The Stumblemeter: Design and Validation of a System That Detects and Classifies Stumbles during Gait

Stumbling during gait is commonly encountered in patients who suffer from mild to serious walking problems, e.g., after stroke, in osteoarthritis, or amputees using a lower leg prosthesis. Instead of self-reporting, an objective assessment of the number of stumbles in daily life would inform clinici...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Jg. 21; H. 19; S. 6636
Hauptverfasser: Hartog, Dylan den, Harlaar, Jaap, Smit, Gerwin
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 06.10.2021
MDPI
Schlagworte:
ISSN:1424-8220, 1424-8220
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Stumbling during gait is commonly encountered in patients who suffer from mild to serious walking problems, e.g., after stroke, in osteoarthritis, or amputees using a lower leg prosthesis. Instead of self-reporting, an objective assessment of the number of stumbles in daily life would inform clinicians more accurately and enable the evaluation of treatments that aim to achieve a safer walking pattern. An easy-to-use wearable might fulfill this need. The goal of the present study was to investigate whether a single inertial measurement unit (IMU) placed at the shank and machine learning algorithms could be used to detect and classify stumbling events in a dataset comprising of a wide variety of daily movements. Ten healthy test subjects were deliberately tripped by an unexpected and unseen obstacle while walking on a treadmill. The subjects stumbled a total of 276 times, both using an elevating recovery strategy and a lowering recovery strategy. Subjects also performed multiple Activities of Daily Living. During data processing, an event-defined window segmentation technique was used to trace high peaks in acceleration that could potentially be stumbles. In the reduced dataset, time windows were labelled with the aid of video annotation. Subsequently, discriminative features were extracted and fed to train seven different types of machine learning algorithms. Trained machine learning algorithms were validated using leave-one-subject-out cross-validation. Support Vector Machine (SVM) algorithms were most successful, and could detect and classify stumbles with 100% sensitivity, 100% specificity, and 96.7% accuracy in the independent testing dataset. The SVM algorithms were implemented in a user-friendly, freely available, stumble detection app named Stumblemeter. This work shows that stumble detection and classification based on SVM is accurate and ready to apply in clinical practice.
AbstractList Stumbling during gait is commonly encountered in patients who suffer from mild to serious walking problems, e.g., after stroke, in osteoarthritis, or amputees using a lower leg prosthesis. Instead of self-reporting, an objective assessment of the number of stumbles in daily life would inform clinicians more accurately and enable the evaluation of treatments that aim to achieve a safer walking pattern. An easy-to-use wearable might fulfill this need. The goal of the present study was to investigate whether a single inertial measurement unit (IMU) placed at the shank and machine learning algorithms could be used to detect and classify stumbling events in a dataset comprising of a wide variety of daily movements. Ten healthy test subjects were deliberately tripped by an unexpected and unseen obstacle while walking on a treadmill. The subjects stumbled a total of 276 times, both using an elevating recovery strategy and a lowering recovery strategy. Subjects also performed multiple Activities of Daily Living. During data processing, an event-defined window segmentation technique was used to trace high peaks in acceleration that could potentially be stumbles. In the reduced dataset, time windows were labelled with the aid of video annotation. Subsequently, discriminative features were extracted and fed to train seven different types of machine learning algorithms. Trained machine learning algorithms were validated using leave-one-subject-out cross-validation. Support Vector Machine (SVM) algorithms were most successful, and could detect and classify stumbles with 100% sensitivity, 100% specificity, and 96.7% accuracy in the independent testing dataset. The SVM algorithms were implemented in a user-friendly, freely available, stumble detection app named Stumblemeter. This work shows that stumble detection and classification based on SVM is accurate and ready to apply in clinical practice.
Stumbling during gait is commonly encountered in patients who suffer from mild to serious walking problems, e.g., after stroke, in osteoarthritis, or amputees using a lower leg prosthesis. Instead of self-reporting, an objective assessment of the number of stumbles in daily life would inform clinicians more accurately and enable the evaluation of treatments that aim to achieve a safer walking pattern. An easy-to-use wearable might fulfill this need. The goal of the present study was to investigate whether a single inertial measurement unit (IMU) placed at the shank and machine learning algorithms could be used to detect and classify stumbling events in a dataset comprising of a wide variety of daily movements. Ten healthy test subjects were deliberately tripped by an unexpected and unseen obstacle while walking on a treadmill. The subjects stumbled a total of 276 times, both using an elevating recovery strategy and a lowering recovery strategy. Subjects also performed multiple Activities of Daily Living. During data processing, an event-defined window segmentation technique was used to trace high peaks in acceleration that could potentially be stumbles. In the reduced dataset, time windows were labelled with the aid of video annotation. Subsequently, discriminative features were extracted and fed to train seven different types of machine learning algorithms. Trained machine learning algorithms were validated using leave-one-subject-out cross-validation. Support Vector Machine (SVM) algorithms were most successful, and could detect and classify stumbles with 100% sensitivity, 100% specificity, and 96.7% accuracy in the independent testing dataset. The SVM algorithms were implemented in a user-friendly, freely available, stumble detection app named Stumblemeter. This work shows that stumble detection and classification based on SVM is accurate and ready to apply in clinical practice.Stumbling during gait is commonly encountered in patients who suffer from mild to serious walking problems, e.g., after stroke, in osteoarthritis, or amputees using a lower leg prosthesis. Instead of self-reporting, an objective assessment of the number of stumbles in daily life would inform clinicians more accurately and enable the evaluation of treatments that aim to achieve a safer walking pattern. An easy-to-use wearable might fulfill this need. The goal of the present study was to investigate whether a single inertial measurement unit (IMU) placed at the shank and machine learning algorithms could be used to detect and classify stumbling events in a dataset comprising of a wide variety of daily movements. Ten healthy test subjects were deliberately tripped by an unexpected and unseen obstacle while walking on a treadmill. The subjects stumbled a total of 276 times, both using an elevating recovery strategy and a lowering recovery strategy. Subjects also performed multiple Activities of Daily Living. During data processing, an event-defined window segmentation technique was used to trace high peaks in acceleration that could potentially be stumbles. In the reduced dataset, time windows were labelled with the aid of video annotation. Subsequently, discriminative features were extracted and fed to train seven different types of machine learning algorithms. Trained machine learning algorithms were validated using leave-one-subject-out cross-validation. Support Vector Machine (SVM) algorithms were most successful, and could detect and classify stumbles with 100% sensitivity, 100% specificity, and 96.7% accuracy in the independent testing dataset. The SVM algorithms were implemented in a user-friendly, freely available, stumble detection app named Stumblemeter. This work shows that stumble detection and classification based on SVM is accurate and ready to apply in clinical practice.
Author Hartog, Dylan den
Smit, Gerwin
Harlaar, Jaap
AuthorAffiliation 1 Department of Biomechanical Engineering, Delft University of Technology, 2628 CD Delft, The Netherlands; Dylan.den.Hartog@hotmail.com (D.d.H.); G.Smit@tudelft.nl (G.S.)
2 Department Orthopedics & Sports Medicine, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
AuthorAffiliation_xml – name: 1 Department of Biomechanical Engineering, Delft University of Technology, 2628 CD Delft, The Netherlands; Dylan.den.Hartog@hotmail.com (D.d.H.); G.Smit@tudelft.nl (G.S.)
– name: 2 Department Orthopedics & Sports Medicine, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
Author_xml – sequence: 1
  givenname: Dylan den
  surname: Hartog
  fullname: Hartog, Dylan den
– sequence: 2
  givenname: Jaap
  orcidid: 0000-0003-2889-271X
  surname: Harlaar
  fullname: Harlaar, Jaap
– sequence: 3
  givenname: Gerwin
  orcidid: 0000-0002-8160-3238
  surname: Smit
  fullname: Smit, Gerwin
BookMark eNpdkl1rFDEUhoNU7Ide-A8C3ujFaj5mshkvhLK2tVDwoqu34UxysptlJqlJRui_d7pbizU3Cec8PLyE95QcxRSRkLecfZSyY5-K4LxTSqoX5IQ3olloIdjRP-9jclrKjjEhpdSvyLFsVMO6Vp0Qt94iva3T2A84YsX8mX7FEjaRQnT0JwzBQQ0p0uQp0Nv7UnGk6y3UGatoa9lzqwFKCT5g-esq1E05xA29glBfk5cehoJvHu8z8uPyYr36trj5fnW9Or9Z2IapuoA5k2pF651DwE54jt4K7Jy2WrcCUPil7Je9UpbzpZfegVR9a7lmTnu-lGfk-uB1CXbmLocR8r1JEMx-kPLGQK7BDmhapZztBTLpoAHfAgBD5K3vwHZcsNn15eC6m_oRncVYMwzPpM83MWzNJv02uuWSLR8E7x8FOf2asFQzhmJxGCBimooRrZ6Dd43WM_ruP3SXphznr9pTrOnmM1MfDpTNqZSM_ikMZ-ahB-apB_IPtbymMA
Cites_doi 10.1152/jn.2000.83.4.2093
10.1093/ageing/26.4.261
10.1093/gerona/56.7.M428
10.1109/IEMBS.2007.4352627
10.1017/CBO9781107298019
10.1093/ageing/17.6.365
10.1682/JRRD.2014.01.0031
10.1007/978-1-4614-6849-3
10.1682/JRRD.2007.09.0145
10.1186/s12984-015-0067-8
10.1016/j.apmr.2008.11.007
10.1016/j.jbiomech.2014.05.009
10.1016/j.gaitpost.2016.11.044
10.1613/jair.614
10.1093/ptj/72.1.45
10.1016/j.gaitpost.2006.03.008
10.1007/s10994-007-5019-5
10.1109/TNSRE.2011.2161888
10.1186/1743-0003-9-21
10.1186/s12984-019-0527-7
10.1007/978-3-319-10247-4
10.1191/0269215506cr947oa
10.1111/j.1469-1809.1936.tb02137.x
10.2105/AJPH.2005.083055
10.1109/ICISA.2011.5772404
10.1016/j.jbiomech.2016.10.045
10.1007/BF00227520
10.1017/CBO9780511801389
10.1016/j.pmrj.2016.07.531
10.1109/CCDC.2016.7531457
10.1186/1756-0500-3-62
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s21196636
DatabaseName CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One
ProQuest Central Korea
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database ProQuest
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

Publicly Available Content Database
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_566dcb2e03da4af5aaa0ee15f9ac9120
PMC8513070
10_3390_s21196636
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c406t-a4096525fddeae92f1efc2e9d8c8852ae2f73b7b66c117f3fda36b5c180d8f173
IEDL.DBID DOA
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000708296300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Mon Nov 10 04:35:07 EST 2025
Tue Nov 04 01:55:56 EST 2025
Sun Aug 24 03:13:17 EDT 2025
Tue Oct 07 07:22:15 EDT 2025
Sat Nov 29 07:13:38 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-a4096525fddeae92f1efc2e9d8c8852ae2f73b7b66c117f3fda36b5c180d8f173
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2889-271X
0000-0002-8160-3238
OpenAccessLink https://doaj.org/article/566dcb2e03da4af5aaa0ee15f9ac9120
PMID 34640956
PQID 2581049999
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_566dcb2e03da4af5aaa0ee15f9ac9120
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8513070
proquest_miscellaneous_2581809488
proquest_journals_2581049999
crossref_primary_10_3390_s21196636
PublicationCentury 2000
PublicationDate 20211006
PublicationDateYYYYMMDD 2021-10-06
PublicationDate_xml – month: 10
  year: 2021
  text: 20211006
  day: 6
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Santhiranayagam (ref_11) 2017; 53
Pavol (ref_18) 2001; 56
Patel (ref_19) 2012; 9
Rosenblatt (ref_9) 2014; 51
ref_14
ref_36
Fisher (ref_37) 1936; 7
ref_35
ref_34
Weerdesteyn (ref_5) 2008; 45
ref_32
Srygley (ref_12) 2009; 90
Berg (ref_3) 1997; 26
ref_15
Schillings (ref_30) 2000; 83
Eng (ref_17) 1994; 102
Shirota (ref_43) 2015; 12
Ackerman (ref_4) 2020; 29
Hunter (ref_6) 2016; 9
King (ref_29) 2019; 16
Schein (ref_38) 2007; 68
Byju (ref_10) 2016; 49
Zhang (ref_27) 2010; 19
ref_25
Opitz (ref_41) 1999; 11
ref_24
ref_23
Begg (ref_8) 2007; 25
ref_22
ref_21
Sehatzadeh (ref_13) 2019; 19
ref_20
ref_42
Weiss (ref_26) 2010; 3
ref_40
Jadhav (ref_39) 2016; 5
Acharya (ref_33) 2014; 103
ref_28
Winter (ref_7) 1992; 72
Shirota (ref_31) 2014; 47
Blake (ref_2) 1988; 17
Mackenzie (ref_16) 2006; 20
Li (ref_1) 2006; 96
References_xml – volume: 83
  start-page: 2093
  year: 2000
  ident: ref_30
  article-title: Muscular Responses and Movement Strategies During Stumbling Over Obstacles
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.2000.83.4.2093
– volume: 26
  start-page: 261
  year: 1997
  ident: ref_3
  article-title: Circumstances and consequences of falls in independent community-dwelling older adults
  publication-title: Age Ageing
  doi: 10.1093/ageing/26.4.261
– volume: 56
  start-page: 428
  year: 2001
  ident: ref_18
  article-title: Mechanisms Leading to a Fall from an Induced Trip in Healthy Older Adults
  publication-title: J. Gerontol. Ser. A Biol. Sci. Med. Sci.
  doi: 10.1093/gerona/56.7.M428
– ident: ref_20
  doi: 10.1109/IEMBS.2007.4352627
– ident: ref_36
  doi: 10.1017/CBO9781107298019
– ident: ref_24
– volume: 17
  start-page: 365
  year: 1988
  ident: ref_2
  article-title: Falls by elderly people at home: Prevalence and associated factors
  publication-title: Age Ageing
  doi: 10.1093/ageing/17.6.365
– volume: 51
  start-page: 1229
  year: 2014
  ident: ref_9
  article-title: Active dorsiflexing prostheses may reduce trip-related fall risk in people with transtibial amputation
  publication-title: J. Rehabil. Res. Dev.
  doi: 10.1682/JRRD.2014.01.0031
– volume: 19
  start-page: 1
  year: 2019
  ident: ref_13
  article-title: Osseointegrated Prosthetic Implants for People with Lower-Limb Amputation: A Health Technology Assessment
  publication-title: Ont. Health Technol. Assess. Ser.
– ident: ref_32
  doi: 10.1007/978-1-4614-6849-3
– volume: 45
  start-page: 1195
  year: 2008
  ident: ref_5
  article-title: Falls in individuals with stroke
  publication-title: J. Rehabil. Res. Dev.
  doi: 10.1682/JRRD.2007.09.0145
– volume: 12
  start-page: 1
  year: 2015
  ident: ref_43
  article-title: Transfemoral amputee recovery strategies following trips to their sound and prosthesis sides throughout swing phase
  publication-title: J. NeuroEng. Rehabil.
  doi: 10.1186/s12984-015-0067-8
– volume: 103
  start-page: 34
  year: 2014
  ident: ref_33
  article-title: Application of Feature Selection Methods in Educational Data Mining
  publication-title: Int. J. Comput. Appl.
– volume: 90
  start-page: 786
  year: 2009
  ident: ref_12
  article-title: Self-Report of Missteps in Older Adults: A Valid Proxy of Fall Risk?
  publication-title: Arch. Phys. Med. Rehabil.
  doi: 10.1016/j.apmr.2008.11.007
– ident: ref_14
– volume: 47
  start-page: 2679
  year: 2014
  ident: ref_31
  article-title: Trip recovery strategies following perturbations of variable duration
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2014.05.009
– volume: 53
  start-page: 73
  year: 2017
  ident: ref_11
  article-title: Non-MTC gait cycles: An adaptive toe trajectory control strategy in older adults
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2016.11.044
– volume: 11
  start-page: 169
  year: 1999
  ident: ref_41
  article-title: Popular Ensemble Methods: An Empirical Study
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.614
– ident: ref_42
– ident: ref_35
– volume: 72
  start-page: 45
  year: 1992
  ident: ref_7
  article-title: Foot Trajectory in Human Gait: A Precise and Multifactorial Motor Control Task
  publication-title: Phys. Ther.
  doi: 10.1093/ptj/72.1.45
– volume: 25
  start-page: 191
  year: 2007
  ident: ref_8
  article-title: Minimum foot clearance during walking: Strategies for the minimisation of trip-related falls
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2006.03.008
– ident: ref_21
– volume: 68
  start-page: 235
  year: 2007
  ident: ref_38
  article-title: Active learning for logistic regression: An evaluation
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-007-5019-5
– volume: 5
  start-page: 1842
  year: 2016
  ident: ref_39
  article-title: Comparative Study of K-NN, Naive Bayes and Decision Tree Classification Techniques
  publication-title: Int. J. Sci. Res.
– volume: 19
  start-page: 567
  year: 2010
  ident: ref_27
  article-title: Towards Design of a Stumble Detection System for Artificial Legs
  publication-title: IEEE Trans. Neural. Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2011.2161888
– ident: ref_25
– volume: 9
  start-page: 21
  year: 2012
  ident: ref_19
  article-title: A review of wearable sensors and systems with application in rehabilitation
  publication-title: J. NeuroEng. Rehabil.
  doi: 10.1186/1743-0003-9-21
– volume: 16
  start-page: 69
  year: 2019
  ident: ref_29
  article-title: A novel system for introducing precisely-controlled, unanticipated gait perturbations for the study of stumble recovery
  publication-title: J. NeuroEng. Rehabil.
  doi: 10.1186/s12984-019-0527-7
– ident: ref_34
  doi: 10.1007/978-3-319-10247-4
– volume: 20
  start-page: 331
  year: 2006
  ident: ref_16
  article-title: Validation of self-reported fall events in intervention studies
  publication-title: Clin. Rehabil.
  doi: 10.1191/0269215506cr947oa
– volume: 7
  start-page: 179
  year: 1936
  ident: ref_37
  article-title: The use of multiple measurements in taxonomic problems
  publication-title: Ann. Eugen.
  doi: 10.1111/j.1469-1809.1936.tb02137.x
– ident: ref_15
– volume: 96
  start-page: 1192
  year: 2006
  ident: ref_1
  article-title: Outdoor Falls Among Middle-Aged and Older Adults: A Neglected Public Health Problem
  publication-title: Am. J. Public Health
  doi: 10.2105/AJPH.2005.083055
– ident: ref_23
  doi: 10.1109/ICISA.2011.5772404
– volume: 49
  start-page: 4016
  year: 2016
  ident: ref_10
  article-title: Alternative measures of toe trajectory more accurately predict the probability of tripping than minimum toe clearance
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2016.10.045
– volume: 29
  start-page: 436
  year: 2020
  ident: ref_4
  article-title: Prevalence and correlates of falls in a middle-aged population with osteoarthritis: Data from the Osteoarthritis Initiative
  publication-title: Health Soc. Care Community
– volume: 102
  start-page: 339
  year: 1994
  ident: ref_17
  article-title: Strategies for recovery from a trip in early and late swing during human walking
  publication-title: Exp. Brain Res.
  doi: 10.1007/BF00227520
– ident: ref_22
– ident: ref_40
  doi: 10.1017/CBO9780511801389
– volume: 9
  start-page: 170
  year: 2016
  ident: ref_6
  article-title: Risk Factors for Falls in People with a Lower Limb Amputation: A Systematic Review
  publication-title: PMR
  doi: 10.1016/j.pmrj.2016.07.531
– ident: ref_28
  doi: 10.1109/CCDC.2016.7531457
– volume: 3
  start-page: 1
  year: 2010
  ident: ref_26
  article-title: Automated detection of near falls: Algorithm development and preliminary results
  publication-title: BMC Res. Notes
  doi: 10.1186/1756-0500-3-62
SSID ssj0023338
Score 2.3674085
Snippet Stumbling during gait is commonly encountered in patients who suffer from mild to serious walking problems, e.g., after stroke, in osteoarthritis, or amputees...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 6636
SubjectTerms accelerometer
Activities of daily living
Algorithms
Amputation
detection
Falls
Fitness equipment
Gait
gyroscope
inertial measurement unit
Machine learning
Older people
Prevention
Prostheses
Sensors
stumbling
Velocity
Walking
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5B4UAPvFEDBRnENWpiJ7HNBfEqnCokCtpb5MeY7oGkbLL8fsZOdttcuHCNJ4mlGc_DHn8fwOsCpaJMuco5SptXthI5RUXMUVgntZWFrWwim5BnZ2q10l_nDbdhbqvc-cTkqH3v4h75Ca9VmdJz_fbydx5Zo-Lp6kyhcRNuRdrsaOdydVVwCaq_JjQhQaX9yRDRzCjCNosYlKD6F_nlsjvyWrg5vfe_E70Pd-dEk72bLOMB3MDuIRxegx98BJ5shH0bt78ipUxsi3nDPqaGDmY6z35Qhj4RLrE-MMMmbHN2fmFGEotnD0OSS7Sa60AV9-5bA5suP7LPZj0-hu-nn84_fMln1oXcUXAfc1NFQBheB3J8BjUPJQbHUXvllKq5QR6ksNI2jStLGUTwRjS2dqUqvAqlFE_goOs7PAKGWpMJmLrx1lUkaGtvG0QbuHMlvZ7Bq50e2ssJXKOloiQqq90rK4P3UUN7gYiHnR70m5_tvLxaSkq9sxwL4U1lQm2MKRDLOmjjdMmLDI53ymrnRTq0V5rK4OV-mJZXPDMxHfbbSUZRCaxUBnJhF4sJLUe69UUC6qZsNrrUp__--TO4w2OjTOxKaI7hYNxs8Tncdn_G9bB5kSz6L009BWA
  priority: 102
  providerName: ProQuest
Title The Stumblemeter: Design and Validation of a System That Detects and Classifies Stumbles during Gait
URI https://www.proquest.com/docview/2581049999
https://www.proquest.com/docview/2581809488
https://pubmed.ncbi.nlm.nih.gov/PMC8513070
https://doaj.org/article/566dcb2e03da4af5aaa0ee15f9ac9120
Volume 21
WOSCitedRecordID wos000708296300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09j9QwEB3BQcEViE9djmNlEG10sZ3ENh0He0BxqxUcaKki27F1W5BFlywlv52xnV1tKhoaF_Yksmdizzx58gbgTeGExEi5zJkTJi9NyXP0ii533FihjChMaWKxCbFYyNVKLQ9KfYWcsEQPnBR3juFGaw1zBW91qX2ltS6co5VX2irKIlovhNqBqRFqcUReiUeII6g_7wOPGfrWeuJ9Ikn_JLKc5kUeOJrLR_BwjBDJuzSzx3DHdU_g-IA38Cm0aFzyddj-DLVgQj7LW_IhZmIQ3bXkO4bWqVIS2XiiSSIlJ9c3ekCxcGnQR7lYD3PtESrv3tWT9Nci-ajXwzP4djm_fv8pH8sl5Ba98pDrMjC5sMrjiaWdYp46b5lTrbRSVkw75gU3wtS1pVR47lvNa1NZKotWeir4czjqNp07AeKUQtvpqm6NLVHQVK2pnTOeWUvx8Qxe79TY_EqsGA2iiaDrZq_rDC6CgvcCgcg6dqB5m9G8zb_Mm8HZzjzNuLv6hlWSRqimMni1H8Z9ES47dOc22yQjEbtKmYGYmHUyoelIt76JDNsYhoaz8PR_rOAFPGAhDyYkHdRncDTcbt1LuG9_D-v-dgZ3xUrEVs7g3sV8sfwyi58ytld_5ti3_Hy1_PEX2uL-4A
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qBQlY8EYNFDAIllETO4ltJISAUlq1jJAY0OyC7djtLEjKJAPip_hGrp3JtNmw64JtfPM-vo_45hyA54nlAjPlLKaW6zjTGYsxKtrYMm241DzRmQ5iE3wyEbOZ_LQBf4Z_YXxb5eATg6OuGuO_ke_QXKQhPZevT3_EXjXKr64OEho9LA7t719YsrWvDnbx_b6gdO_99N1-vFIViA0Gry5WmSc8obnDia2spC61zlArK2GEyKmy1HGmuS4Kk6bcMVcpVujcpCKphEs5w-Negsvox7kv9vjsrMBjWO_17EWMyWSn9expGNGLUcwL0gCjfHbcjXkuvO3d_N8ezC24sUqkyZse-bdhw9Z34Po5esW7UOEcIJ-75XcvmePbfl6S3dCwQlRdka9YgfSCUqRxRJGeu51MT1SHZn5tpQ12QTZ07ua2HY7Vkv7nTvJBzbt78OVCbvM-bNZNbbeAWCkR4iovKm0yNNR5pQtrtaPGpLh7BM-G916e9uQhJRZdHhzlGhwRvPWIWBt4vu-woVkclyv3UWLSXRlNbcIqlSmXK6USa9PcSWVkSpMItgdwlCsn1JZnyIjg6XoY3YdfE1K1bZa9jcASX4gI-AiHowsaj9Tzk0BEjtm6DxkP_n3yJ3B1f_rxqDw6mBw-hGvUNwX5DoxiGza7xdI-givmZzdvF4_DbCLw7aJR-hecrGRp
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLULlwBsRKGAQHKNN7DxsJISAZWFVWK1EQeUUbMducyApmyyIv8avY5zH0ly49cA1njivb17x-BuAJ4FJOUbKkU9NqvxIRcxHr2h8w5ROhUoDFam22US6XPKjI7Hagd_DXhhXVjnYxNZQ55V2_8inNOZhG56Lqe3LIlaz-YvT777rIOVWWod2Gh1EDsyvn5i-1c8XM_zWTymdvzl8_c7vOwz4Gh1Z48vIkZ_Q2KKSSyOoDY3V1Iica85jKg21KVOpShIdhqllNpcsUbEOeZBzG6YM570AuxiSR3QCu6vFh9WXbbrHMPvruIwYE8G0dlxq6N-TkQdsGwWMottxbeYZZze_-j-_pmtwpQ-xyctOJ67DjilvwOUzxIs3IUftIB-bzTfXTMcVBD0js7aUhcgyJ58xN-laTZHKEkk6VndyeCIbFHOrLnUr1zYULWxh6mGumnTbPslbWTS34NO5POZtmJRVae4AMUIg-GWc5EpHKKjiXCXGKEu1DvF0Dx4PGMhOO1qRDNMxB5RsCxQPXjl0bAUcE3h7oFofZ71hyTAcz7WiJmC5jKSNpZSBMWFshdQipIEH-wNQst481dlflHjwaDuMhsWtFsnSVJtOhmPyz7kH6QiToxsaj5TFSUtRjnG8cyZ3_33xh3AJwZm9XywP7sEeddVCrjQj2YdJs96Y-3BR_2iKev2gVy0CX88bpn8AGBpuuA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Stumblemeter%3A+Design+and+Validation+of+a+System+That+Detects+and+Classifies+Stumbles+during+Gait&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Hartog%2C+Dylan+den&rft.au=Harlaar%2C+Jaap&rft.au=Smit%2C+Gerwin&rft.date=2021-10-06&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=21&rft.issue=19&rft_id=info:doi/10.3390%2Fs21196636&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon