref_primary_10_1155_2021_4920212 crossref_primary_10_1049_cit2_12221 |
| ContentType | Journal Article |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION |
| DOI | 10.1109/JAS.2018.7511063 |
| DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library (IEL) CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore Digital Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2329-9274 |
| EndPage | 661 |
| ExternalDocumentID | 10_1109_JAS_2018_7511063 8332138 |
| Genre | orig-research |
| GroupedDBID | -0I -0Y -SI -S~ 0R~ 4.4 5VR 6IK 92M 97E 9D9 9DI AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AFUIB AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CAJEI EBS EJD ESBDL IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ Q-- RIA RIE RT9 T8Y TCJ TGT U1F U1G U5I U5S AAYXX CITATION |
| ID | FETCH-LOGICAL-c406t-a45562e7c9380a265eab52c2c2947ed84d2fef19aaa5de9479d5fa0f179d508c3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 111 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000429673400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2329-9266 |
| IngestDate | Sat Nov 29 03:31:03 EST 2025 Tue Nov 18 22:43:02 EST 2025 Wed Aug 27 02:11:23 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c406t-a45562e7c9380a265eab52c2c2947ed84d2fef19aaa5de9479d5fa0f179d508c3 |
| OpenAccessLink | https://ieeexplore.ieee.org/document/8332138 |
| PageCount | 17 |
| ParticipantIDs | crossref_primary_10_1109_JAS_2018_7511063 crossref_citationtrail_10_1109_JAS_2018_7511063 ieee_primary_8332138 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-05-01 |
| PublicationDateYYYYMMDD | 2018-05-01 |
| PublicationDate_xml | – month: 05 year: 2018 text: 2018-05-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | IEEE/CAA journal of automatica sinica |
| PublicationTitleAbbrev | JAS |
| PublicationYear | 2018 |
| Publisher | Chinese Association of Automation (CAA) |
| Publisher_xml | – name: Chinese Association of Automation (CAA) |
| SSID | ssj0001257694 |
| Score | 2.4604259 |
| SecondaryResourceType | review_article |
| Snippet | Lane detection is a fundamental aspect of most current advanced driver assistance systems ( ADASs ). A large number of existing results focus on... |
| SourceID | crossref ieee |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 645 |
| SubjectTerms | ACP theory Advanced driver assistance systems (ADASs) benchmark Detection algorithms Feature extraction Image color analysis Image edge detection lane detection parallel vision performance evaluation Roads Robustness Transforms |
| Title | Advances in Vision-Based Lane Detection: Algorithms, Integration, Assessment, and Perspectives on ACP-Based Parallel Vision |
| URI | https://ieeexplore.ieee.org/document/8332138 |
| Volume | 5 |
| WOSCitedRecordID | wos000429673400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore Digital Library customDbUrl: eissn: 2329-9274 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001257694 issn: 2329-9266 databaseCode: RIE dateStart: 20140101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA8qHvTgtzi_yMGLsG5t0zaJtzoVlSEDP9itpMmLDmYnW-fFf94krXOCCNJLSJOm9Bd4v-a993sInRiTnmsCxFMMtE3Jiax_N_eYljwJZWJ2lRNx7dK7O9bv894Cas5yYQDABZ9ByzadL1-N5NQelbUZIWFA2CJapDSpcrXmzlMMc3Z1Dw1H4B43hufLK-nz9m16b8O4WIsaguEn5IcVmiur4qzK1fr_3mcDrdXsEacV3JtoAYottDqnKbiNPtLKqz_BgwI_ucxx79yYKoW7ogB8AaULvirOcDp8Ho0H5cvrpIlvatUIc6OJ05laZxOLQuHed0LmBI8KnHZ69SN7YmxrsQzrhXbQ49XlQ-faqysseNIY8tITUWz4D1DJCfNFmMQg8jiU5uIRBcUiFWrQARdCxApMH1exFr4ObMNnkuyipWJUwB7CBvIgB0Gpn-eRgpz7OtZERpTwIDekpoHaX188k7X8uK2CMczcb4jPM4NRZjHKaowa6HQ2462S3vhj7LaFZzauRmb_9-4DtGInV3GLh2ipHE_hCC3L93IwGR-7ffUJK4TK0Q |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7xkoBDKVBUWqA-cKm0YZ042di9hZd4LKuVCohb5NjjstKSrXYDl_752k5YFgkhoVwsx7GjfJbmi2fmG4B9a9ILw5AFmqNxKTmx8-8WATdKdCLVsbvKi7h2016P392J_hy0prkwiOiDz_DANb0vX4_Uozsqa3PGopDxeVhM4jiidbbWzImK5c6-8qFlCSIQ1vQ8-yWpaF9kv10gFz9ILcWgHfbKDs0UVvF25XTtY2_0GT41_JFkNeDrMIflBqzOqApuwr-s9utPyKAktz53PDi0xkqTriyRHGPlw6_KXyQb_hmNB9X9w6RFzhvdCHujRbKpXmeLyFKT_ktK5oSMSpId9Zsp-3LsqrEMm4W-wM3pyfXRWdDUWAiUNeVVIOPEMiBMlWCcyqiToCySSNlLxClqHuvIoAmFlDLRaPuEToykJnQNyhXbgoVyVOJXIBb0sECZprQoYo2FoCYxTMUpE2Fhac02tJ-_eK4aAXJXB2OY-x8RKnKLUe4wyhuMtuHn9Im_tfjGO2M3HTzTcQ0y397u_gHLZ9dX3bx73rv8DituojqKcQcWqvEj7sKSeqoGk_Ge32P_AeEyzhg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advances+in+Vision-Based+Lane+Detection%3A+Algorithms%2C+Integration%2C+Assessment%2C+and+Perspectives+on+ACP-Based+Parallel+Vision&rft.jtitle=IEEE%2FCAA+journal+of+automatica+sinica&rft.au=Xing%2C+Yang&rft.au=Lv%2C+Chen&rft.au=Chen%2C+Long&rft.au=Wang%2C+Huaji&rft.date=2018-05-01&rft.issn=2329-9266&rft.eissn=2329-9274&rft.volume=5&rft.issue=3&rft.spage=645&rft.epage=661&rft_id=info:doi/10.1109%2FJAS.2018.7511063&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JAS_2018_7511063 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2329-9266&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2329-9266&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2329-9266&client=summon |