Artificial neural network for predicting nuclear power plant dynamic behaviors
A Nuclear Power Plant (NPP) is a complex dynamic system-of-systems with highly nonlinear behaviors. In order to control the plant operation under both normal and abnormal conditions, the different systems in NPPs (e.g., the reactor core components, primary and secondary coolant systems) are usually...
Saved in:
| Published in: | Nuclear engineering and technology Vol. 53; no. 10; pp. 3275 - 3285 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
01.10.2021
Elsevier |
| Subjects: | |
| ISSN: | 1738-5733 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | A Nuclear Power Plant (NPP) is a complex dynamic system-of-systems with highly nonlinear behaviors. In order to control the plant operation under both normal and abnormal conditions, the different systems in NPPs (e.g., the reactor core components, primary and secondary coolant systems) are usually monitored continuously, resulting in very large amounts of data. This situation makes it possible to integrate relevant qualitative and quantitative knowledge with artificial intelligence techniques to provide faster and more accurate behavior predictions, leading to more rapid decisions, based on actual NPP operation data. Data-driven models (DDM) rely on artificial intelligence to learn autonomously based on patterns in data, and they represent alternatives to physics-based models that typically require significant computational resources and might not fully represent the actual operation conditions of an NPP. In this study, a feed-forward backpropagation artificial neural network (ANN) model was trained to simulate the interaction between the reactor core and the primary and secondary coolant systems in a pressurized water reactor. The transients used for model training included perturbations in reactivity, steam valve coefficient, reactor core inlet temperature, and steam generator inlet temperature. Uncertainties of the plant physical parameters and operating conditions were also incorporated in these transients. Eight training functions were adopted during the training stage to develop the most efficient network. The developed ANN model predictions were subsequently tested successfully considering different new transients. Overall, through prompt prediction of NPP behavior under different transients, the study aims at demonstrating the potential of artificial intelligence to empower rapid emergency response planning and risk mitigation strategies. |
|---|---|
| AbstractList | A Nuclear Power Plant (NPP) is a complex dynamic system-of-systems with highly nonlinear behaviors. In order to control the plant operation under both normal and abnormal conditions, the different systems in NPPs (e.g., the reactor core components, primary and secondary coolant systems) are usually monitored continuously, resulting in very large amounts of data. This situation makes it possible to integrate relevant qualitative and quantitative knowledge with artificial intelligence techniques to provide faster and more accurate behavior predictions, leading to more rapid decisions, based on actual NPP operation data. Data-driven models (DDM) rely on artificial intelligence to learn autonomously based on patterns in data, and they represent alternatives to physics-based models that typically require significant computational resources and might not fully represent the actual operation conditions of an NPP. In this study, a feed-forward backpropagation artificial neural network (ANN) model was trained to simulate the interaction between the reactor core and the primary and secondary coolant systems in a pressurized water reactor. The transients used for model training included perturbations in reactivity, steam valve coefficient, reactor core inlet temperature, and steam generator inlet temperature. Uncertainties of the plant physical parameters and operating conditions were also incorporated in these transients. Eight training functions were adopted during the training stage to develop the most efficient network. The developed ANN model predictions were subsequently tested successfully considering different new transients. Overall, through prompt prediction of NPP behavior under different transients, the study aims at demonstrating the potential of artificial intelligence to empower rapid emergency response planning and risk mitigation strategies. |
| Author | Nagasaki, S. El-Dakhakhni, W. El-Sefy, M. Yosri, A. Wiebe, L. |
| Author_xml | – sequence: 1 givenname: M. surname: El-Sefy fullname: El-Sefy, M. email: elsefym@mcmaster.ca organization: Department of Civil Engineering, NSERC-CREATE Program on Canadian Nuclear Energy Infrastructure Resilience Under Systemic Risk, McMaster University, Hamilton, ON, L8S 4L7, Canada – sequence: 2 givenname: A. surname: Yosri fullname: Yosri, A. email: ahmeda69@mcmaster.ca organization: Department of Civil Engineering, Institute for Multi-hazard Systemic Risk Studies (INTERFACE), McMaster University, Hamilton, ON, L8S 4L7, Canada – sequence: 3 givenname: W. surname: El-Dakhakhni fullname: El-Dakhakhni, W. email: eldak@mcmaster.ca organization: Department of Civil Engineering, and Director, NSERC-CaNRisk-CREATE Program and teh INTERFACE Institute, McMaster University, Hamilton, ON, L8S 4L7, Canada – sequence: 4 givenname: S. surname: Nagasaki fullname: Nagasaki, S. email: nagasas@mcmaster.ca organization: Department of Engineering Physics, McMaster University, Hamilton, ON, L8S 4L7, Canada – sequence: 5 givenname: L. surname: Wiebe fullname: Wiebe, L. email: wiebel@mcmaster.ca organization: Department of Civil Engineering, NSERC-CREATE Program on Canadian Nuclear Energy Infrastructure Resilience Under Systemic Risk, McMaster University, Hamilton, ON, L8S 4L7, Canada |
| BookMark | eNp9kE1PAjEQhnvARFB_gLf9A6ztdtvuxhMhfiVEL96boTvF4tKSboHw762gFw9eZpJJnjfvPBMy8sEjIbeMlowyebcuPaayohUrqSgp5SMyZoo3U6E4vySTYVhTKuta0TF5ncXkrDMO-sLjLp5WOoT4WdgQi23Ezpnk_KrwO9Mj5FM4YJ49-FR0Rw8bZ4olfsDehThckwsL_YA3P_uKvD8-vM-fp4u3p5f5bDE1NZVpClwahY0VxrBWqCWDRglZQ8dEx1nHAa0Ao9p22VVtrVBxSituAXjLoe74FXk5x3YB1nob3QbiUQdw-nQIcaUh_5UL66Zq2haYZFJATWsAhqqxkko0lhmGOUuds0wMwxDRauMSJBd8iuB6zaj-tqrXOovR31Y1FTpbzST7Q_42-Y-5PzOY7ewdRj0Yh95kzRFNyv3dP_QXbXKVGA |
| CitedBy_id | crossref_primary_10_1016_j_net_2025_103767 crossref_primary_10_1016_j_nucengdes_2024_113636 crossref_primary_10_3390_jne4030033 crossref_primary_10_1016_j_pnucene_2023_104729 crossref_primary_10_3390_en16031443 crossref_primary_10_1007_s41365_025_01749_6 crossref_primary_10_1016_j_pnucene_2024_105580 crossref_primary_10_1016_j_anucene_2022_109323 crossref_primary_10_3389_fenrg_2022_874194 crossref_primary_10_1016_j_istruc_2021_10_085 crossref_primary_10_1016_j_nucengdes_2025_114057 crossref_primary_10_1016_j_anucene_2024_111129 crossref_primary_10_1016_j_pnucene_2025_105948 crossref_primary_10_1016_j_nucengdes_2024_113709 crossref_primary_10_3390_iot5040030 crossref_primary_10_1016_j_energy_2022_125736 crossref_primary_10_3390_antiox14091144 crossref_primary_10_3390_pr13061661 crossref_primary_10_1016_j_chemosphere_2024_143096 crossref_primary_10_1007_s41660_024_00478_4 crossref_primary_10_1007_s13369_025_10190_1 crossref_primary_10_1016_j_asoc_2023_110126 crossref_primary_10_1016_j_heliyon_2023_e13798 crossref_primary_10_1016_j_nucengdes_2025_113899 crossref_primary_10_1016_j_ijcip_2023_100647 crossref_primary_10_1051_epjconf_202430217009 crossref_primary_10_1016_j_anucene_2022_109507 crossref_primary_10_1016_j_net_2024_103425 crossref_primary_10_26866_jees_2025_4_r_301 crossref_primary_10_1016_j_nucengdes_2024_113655 crossref_primary_10_1016_j_anucene_2024_110736 crossref_primary_10_12973_eu_jer_14_3_805 crossref_primary_10_1016_j_anucene_2022_109188 crossref_primary_10_1016_j_eneco_2024_107506 crossref_primary_10_1016_j_anucene_2024_110891 crossref_primary_10_1109_ACCESS_2024_3367228 crossref_primary_10_1038_s41598_022_24369_1 crossref_primary_10_3390_soilsystems8010022 crossref_primary_10_1007_s40435_022_01100_6 crossref_primary_10_1016_j_pnucene_2023_104799 crossref_primary_10_1016_j_nucengdes_2024_112978 crossref_primary_10_1016_j_nucengdes_2025_113827 crossref_primary_10_1016_j_advengsoft_2022_103190 crossref_primary_10_1016_j_anucene_2024_110702 crossref_primary_10_1080_00295450_2022_2067460 crossref_primary_10_1061__ASCE_ST_1943_541X_0003401 crossref_primary_10_1016_j_aei_2022_101736 crossref_primary_10_1016_j_ijhydene_2022_11_211 crossref_primary_10_1093_ijlct_ctac061 crossref_primary_10_1155_2022_3323239 crossref_primary_10_1016_j_engappai_2025_110531 crossref_primary_10_1016_j_rineng_2025_105297 crossref_primary_10_1016_j_pnucene_2021_104108 |
| Cites_doi | 10.13182/NT76-A31645 10.1016/j.heliyon.2018.e00938 10.13182/NT02-A3329 10.1109/72.363426 10.1016/0019-0578(93)90036-V 10.1007/BF02551274 10.1016/S0893-6080(05)80056-5 10.1016/j.nucengdes.2019.04.023 10.14445/22312803/IJCTT-V14P120 10.1109/72.329697 10.1016/j.anucene.2016.05.016 10.1016/j.anucene.2018.11.042 10.1016/j.nucengdes.2017.05.018 10.1016/j.ress.2015.07.001 10.1016/j.net.2019.04.017 10.1016/j.nucengdes.2017.07.005 10.1016/j.ress.2018.02.005 10.1016/j.procs.2016.09.151 10.1016/j.mcm.2008.05.010 10.1016/S0098-1354(02)00148-5 10.1109/TITS.2011.2158001 10.1016/j.nucengdes.2017.08.020 10.1016/j.nucengdes.2019.04.028 10.1016/j.arcontrol.2008.03.002 10.1016/j.enbuild.2019.109384 10.1007/s11269-006-0326-3 10.1142/S0129065791000261 10.1016/j.jqsrt.2019.01.013 10.1162/neco.1992.4.2.141 10.1016/j.advengsoft.2015.05.007 10.9790/0661-16123135 |
| ContentType | Journal Article |
| Copyright | 2021 Korean Nuclear Society |
| Copyright_xml | – notice: 2021 Korean Nuclear Society |
| DBID | 6I. AAFTH AAYXX CITATION DOA |
| DOI | 10.1016/j.net.2021.05.003 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EndPage | 3285 |
| ExternalDocumentID | oai_doaj_org_article_82899a16165a404aa1e78f606ecf1c1e 10_1016_j_net_2021_05_003 S1738573321002540 |
| GroupedDBID | .UV 0R~ 0SF 123 4.4 457 5VS 6I. 9ZL AACTN AAEDW AAFTH AALRI AAXUO ABMAC ACGFS ACYCR ADBBV ADEZE AENEX AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV EBS EJD FDB GROUPED_DOAJ IPNFZ JDI KQ8 KVFHK M41 NCXOZ O9- OK1 RIG ROL SSZ AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKRWK AKYEP CITATION |
| ID | FETCH-LOGICAL-c406t-a36c7e8f5cc1957b1a87564ad15d31d3aef5ac799bd2947e730023faa393a4d3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 57 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000687759300005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1738-5733 |
| IngestDate | Fri Oct 03 12:52:20 EDT 2025 Tue Nov 18 20:33:51 EST 2025 Wed Oct 29 21:42:28 EDT 2025 Wed May 17 00:02:56 EDT 2023 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Keywords | Data-driven models Artificial neural network Nuclear power plant Artificial intelligence Back-propagation algorithm |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c406t-a36c7e8f5cc1957b1a87564ad15d31d3aef5ac799bd2947e730023faa393a4d3 |
| OpenAccessLink | https://doaj.org/article/82899a16165a404aa1e78f606ecf1c1e |
| PageCount | 11 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_82899a16165a404aa1e78f606ecf1c1e crossref_citationtrail_10_1016_j_net_2021_05_003 crossref_primary_10_1016_j_net_2021_05_003 elsevier_sciencedirect_doi_10_1016_j_net_2021_05_003 |
| PublicationCentury | 2000 |
| PublicationDate | October 2021 2021-10-00 2021-10-01 |
| PublicationDateYYYYMMDD | 2021-10-01 |
| PublicationDate_xml | – month: 10 year: 2021 text: October 2021 |
| PublicationDecade | 2020 |
| PublicationTitle | Nuclear engineering and technology |
| PublicationYear | 2021 |
| Publisher | Elsevier B.V Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier |
| References | Uhrig (bib37) 1993; 32 Arce-Medina, Paz-Paredes (bib59) 2009; 49 Perez (bib58) 2019 Kang, Kaya, Hajimirza (bib23) 2019 Arda (bib47) 2013 Johansson, Dowla, Goodman (bib67) 1992; 2 O'Shea, Nash (bib25) 2015 Singh, Chauhan (bib27) 2009; 5 Moller (bib29) 1993; 6 Ahmad, Simonovic (bib5) 2006 Rätz, Javadi, Baranski, Finkbeiner, Müller (bib8) 2019; 202 Fahrmeir, Kneib, Lang, Marx (bib19) 2013 Setiono, Hui (bib68) 1995; 6 Montáns, Chinesta, Gómez-Bombarelli, Kutz (bib12) 2019; 347 Phillips-Wren (bib7) 2013 Abiodun, Jantan, Omolara, Dada, Mohamed, Arshad (bib22) 2018 Xu, Chen (bib64) 2008 Oxtoby, Young, Cash, Benzinger, Fagan, Morris, Bateman, Fox, Schott, Alexander (bib16) 2018 Holdaway (bib13) 2014 United States Nuclear Regulatory Commission (bib41) 2017 Rallo, Arenas, Giralt (bib60) 2002; 26 Brown, Zhang (bib52) 2016; 95 Zhang, Wang, Wang, Lin, Xu, Chen (bib15) 2011; 12 Gomez, Tokuhiro, Welter, Wu (bib17) 2017; 324 Hecht-Nielsen (bib65) 1987 Sug (bib35) 2010; 9 Romojaro, Álvarez-Velarde, García-Herranz (bib55) 2019; 126 Mitchell (bib11) 1997 Guo, Uhrig (bib38) 2017; 5450 Demazière, Pázsit (bib53) 2002; 140 Li, Cheng, Shi, Huang (bib24) 2012; 169 El-Sefy, Ezzeldin, El-Dakhakhni, Wiebe, Nagasaki (bib42) 2019; 51 Krylatov, Hirokolobova (bib66) 2017 Mustafidah, Hartati, Wardoyo, Harjoko (bib34) 2014; 14 Puchalski, Rutkowski, Duzinkiewicz (bib48) 2017; 322 Korovin, Kalyaev (bib4) 2015 Nawi, Ransing, Ransing (bib28) 2008 Moller (bib30) 1997 Filip (bib6) 2008; 32 Knochenhauer, Holmberg (bib40) 2011 Hagan, Menhaj (bib32) 1994; 5 Solomatine, Ostfeld (bib10) 2008; 10 Cybenkot (bib62) 1989; 2 Foshch, Portela, Machado, Maksimov (bib18) 2016; 100 Bao, Dinh, Lane, Youngblood (bib9) 2019; 349 Perin, Jimenez (bib50) 2017; 321 Thakkar (bib43) 1975 Battiti (bib31) 1992; 4 Arda, Holbert, Undrill (bib46) 2013 Zimmerman, Brittingham, Reed, Bandera, Crawley (bib54) 1999 Varuttamaseni (bib39) 2011 El-Sefy, Ezzeldin, El-Dakhakhni, Nagasaki, Wiebe (bib56) 2021 Sánchez, Villanueva, Carlos, Martorell (bib49) 2018; 174 Haykin (bib61) 1999 Ali (bib45) 1976 Gandomi, Roke (bib63) 2015; 88 Min, Kim, Park (bib2) 2019; 349 Sharma, Venugopalan (bib33) 2014; 16 Tamimi, Samani, Minaei, Harirchi (bib3) 2019 Patra, Jehadeesan, Rajeswari, Satyamurthy (bib20) 2010; 1 Kerlin, Katz, Thakkar, Strange (bib44) 1976; 30 Radaideh, Wieselquist, Ridge, Kozlowski (bib51) 2018 Lawrence, Giles, Tsoi (bib36) 1997 (bib57) 2018 Maljovec, Liu, Wang, Mandelli, Bremer, Pascucci, Smith (bib21) 2016; 145 Mikolov, Karafiat, Burget, Cernock, Khudanpur (bib26) 2010 IAEA (bib1) 2015; vol. 16 Burchard-levine, Liu, Vince, Li, Ostfeld (bib14) 2014; 143 Bao (10.1016/j.net.2021.05.003_bib9) 2019; 349 Sug (10.1016/j.net.2021.05.003_bib35) 2010; 9 Holdaway (10.1016/j.net.2021.05.003_bib13) 2014 Kang (10.1016/j.net.2021.05.003_bib23) 2019 Varuttamaseni (10.1016/j.net.2021.05.003_bib39) 2011 Mitchell (10.1016/j.net.2021.05.003_bib11) 1997 Li (10.1016/j.net.2021.05.003_bib24) 2012; 169 Gandomi (10.1016/j.net.2021.05.003_bib63) 2015; 88 Mustafidah (10.1016/j.net.2021.05.003_bib34) 2014; 14 El-Sefy (10.1016/j.net.2021.05.003_bib42) 2019; 51 Ahmad (10.1016/j.net.2021.05.003_bib5) 2006 Arda (10.1016/j.net.2021.05.003_bib47) 2013 Gomez (10.1016/j.net.2021.05.003_bib17) 2017; 324 Foshch (10.1016/j.net.2021.05.003_bib18) 2016; 100 Burchard-levine (10.1016/j.net.2021.05.003_bib14) 2014; 143 Nawi (10.1016/j.net.2021.05.003_bib28) 2008 United States Nuclear Regulatory Commission (10.1016/j.net.2021.05.003_bib41) 2017 Perin (10.1016/j.net.2021.05.003_bib50) 2017; 321 El-Sefy (10.1016/j.net.2021.05.003_bib56) 2021 Lawrence (10.1016/j.net.2021.05.003_bib36) 1997 Min (10.1016/j.net.2021.05.003_bib2) 2019; 349 Mikolov (10.1016/j.net.2021.05.003_bib26) 2010 Knochenhauer (10.1016/j.net.2021.05.003_bib40) 2011 O'Shea (10.1016/j.net.2021.05.003_bib25) 2015 Krylatov (10.1016/j.net.2021.05.003_bib66) 2017 Solomatine (10.1016/j.net.2021.05.003_bib10) 2008; 10 Hecht-Nielsen (10.1016/j.net.2021.05.003_bib65) 1987 Abiodun (10.1016/j.net.2021.05.003_bib22) 2018 IAEA (10.1016/j.net.2021.05.003_bib1) 2015; vol. 16 Xu (10.1016/j.net.2021.05.003_bib64) 2008 Zimmerman (10.1016/j.net.2021.05.003_bib54) 1999 Tamimi (10.1016/j.net.2021.05.003_bib3) 2019 Cybenkot (10.1016/j.net.2021.05.003_bib62) 1989; 2 Montáns (10.1016/j.net.2021.05.003_bib12) 2019; 347 Rätz (10.1016/j.net.2021.05.003_bib8) 2019; 202 Moller (10.1016/j.net.2021.05.003_bib29) 1993; 6 Romojaro (10.1016/j.net.2021.05.003_bib55) 2019; 126 Patra (10.1016/j.net.2021.05.003_bib20) 2010; 1 Sánchez (10.1016/j.net.2021.05.003_bib49) 2018; 174 Phillips-Wren (10.1016/j.net.2021.05.003_bib7) 2013 Filip (10.1016/j.net.2021.05.003_bib6) 2008; 32 Moller (10.1016/j.net.2021.05.003_bib30) 1997 Guo (10.1016/j.net.2021.05.003_bib38) 2017; 5450 Perez (10.1016/j.net.2021.05.003_bib58) 2019 Setiono (10.1016/j.net.2021.05.003_bib68) 1995; 6 Fahrmeir (10.1016/j.net.2021.05.003_bib19) 2013 Sharma (10.1016/j.net.2021.05.003_bib33) 2014; 16 Maljovec (10.1016/j.net.2021.05.003_bib21) 2016; 145 Singh (10.1016/j.net.2021.05.003_bib27) 2009; 5 Haykin (10.1016/j.net.2021.05.003_bib61) 1999 Brown (10.1016/j.net.2021.05.003_bib52) 2016; 95 Zhang (10.1016/j.net.2021.05.003_bib15) 2011; 12 Kerlin (10.1016/j.net.2021.05.003_bib44) 1976; 30 (10.1016/j.net.2021.05.003_bib57) 2018 Johansson (10.1016/j.net.2021.05.003_bib67) 1992; 2 Hagan (10.1016/j.net.2021.05.003_bib32) 1994; 5 Oxtoby (10.1016/j.net.2021.05.003_bib16) 2018 Uhrig (10.1016/j.net.2021.05.003_bib37) 1993; 32 Battiti (10.1016/j.net.2021.05.003_bib31) 1992; 4 Thakkar (10.1016/j.net.2021.05.003_bib43) 1975 Korovin (10.1016/j.net.2021.05.003_bib4) 2015 Radaideh (10.1016/j.net.2021.05.003_bib51) 2018 Demazière (10.1016/j.net.2021.05.003_bib53) 2002; 140 Puchalski (10.1016/j.net.2021.05.003_bib48) 2017; 322 Rallo (10.1016/j.net.2021.05.003_bib60) 2002; 26 Arda (10.1016/j.net.2021.05.003_bib46) 2013 Arce-Medina (10.1016/j.net.2021.05.003_bib59) 2009; 49 Ali (10.1016/j.net.2021.05.003_bib45) 1976 |
| References_xml | – volume: 12 start-page: 1624 year: 2011 end-page: 1639 ident: bib15 article-title: Data-driven intelligent transportation Systems : a survey publication-title: IEEE Trans. Intell. Transport. Syst. – volume: 1 year: 2010 ident: bib20 article-title: Artificial neural network model for intermediate heat exchanger of nuclear reactor publication-title: Int. J. Comput. Appl. – volume: 16 start-page: 31 year: 2014 end-page: 35 ident: bib33 article-title: Comparison of neural network training functions for hematoma classification in brain CT images publication-title: IOSR J. Comput. Eng. – year: 2010 ident: bib26 article-title: Recurrent neural network based language model publication-title: Interspeech – year: 1999 ident: bib54 article-title: PWR Reactor Physics Methodology Using CASMO-4/SIMULATE-3 – volume: 30 start-page: 299 year: 1976 end-page: 316 ident: bib44 article-title: Theoretical and experimental dynamic analysis of the HB Robinson nuclear plant publication-title: Nucl. Technol. – year: 2017 ident: bib41 article-title: Acceptance criteria for emergency core cooling systems for light-water nuclear power reactors – year: 2011 ident: bib39 article-title: Bayesian Network Representing System Dynamics in Risk Analysis of Nuclear Systems – year: 1999 ident: bib61 article-title: Neural Networks – year: 2013 ident: bib19 article-title: Regression Models – year: 2015 ident: bib25 article-title: An introduction to convolutional neural networks – volume: 95 start-page: 188 year: 2016 end-page: 201 ident: bib52 article-title: Uncertainty quantification and sensitivity analysis with CASL Core Simulator VERA-CS publication-title: Ann. Nucl. Energy J. – volume: 5450 year: 2017 ident: bib38 article-title: Use of artificial neural networks to analyze nuclear power plant performance publication-title: Nucl. Technol. – year: 2018 ident: bib57 publication-title: MATLAB and Statistics Toolbox Release 2018a – volume: 126 start-page: 410 year: 2019 end-page: 418 ident: bib55 article-title: Sensitivity methods for effective delayed neutron fraction and neutron generation time with summon publication-title: Ann. Nucl. Energy – start-page: 7 year: 2017 end-page: 69404 ident: bib66 article-title: Projection approach versus gradient descent for network’ s flows assignment problem publication-title: Learn. Intell. Optim. – year: 2013 ident: bib46 article-title: Development of a linearized model of a pressurized water reactor generating station for power system dynamic simulations publication-title: 45th North Am. Power Symp – volume: vol. 16 year: 2015 ident: bib1 publication-title: Accident Monitoring Systems for Nuclear Power Plants – start-page: 66 year: 2019 end-page: 72 ident: bib23 article-title: A data driven artificial neural network model for predicting radiative properties of metallic packed beds publication-title: Quant. Spectrosc. Radiat. Transf. – start-page: 46 year: 2008 end-page: 55 ident: bib28 article-title: An improved conjugate gradient based learning algorithm for back propagation neural networks publication-title: Int. J. Comput. Intell. – year: 2011 ident: bib40 article-title: Guidance for the Definition and Application of Probabilistic Safety Criteria – volume: 145 start-page: 262 year: 2016 end-page: 276 ident: bib21 article-title: Analyzing simulation-based PRA data through traditional and topological clustering : a BWR station blackout case study publication-title: Reliab. Eng. Syst. Saf. – volume: 6 start-page: 525 year: 1993 end-page: 533 ident: bib29 article-title: A scaled conjugate gradient algorithm for fast supervised learning publication-title: Neural Network. – volume: 51 start-page: 1540 year: 2019 end-page: 1553 ident: bib42 article-title: System dynamics simulation of the thermal dynamic processes in nuclear power plants publication-title: Nucl. Eng. Technol. – year: 1976 ident: bib45 article-title: Lumped Parameter, State Variable Dynamic Models for U-Tube Recirculation Type Nuclear Steam Generators – year: 1975 ident: bib43 article-title: Correlation of Theory and Experiment for the Dynamics of a Pressurized Water Reactor – volume: 9 start-page: 1297 year: 2010 end-page: 1306 ident: bib35 article-title: The effect of training set size for the performance of neural networks of classification publication-title: WSEAS Trans. Comput. – volume: 322 start-page: 444 year: 2017 end-page: 463 ident: bib48 article-title: Nodal models of Pressurized Water Reactor core for control purposes – a comparison study publication-title: Nucl. Eng. Des. – year: 2021 ident: bib56 article-title: Dynamic probabilistic risk assessment of core damage under different transients using system dynamics simulation approach – year: 1987 ident: bib65 article-title: Kolmogorov's mapping neural network existence theorem publication-title: IEEE First Int. Conf – year: 1997 ident: bib11 article-title: Machine Learning – start-page: 391 year: 2006 end-page: 410 ident: bib5 article-title: An intelligent decision support system for management of floods publication-title: Water Resour. Manag. – year: 2019 ident: bib3 article-title: An Artificial Intelligence Decision Support System for Unconventional Field Development Design – start-page: 1 year: 2018 end-page: 16 ident: bib16 article-title: Data-driven models of dominantly-inherited Alzheimer's disease progression publication-title: Brain – volume: 100 start-page: 253 year: 2016 end-page: 262 ident: bib18 article-title: Regression models of the nuclear power unit VVER-1000 using data mining techniques publication-title: Procedia Comput. Sci. – volume: 140 start-page: 147 year: 2002 end-page: 163 ident: bib53 article-title: Evaluation of the boron dilution method for moderator temperature coefficient measurements publication-title: Nucl. Technol. – start-page: 540 year: 1997 end-page: 545 ident: bib36 article-title: Lessons in neural network training: overfitting may be harder than expected publication-title: Proc. Fourteenth Natl. Conf. Artif. Intell. AAAI-97 – year: 2013 ident: bib47 article-title: Implementing a Nuclear Power Plant Model for Evaluating Load-Following Capability on a Small Grid – year: 2014 ident: bib13 article-title: Harness Oil and Gas Big Data with Analytics: Optimize Exploration and Production with Data-Driven Models – year: 2018 ident: bib22 article-title: State-of-the-art in artificial neural network applications: a survey publication-title: Heliyon – volume: 10 year: 2008 ident: bib10 article-title: Data-driven modelling: some past experiences and new approaches approaches publication-title: J. Hydroinf. – volume: 4 start-page: 141 year: 1992 end-page: 166 ident: bib31 article-title: First- and second-order methods for learning: between steepest descent and Newton's method publication-title: Neural Comput. – volume: 88 start-page: 63 year: 2015 end-page: 72 ident: bib63 article-title: Advances in Engineering Software Assessment of artificial neural network and genetic programming as predictive tools publication-title: Adv. Eng. Software – volume: 321 start-page: 48 year: 2017 end-page: 56 ident: bib50 article-title: Application of the best-estimate plus uncertainty approach on a BWR ATWS transient using the NURESIM European code platform publication-title: Nucl. Eng. Des. – year: 2013 ident: bib7 article-title: Intelligent Decision Support Systems – volume: 26 start-page: 1735 year: 2002 end-page: 1754 ident: bib60 article-title: Neural virtual sensor for the inferential prediction of product quality from process variables publication-title: Comput. Chem. Eng. – volume: 2 start-page: 291 year: 1992 end-page: 301 ident: bib67 article-title: Backpropagation learning for multilayer feed-forward neural networks using the conjugate gradient method publication-title: Int. J. Neural Syst. – volume: 6 year: 1995 ident: bib68 article-title: Use of a quasi-Newton method in a feedforward neural network construction algorithm publication-title: IEEE Trans. Neural Network. – volume: 347 start-page: 845 year: 2019 end-page: 855 ident: bib12 article-title: Data-driven modeling and learning in science and engineering publication-title: Compt. Rendus Mec. – volume: 349 start-page: 56 year: 2019 end-page: 62 ident: bib2 article-title: Demonstration of the validity of the early warning in online monitoring system for nuclear power plants publication-title: Nucl. Eng. Des. – volume: 5 start-page: 2 year: 1994 end-page: 6 ident: bib32 article-title: Training feedforward networks with the marquardt algorithm publication-title: IEEE Trans. Neural Network. – volume: 49 start-page: 207 year: 2009 end-page: 214 ident: bib59 article-title: Artificial neural network modeling techniques applied to the hydrodesulfurization process publication-title: Math. Comput. Model. – volume: 32 start-page: 61 year: 2008 end-page: 70 ident: bib6 article-title: Decision support and control for large-scale complex systems publication-title: Annu. Rev. Contr. – year: 2019 ident: bib58 article-title: Neural Networks Using Matlab. Cluster Analysis and Classification – volume: 202 year: 2019 ident: bib8 article-title: Automated data-driven modeling of building energy systems via machine learning algorithms publication-title: Energy Build. – volume: 174 start-page: 19 year: 2018 end-page: 28 ident: bib49 article-title: Uncertainty analysis of a large break loss of coolant accident in a pressurized water reactor using non-parametric methods publication-title: Reliab. Eng. Syst. Saf. – volume: 5 start-page: 36 year: 2009 end-page: 42 ident: bib27 article-title: Neural networks in data mining publication-title: J. Theor. Appl. Inf. Technol. – volume: 2 start-page: 303 year: 1989 end-page: 314 ident: bib62 article-title: Approximation by superpositions of a sigmoidal function publication-title: Math. Control. Signals, Syst. – year: 1997 ident: bib30 article-title: Efficient Training of Feed-Forward Neural Networks – volume: 349 start-page: 27 year: 2019 end-page: 45 ident: bib9 article-title: A data-driven framework for error estimation and mesh-model optimization in system-level thermal-hydraulic simulation publication-title: Nucl. Eng. Des. – volume: 32 start-page: 139 year: 1993 end-page: 145 ident: bib37 article-title: Use of neural networks in nuclear power plants publication-title: ISA Trans. – volume: 324 start-page: 27 year: 2017 end-page: 34 ident: bib17 article-title: Nuclear energy system's behavior and decision making using machine learning publication-title: Nucl. Eng. Des. – start-page: 141 year: 2015 end-page: 144 ident: bib4 article-title: Modern decision support systems in oil industry: types, approaches and applications publication-title: Int. Conf. Test, Meas. Comput. Method – volume: 14 start-page: 92 year: 2014 end-page: 95 ident: bib34 article-title: Selection of most appropriate backpropagation training algorithm in data pattern recognition publication-title: Int. J. Comput. Trends Technol. – volume: 169 year: 2012 ident: bib24 article-title: Brief introduction of back propagation (BP) neural network algorithm and its improvement publication-title: Adv. Comput. Sci. Inf. Eng. – year: 2018 ident: bib51 article-title: A new framework for sampling-based uncertainty quantification of the six-group reactor kinetic parameters publication-title: Ann. Nucl. Energy – start-page: 683 year: 2008 end-page: 686 ident: bib64 article-title: A novel approach for determining the optimal number of hidden layer neurons for FNN's and its application in data mining publication-title: 5th Int. Conf. Inf. Technol. Appl – volume: 143 start-page: 8 year: 2014 end-page: 16 ident: bib14 article-title: A hybrid evolutionary data driven model for river water quality early warning publication-title: J. Environ. Manag. – year: 2014 ident: 10.1016/j.net.2021.05.003_bib13 – volume: 30 start-page: 299 year: 1976 ident: 10.1016/j.net.2021.05.003_bib44 article-title: Theoretical and experimental dynamic analysis of the HB Robinson nuclear plant publication-title: Nucl. Technol. doi: 10.13182/NT76-A31645 – year: 2018 ident: 10.1016/j.net.2021.05.003_bib22 article-title: State-of-the-art in artificial neural network applications: a survey publication-title: Heliyon doi: 10.1016/j.heliyon.2018.e00938 – volume: 140 start-page: 147 year: 2002 ident: 10.1016/j.net.2021.05.003_bib53 article-title: Evaluation of the boron dilution method for moderator temperature coefficient measurements publication-title: Nucl. Technol. doi: 10.13182/NT02-A3329 – start-page: 540 year: 1997 ident: 10.1016/j.net.2021.05.003_bib36 article-title: Lessons in neural network training: overfitting may be harder than expected – year: 2011 ident: 10.1016/j.net.2021.05.003_bib40 – year: 2011 ident: 10.1016/j.net.2021.05.003_bib39 – year: 2019 ident: 10.1016/j.net.2021.05.003_bib58 – volume: 6 year: 1995 ident: 10.1016/j.net.2021.05.003_bib68 article-title: Use of a quasi-Newton method in a feedforward neural network construction algorithm publication-title: IEEE Trans. Neural Network. doi: 10.1109/72.363426 – volume: 32 start-page: 139 year: 1993 ident: 10.1016/j.net.2021.05.003_bib37 article-title: Use of neural networks in nuclear power plants publication-title: ISA Trans. doi: 10.1016/0019-0578(93)90036-V – year: 2018 ident: 10.1016/j.net.2021.05.003_bib57 – year: 1987 ident: 10.1016/j.net.2021.05.003_bib65 article-title: Kolmogorov's mapping neural network existence theorem – volume: 5 start-page: 36 year: 2009 ident: 10.1016/j.net.2021.05.003_bib27 article-title: Neural networks in data mining publication-title: J. Theor. Appl. Inf. Technol. – volume: 2 start-page: 303 year: 1989 ident: 10.1016/j.net.2021.05.003_bib62 article-title: Approximation by superpositions of a sigmoidal function publication-title: Math. Control. Signals, Syst. doi: 10.1007/BF02551274 – year: 2015 ident: 10.1016/j.net.2021.05.003_bib25 – volume: 6 start-page: 525 year: 1993 ident: 10.1016/j.net.2021.05.003_bib29 article-title: A scaled conjugate gradient algorithm for fast supervised learning publication-title: Neural Network. doi: 10.1016/S0893-6080(05)80056-5 – year: 1999 ident: 10.1016/j.net.2021.05.003_bib54 – volume: 1 year: 2010 ident: 10.1016/j.net.2021.05.003_bib20 article-title: Artificial neural network model for intermediate heat exchanger of nuclear reactor publication-title: Int. J. Comput. Appl. – year: 2013 ident: 10.1016/j.net.2021.05.003_bib47 – volume: 349 start-page: 27 year: 2019 ident: 10.1016/j.net.2021.05.003_bib9 article-title: A data-driven framework for error estimation and mesh-model optimization in system-level thermal-hydraulic simulation publication-title: Nucl. Eng. Des. doi: 10.1016/j.nucengdes.2019.04.023 – year: 1997 ident: 10.1016/j.net.2021.05.003_bib11 – volume: 14 start-page: 92 year: 2014 ident: 10.1016/j.net.2021.05.003_bib34 article-title: Selection of most appropriate backpropagation training algorithm in data pattern recognition publication-title: Int. J. Comput. Trends Technol. doi: 10.14445/22312803/IJCTT-V14P120 – year: 1976 ident: 10.1016/j.net.2021.05.003_bib45 – volume: 347 start-page: 845 year: 2019 ident: 10.1016/j.net.2021.05.003_bib12 article-title: Data-driven modeling and learning in science and engineering publication-title: Compt. Rendus Mec. – volume: 169 year: 2012 ident: 10.1016/j.net.2021.05.003_bib24 article-title: Brief introduction of back propagation (BP) neural network algorithm and its improvement publication-title: Adv. Comput. Sci. Inf. Eng. – volume: 5 start-page: 2 year: 1994 ident: 10.1016/j.net.2021.05.003_bib32 article-title: Training feedforward networks with the marquardt algorithm publication-title: IEEE Trans. Neural Network. doi: 10.1109/72.329697 – volume: vol. 16 year: 2015 ident: 10.1016/j.net.2021.05.003_bib1 – year: 1975 ident: 10.1016/j.net.2021.05.003_bib43 – start-page: 1 year: 2018 ident: 10.1016/j.net.2021.05.003_bib16 article-title: Data-driven models of dominantly-inherited Alzheimer's disease progression publication-title: Brain – volume: 95 start-page: 188 year: 2016 ident: 10.1016/j.net.2021.05.003_bib52 article-title: Uncertainty quantification and sensitivity analysis with CASL Core Simulator VERA-CS publication-title: Ann. Nucl. Energy J. doi: 10.1016/j.anucene.2016.05.016 – year: 2017 ident: 10.1016/j.net.2021.05.003_bib41 – volume: 126 start-page: 410 year: 2019 ident: 10.1016/j.net.2021.05.003_bib55 article-title: Sensitivity methods for effective delayed neutron fraction and neutron generation time with summon publication-title: Ann. Nucl. Energy doi: 10.1016/j.anucene.2018.11.042 – year: 2021 ident: 10.1016/j.net.2021.05.003_bib56 – start-page: 7 year: 2017 ident: 10.1016/j.net.2021.05.003_bib66 article-title: Projection approach versus gradient descent for network’ s flows assignment problem publication-title: Learn. Intell. Optim. – volume: 321 start-page: 48 year: 2017 ident: 10.1016/j.net.2021.05.003_bib50 article-title: Application of the best-estimate plus uncertainty approach on a BWR ATWS transient using the NURESIM European code platform publication-title: Nucl. Eng. Des. doi: 10.1016/j.nucengdes.2017.05.018 – year: 2013 ident: 10.1016/j.net.2021.05.003_bib46 article-title: Development of a linearized model of a pressurized water reactor generating station for power system dynamic simulations – volume: 145 start-page: 262 year: 2016 ident: 10.1016/j.net.2021.05.003_bib21 article-title: Analyzing simulation-based PRA data through traditional and topological clustering : a BWR station blackout case study publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2015.07.001 – year: 2019 ident: 10.1016/j.net.2021.05.003_bib3 – volume: 51 start-page: 1540 year: 2019 ident: 10.1016/j.net.2021.05.003_bib42 article-title: System dynamics simulation of the thermal dynamic processes in nuclear power plants publication-title: Nucl. Eng. Technol. doi: 10.1016/j.net.2019.04.017 – volume: 322 start-page: 444 year: 2017 ident: 10.1016/j.net.2021.05.003_bib48 article-title: Nodal models of Pressurized Water Reactor core for control purposes – a comparison study publication-title: Nucl. Eng. Des. doi: 10.1016/j.nucengdes.2017.07.005 – year: 1997 ident: 10.1016/j.net.2021.05.003_bib30 – volume: 174 start-page: 19 year: 2018 ident: 10.1016/j.net.2021.05.003_bib49 article-title: Uncertainty analysis of a large break loss of coolant accident in a pressurized water reactor using non-parametric methods publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2018.02.005 – volume: 100 start-page: 253 year: 2016 ident: 10.1016/j.net.2021.05.003_bib18 article-title: Regression models of the nuclear power unit VVER-1000 using data mining techniques publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2016.09.151 – volume: 49 start-page: 207 year: 2009 ident: 10.1016/j.net.2021.05.003_bib59 article-title: Artificial neural network modeling techniques applied to the hydrodesulfurization process publication-title: Math. Comput. Model. doi: 10.1016/j.mcm.2008.05.010 – volume: 26 start-page: 1735 year: 2002 ident: 10.1016/j.net.2021.05.003_bib60 article-title: Neural virtual sensor for the inferential prediction of product quality from process variables publication-title: Comput. Chem. Eng. doi: 10.1016/S0098-1354(02)00148-5 – volume: 12 start-page: 1624 year: 2011 ident: 10.1016/j.net.2021.05.003_bib15 article-title: Data-driven intelligent transportation Systems : a survey publication-title: IEEE Trans. Intell. Transport. Syst. doi: 10.1109/TITS.2011.2158001 – volume: 324 start-page: 27 year: 2017 ident: 10.1016/j.net.2021.05.003_bib17 article-title: Nuclear energy system's behavior and decision making using machine learning publication-title: Nucl. Eng. Des. doi: 10.1016/j.nucengdes.2017.08.020 – volume: 5450 year: 2017 ident: 10.1016/j.net.2021.05.003_bib38 article-title: Use of artificial neural networks to analyze nuclear power plant performance publication-title: Nucl. Technol. – start-page: 141 year: 2015 ident: 10.1016/j.net.2021.05.003_bib4 article-title: Modern decision support systems in oil industry: types, approaches and applications – volume: 349 start-page: 56 year: 2019 ident: 10.1016/j.net.2021.05.003_bib2 article-title: Demonstration of the validity of the early warning in online monitoring system for nuclear power plants publication-title: Nucl. Eng. Des. doi: 10.1016/j.nucengdes.2019.04.028 – volume: 32 start-page: 61 year: 2008 ident: 10.1016/j.net.2021.05.003_bib6 article-title: Decision support and control for large-scale complex systems publication-title: Annu. Rev. Contr. doi: 10.1016/j.arcontrol.2008.03.002 – year: 2010 ident: 10.1016/j.net.2021.05.003_bib26 article-title: Recurrent neural network based language model – start-page: 683 year: 2008 ident: 10.1016/j.net.2021.05.003_bib64 article-title: A novel approach for determining the optimal number of hidden layer neurons for FNN's and its application in data mining – volume: 9 start-page: 1297 year: 2010 ident: 10.1016/j.net.2021.05.003_bib35 article-title: The effect of training set size for the performance of neural networks of classification publication-title: WSEAS Trans. Comput. – year: 2013 ident: 10.1016/j.net.2021.05.003_bib19 – volume: 202 year: 2019 ident: 10.1016/j.net.2021.05.003_bib8 article-title: Automated data-driven modeling of building energy systems via machine learning algorithms publication-title: Energy Build. doi: 10.1016/j.enbuild.2019.109384 – start-page: 391 year: 2006 ident: 10.1016/j.net.2021.05.003_bib5 article-title: An intelligent decision support system for management of floods publication-title: Water Resour. Manag. doi: 10.1007/s11269-006-0326-3 – volume: 2 start-page: 291 year: 1992 ident: 10.1016/j.net.2021.05.003_bib67 article-title: Backpropagation learning for multilayer feed-forward neural networks using the conjugate gradient method publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065791000261 – year: 2013 ident: 10.1016/j.net.2021.05.003_bib7 – year: 2018 ident: 10.1016/j.net.2021.05.003_bib51 article-title: A new framework for sampling-based uncertainty quantification of the six-group reactor kinetic parameters publication-title: Ann. Nucl. Energy – start-page: 66 year: 2019 ident: 10.1016/j.net.2021.05.003_bib23 article-title: A data driven artificial neural network model for predicting radiative properties of metallic packed beds publication-title: Quant. Spectrosc. Radiat. Transf. doi: 10.1016/j.jqsrt.2019.01.013 – volume: 4 start-page: 141 year: 1992 ident: 10.1016/j.net.2021.05.003_bib31 article-title: First- and second-order methods for learning: between steepest descent and Newton's method publication-title: Neural Comput. doi: 10.1162/neco.1992.4.2.141 – volume: 10 year: 2008 ident: 10.1016/j.net.2021.05.003_bib10 article-title: Data-driven modelling: some past experiences and new approaches approaches publication-title: J. Hydroinf. – year: 1999 ident: 10.1016/j.net.2021.05.003_bib61 – volume: 88 start-page: 63 year: 2015 ident: 10.1016/j.net.2021.05.003_bib63 article-title: Advances in Engineering Software Assessment of artificial neural network and genetic programming as predictive tools publication-title: Adv. Eng. Software doi: 10.1016/j.advengsoft.2015.05.007 – volume: 143 start-page: 8 year: 2014 ident: 10.1016/j.net.2021.05.003_bib14 article-title: A hybrid evolutionary data driven model for river water quality early warning publication-title: J. Environ. Manag. – start-page: 46 year: 2008 ident: 10.1016/j.net.2021.05.003_bib28 article-title: An improved conjugate gradient based learning algorithm for back propagation neural networks publication-title: Int. J. Comput. Intell. – volume: 16 start-page: 31 year: 2014 ident: 10.1016/j.net.2021.05.003_bib33 article-title: Comparison of neural network training functions for hematoma classification in brain CT images publication-title: IOSR J. Comput. Eng. doi: 10.9790/0661-16123135 |
| SSID | ssj0064470 |
| Score | 2.4546006 |
| Snippet | A Nuclear Power Plant (NPP) is a complex dynamic system-of-systems with highly nonlinear behaviors. In order to control the plant operation under both normal... |
| SourceID | doaj crossref elsevier |
| SourceType | Open Website Enrichment Source Index Database Publisher |
| StartPage | 3275 |
| SubjectTerms | Artificial intelligence Artificial neural network Back-propagation algorithm Data-driven models Nuclear power plant |
| Title | Artificial neural network for predicting nuclear power plant dynamic behaviors |
| URI | https://dx.doi.org/10.1016/j.net.2021.05.003 https://doaj.org/article/82899a16165a404aa1e78f606ecf1c1e |
| Volume | 53 |
| WOSCitedRecordID | wos000687759300005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals issn: 1738-5733 databaseCode: DOA dateStart: 20130101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.doaj.org/ omitProxy: false ssIdentifier: ssj0064470 providerName: Directory of Open Access Journals |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELUQYoAB8SnKlzwwIUXEsRPHIyAqpoqhQ7fo4thSURWqtvD7ubOTKguwMEVyHDu52H538vk9xu6U9kZlaZ6UICAhnskEEAcSrxCtvRON9j6ITejJpJzNzNtA6otywiI9cDTcQ4gIAP2SIgeVKgDhdOnR7XbWCyscrb6pNn0wFddgBHkdj0LidCbGv34_M2R2YcyPgWEmAmVnr5bVIVIg7h8A0wBsxkfssPMS-WN8u2O249oTdjDgDjxlE7oZ6R84kVKGS0jp5uiH8uWKdmAop5m3RFkMWESCaHy5QFvyJgrR8_6U_vqMTccv0-fXpBNHSCxi8CYBWVjtSp9bK0yuawEYeRQKGpE3UjQSnM_BamPqJjNKO-Klz6QHkEaCauQ5220_WnfBeG5w4qYe6toLBYWqpTNQq0ZLZ7Vw2YilvX0q2xGHk37FouozxN4r_MCKTFqlObGNjtj99pFlZM34rfITGX1bkQivQwEOg6obBtVfw2DEVP_Lqs53iD4BNjX_ue_L_-j7iu1TkzHF75rtblaf7obt2a_NfL26DQPzG0AV5kM |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+neural+network+for+predicting+nuclear+power+plant+dynamic+behaviors&rft.jtitle=Nuclear+engineering+and+technology&rft.au=El-Sefy%2C+M.&rft.au=Yosri%2C+A.&rft.au=El-Dakhakhni%2C+W.&rft.au=Nagasaki%2C+S.&rft.date=2021-10-01&rft.issn=1738-5733&rft.volume=53&rft.issue=10&rft.spage=3275&rft.epage=3285&rft_id=info:doi/10.1016%2Fj.net.2021.05.003&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_net_2021_05_003 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1738-5733&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1738-5733&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1738-5733&client=summon |