Artificial neural network for predicting nuclear power plant dynamic behaviors

A Nuclear Power Plant (NPP) is a complex dynamic system-of-systems with highly nonlinear behaviors. In order to control the plant operation under both normal and abnormal conditions, the different systems in NPPs (e.g., the reactor core components, primary and secondary coolant systems) are usually...

Full description

Saved in:
Bibliographic Details
Published in:Nuclear engineering and technology Vol. 53; no. 10; pp. 3275 - 3285
Main Authors: El-Sefy, M., Yosri, A., El-Dakhakhni, W., Nagasaki, S., Wiebe, L.
Format: Journal Article
Language:English
Published: Elsevier B.V 01.10.2021
Elsevier
Subjects:
ISSN:1738-5733
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A Nuclear Power Plant (NPP) is a complex dynamic system-of-systems with highly nonlinear behaviors. In order to control the plant operation under both normal and abnormal conditions, the different systems in NPPs (e.g., the reactor core components, primary and secondary coolant systems) are usually monitored continuously, resulting in very large amounts of data. This situation makes it possible to integrate relevant qualitative and quantitative knowledge with artificial intelligence techniques to provide faster and more accurate behavior predictions, leading to more rapid decisions, based on actual NPP operation data. Data-driven models (DDM) rely on artificial intelligence to learn autonomously based on patterns in data, and they represent alternatives to physics-based models that typically require significant computational resources and might not fully represent the actual operation conditions of an NPP. In this study, a feed-forward backpropagation artificial neural network (ANN) model was trained to simulate the interaction between the reactor core and the primary and secondary coolant systems in a pressurized water reactor. The transients used for model training included perturbations in reactivity, steam valve coefficient, reactor core inlet temperature, and steam generator inlet temperature. Uncertainties of the plant physical parameters and operating conditions were also incorporated in these transients. Eight training functions were adopted during the training stage to develop the most efficient network. The developed ANN model predictions were subsequently tested successfully considering different new transients. Overall, through prompt prediction of NPP behavior under different transients, the study aims at demonstrating the potential of artificial intelligence to empower rapid emergency response planning and risk mitigation strategies.
AbstractList A Nuclear Power Plant (NPP) is a complex dynamic system-of-systems with highly nonlinear behaviors. In order to control the plant operation under both normal and abnormal conditions, the different systems in NPPs (e.g., the reactor core components, primary and secondary coolant systems) are usually monitored continuously, resulting in very large amounts of data. This situation makes it possible to integrate relevant qualitative and quantitative knowledge with artificial intelligence techniques to provide faster and more accurate behavior predictions, leading to more rapid decisions, based on actual NPP operation data. Data-driven models (DDM) rely on artificial intelligence to learn autonomously based on patterns in data, and they represent alternatives to physics-based models that typically require significant computational resources and might not fully represent the actual operation conditions of an NPP. In this study, a feed-forward backpropagation artificial neural network (ANN) model was trained to simulate the interaction between the reactor core and the primary and secondary coolant systems in a pressurized water reactor. The transients used for model training included perturbations in reactivity, steam valve coefficient, reactor core inlet temperature, and steam generator inlet temperature. Uncertainties of the plant physical parameters and operating conditions were also incorporated in these transients. Eight training functions were adopted during the training stage to develop the most efficient network. The developed ANN model predictions were subsequently tested successfully considering different new transients. Overall, through prompt prediction of NPP behavior under different transients, the study aims at demonstrating the potential of artificial intelligence to empower rapid emergency response planning and risk mitigation strategies.
Author Nagasaki, S.
El-Dakhakhni, W.
El-Sefy, M.
Yosri, A.
Wiebe, L.
Author_xml – sequence: 1
  givenname: M.
  surname: El-Sefy
  fullname: El-Sefy, M.
  email: elsefym@mcmaster.ca
  organization: Department of Civil Engineering, NSERC-CREATE Program on Canadian Nuclear Energy Infrastructure Resilience Under Systemic Risk, McMaster University, Hamilton, ON, L8S 4L7, Canada
– sequence: 2
  givenname: A.
  surname: Yosri
  fullname: Yosri, A.
  email: ahmeda69@mcmaster.ca
  organization: Department of Civil Engineering, Institute for Multi-hazard Systemic Risk Studies (INTERFACE), McMaster University, Hamilton, ON, L8S 4L7, Canada
– sequence: 3
  givenname: W.
  surname: El-Dakhakhni
  fullname: El-Dakhakhni, W.
  email: eldak@mcmaster.ca
  organization: Department of Civil Engineering, and Director, NSERC-CaNRisk-CREATE Program and teh INTERFACE Institute, McMaster University, Hamilton, ON, L8S 4L7, Canada
– sequence: 4
  givenname: S.
  surname: Nagasaki
  fullname: Nagasaki, S.
  email: nagasas@mcmaster.ca
  organization: Department of Engineering Physics, McMaster University, Hamilton, ON, L8S 4L7, Canada
– sequence: 5
  givenname: L.
  surname: Wiebe
  fullname: Wiebe, L.
  email: wiebel@mcmaster.ca
  organization: Department of Civil Engineering, NSERC-CREATE Program on Canadian Nuclear Energy Infrastructure Resilience Under Systemic Risk, McMaster University, Hamilton, ON, L8S 4L7, Canada
BookMark eNp9kE1PAjEQhnvARFB_gLf9A6ztdtvuxhMhfiVEL96boTvF4tKSboHw762gFw9eZpJJnjfvPBMy8sEjIbeMlowyebcuPaayohUrqSgp5SMyZoo3U6E4vySTYVhTKuta0TF5ncXkrDMO-sLjLp5WOoT4WdgQi23Ezpnk_KrwO9Mj5FM4YJ49-FR0Rw8bZ4olfsDehThckwsL_YA3P_uKvD8-vM-fp4u3p5f5bDE1NZVpClwahY0VxrBWqCWDRglZQ8dEx1nHAa0Ao9p22VVtrVBxSituAXjLoe74FXk5x3YB1nob3QbiUQdw-nQIcaUh_5UL66Zq2haYZFJATWsAhqqxkko0lhmGOUuds0wMwxDRauMSJBd8iuB6zaj-tqrXOovR31Y1FTpbzST7Q_42-Y-5PzOY7ewdRj0Yh95kzRFNyv3dP_QXbXKVGA
CitedBy_id crossref_primary_10_1016_j_net_2025_103767
crossref_primary_10_1016_j_nucengdes_2024_113636
crossref_primary_10_3390_jne4030033
crossref_primary_10_1016_j_pnucene_2023_104729
crossref_primary_10_3390_en16031443
crossref_primary_10_1007_s41365_025_01749_6
crossref_primary_10_1016_j_pnucene_2024_105580
crossref_primary_10_1016_j_anucene_2022_109323
crossref_primary_10_3389_fenrg_2022_874194
crossref_primary_10_1016_j_istruc_2021_10_085
crossref_primary_10_1016_j_nucengdes_2025_114057
crossref_primary_10_1016_j_anucene_2024_111129
crossref_primary_10_1016_j_pnucene_2025_105948
crossref_primary_10_1016_j_nucengdes_2024_113709
crossref_primary_10_3390_iot5040030
crossref_primary_10_1016_j_energy_2022_125736
crossref_primary_10_3390_antiox14091144
crossref_primary_10_3390_pr13061661
crossref_primary_10_1016_j_chemosphere_2024_143096
crossref_primary_10_1007_s41660_024_00478_4
crossref_primary_10_1007_s13369_025_10190_1
crossref_primary_10_1016_j_asoc_2023_110126
crossref_primary_10_1016_j_heliyon_2023_e13798
crossref_primary_10_1016_j_nucengdes_2025_113899
crossref_primary_10_1016_j_ijcip_2023_100647
crossref_primary_10_1051_epjconf_202430217009
crossref_primary_10_1016_j_anucene_2022_109507
crossref_primary_10_1016_j_net_2024_103425
crossref_primary_10_26866_jees_2025_4_r_301
crossref_primary_10_1016_j_nucengdes_2024_113655
crossref_primary_10_1016_j_anucene_2024_110736
crossref_primary_10_12973_eu_jer_14_3_805
crossref_primary_10_1016_j_anucene_2022_109188
crossref_primary_10_1016_j_eneco_2024_107506
crossref_primary_10_1016_j_anucene_2024_110891
crossref_primary_10_1109_ACCESS_2024_3367228
crossref_primary_10_1038_s41598_022_24369_1
crossref_primary_10_3390_soilsystems8010022
crossref_primary_10_1007_s40435_022_01100_6
crossref_primary_10_1016_j_pnucene_2023_104799
crossref_primary_10_1016_j_nucengdes_2024_112978
crossref_primary_10_1016_j_nucengdes_2025_113827
crossref_primary_10_1016_j_advengsoft_2022_103190
crossref_primary_10_1016_j_anucene_2024_110702
crossref_primary_10_1080_00295450_2022_2067460
crossref_primary_10_1061__ASCE_ST_1943_541X_0003401
crossref_primary_10_1016_j_aei_2022_101736
crossref_primary_10_1016_j_ijhydene_2022_11_211
crossref_primary_10_1093_ijlct_ctac061
crossref_primary_10_1155_2022_3323239
crossref_primary_10_1016_j_engappai_2025_110531
crossref_primary_10_1016_j_rineng_2025_105297
crossref_primary_10_1016_j_pnucene_2021_104108
Cites_doi 10.13182/NT76-A31645
10.1016/j.heliyon.2018.e00938
10.13182/NT02-A3329
10.1109/72.363426
10.1016/0019-0578(93)90036-V
10.1007/BF02551274
10.1016/S0893-6080(05)80056-5
10.1016/j.nucengdes.2019.04.023
10.14445/22312803/IJCTT-V14P120
10.1109/72.329697
10.1016/j.anucene.2016.05.016
10.1016/j.anucene.2018.11.042
10.1016/j.nucengdes.2017.05.018
10.1016/j.ress.2015.07.001
10.1016/j.net.2019.04.017
10.1016/j.nucengdes.2017.07.005
10.1016/j.ress.2018.02.005
10.1016/j.procs.2016.09.151
10.1016/j.mcm.2008.05.010
10.1016/S0098-1354(02)00148-5
10.1109/TITS.2011.2158001
10.1016/j.nucengdes.2017.08.020
10.1016/j.nucengdes.2019.04.028
10.1016/j.arcontrol.2008.03.002
10.1016/j.enbuild.2019.109384
10.1007/s11269-006-0326-3
10.1142/S0129065791000261
10.1016/j.jqsrt.2019.01.013
10.1162/neco.1992.4.2.141
10.1016/j.advengsoft.2015.05.007
10.9790/0661-16123135
ContentType Journal Article
Copyright 2021 Korean Nuclear Society
Copyright_xml – notice: 2021 Korean Nuclear Society
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.net.2021.05.003
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: Open Access: DOAJ - Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 3285
ExternalDocumentID oai_doaj_org_article_82899a16165a404aa1e78f606ecf1c1e
10_1016_j_net_2021_05_003
S1738573321002540
GroupedDBID .UV
0R~
0SF
123
4.4
457
5VS
6I.
9ZL
AACTN
AAEDW
AAFTH
AALRI
AAXUO
ABMAC
ACGFS
ACYCR
ADBBV
ADEZE
AENEX
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
IPNFZ
JDI
KQ8
KVFHK
M41
NCXOZ
O9-
OK1
RIG
ROL
SSZ
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
CITATION
ID FETCH-LOGICAL-c406t-a36c7e8f5cc1957b1a87564ad15d31d3aef5ac799bd2947e730023faa393a4d3
IEDL.DBID DOA
ISICitedReferencesCount 57
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000687759300005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1738-5733
IngestDate Fri Oct 03 12:52:20 EDT 2025
Tue Nov 18 20:33:51 EST 2025
Wed Oct 29 21:42:28 EDT 2025
Wed May 17 00:02:56 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Data-driven models
Artificial neural network
Nuclear power plant
Artificial intelligence
Back-propagation algorithm
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-a36c7e8f5cc1957b1a87564ad15d31d3aef5ac799bd2947e730023faa393a4d3
OpenAccessLink https://doaj.org/article/82899a16165a404aa1e78f606ecf1c1e
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_82899a16165a404aa1e78f606ecf1c1e
crossref_citationtrail_10_1016_j_net_2021_05_003
crossref_primary_10_1016_j_net_2021_05_003
elsevier_sciencedirect_doi_10_1016_j_net_2021_05_003
PublicationCentury 2000
PublicationDate October 2021
2021-10-00
2021-10-01
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: October 2021
PublicationDecade 2020
PublicationTitle Nuclear engineering and technology
PublicationYear 2021
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Uhrig (bib37) 1993; 32
Arce-Medina, Paz-Paredes (bib59) 2009; 49
Perez (bib58) 2019
Kang, Kaya, Hajimirza (bib23) 2019
Arda (bib47) 2013
Johansson, Dowla, Goodman (bib67) 1992; 2
O'Shea, Nash (bib25) 2015
Singh, Chauhan (bib27) 2009; 5
Moller (bib29) 1993; 6
Ahmad, Simonovic (bib5) 2006
Rätz, Javadi, Baranski, Finkbeiner, Müller (bib8) 2019; 202
Fahrmeir, Kneib, Lang, Marx (bib19) 2013
Setiono, Hui (bib68) 1995; 6
Montáns, Chinesta, Gómez-Bombarelli, Kutz (bib12) 2019; 347
Phillips-Wren (bib7) 2013
Abiodun, Jantan, Omolara, Dada, Mohamed, Arshad (bib22) 2018
Xu, Chen (bib64) 2008
Oxtoby, Young, Cash, Benzinger, Fagan, Morris, Bateman, Fox, Schott, Alexander (bib16) 2018
Holdaway (bib13) 2014
United States Nuclear Regulatory Commission (bib41) 2017
Rallo, Arenas, Giralt (bib60) 2002; 26
Brown, Zhang (bib52) 2016; 95
Zhang, Wang, Wang, Lin, Xu, Chen (bib15) 2011; 12
Gomez, Tokuhiro, Welter, Wu (bib17) 2017; 324
Hecht-Nielsen (bib65) 1987
Sug (bib35) 2010; 9
Romojaro, Álvarez-Velarde, García-Herranz (bib55) 2019; 126
Mitchell (bib11) 1997
Guo, Uhrig (bib38) 2017; 5450
Demazière, Pázsit (bib53) 2002; 140
Li, Cheng, Shi, Huang (bib24) 2012; 169
El-Sefy, Ezzeldin, El-Dakhakhni, Wiebe, Nagasaki (bib42) 2019; 51
Krylatov, Hirokolobova (bib66) 2017
Mustafidah, Hartati, Wardoyo, Harjoko (bib34) 2014; 14
Puchalski, Rutkowski, Duzinkiewicz (bib48) 2017; 322
Korovin, Kalyaev (bib4) 2015
Nawi, Ransing, Ransing (bib28) 2008
Moller (bib30) 1997
Filip (bib6) 2008; 32
Knochenhauer, Holmberg (bib40) 2011
Hagan, Menhaj (bib32) 1994; 5
Solomatine, Ostfeld (bib10) 2008; 10
Cybenkot (bib62) 1989; 2
Foshch, Portela, Machado, Maksimov (bib18) 2016; 100
Bao, Dinh, Lane, Youngblood (bib9) 2019; 349
Perin, Jimenez (bib50) 2017; 321
Thakkar (bib43) 1975
Battiti (bib31) 1992; 4
Arda, Holbert, Undrill (bib46) 2013
Zimmerman, Brittingham, Reed, Bandera, Crawley (bib54) 1999
Varuttamaseni (bib39) 2011
El-Sefy, Ezzeldin, El-Dakhakhni, Nagasaki, Wiebe (bib56) 2021
Sánchez, Villanueva, Carlos, Martorell (bib49) 2018; 174
Haykin (bib61) 1999
Ali (bib45) 1976
Gandomi, Roke (bib63) 2015; 88
Min, Kim, Park (bib2) 2019; 349
Sharma, Venugopalan (bib33) 2014; 16
Tamimi, Samani, Minaei, Harirchi (bib3) 2019
Patra, Jehadeesan, Rajeswari, Satyamurthy (bib20) 2010; 1
Kerlin, Katz, Thakkar, Strange (bib44) 1976; 30
Radaideh, Wieselquist, Ridge, Kozlowski (bib51) 2018
Lawrence, Giles, Tsoi (bib36) 1997
(bib57) 2018
Maljovec, Liu, Wang, Mandelli, Bremer, Pascucci, Smith (bib21) 2016; 145
Mikolov, Karafiat, Burget, Cernock, Khudanpur (bib26) 2010
IAEA (bib1) 2015; vol. 16
Burchard-levine, Liu, Vince, Li, Ostfeld (bib14) 2014; 143
Bao (10.1016/j.net.2021.05.003_bib9) 2019; 349
Sug (10.1016/j.net.2021.05.003_bib35) 2010; 9
Holdaway (10.1016/j.net.2021.05.003_bib13) 2014
Kang (10.1016/j.net.2021.05.003_bib23) 2019
Varuttamaseni (10.1016/j.net.2021.05.003_bib39) 2011
Mitchell (10.1016/j.net.2021.05.003_bib11) 1997
Li (10.1016/j.net.2021.05.003_bib24) 2012; 169
Gandomi (10.1016/j.net.2021.05.003_bib63) 2015; 88
Mustafidah (10.1016/j.net.2021.05.003_bib34) 2014; 14
El-Sefy (10.1016/j.net.2021.05.003_bib42) 2019; 51
Ahmad (10.1016/j.net.2021.05.003_bib5) 2006
Arda (10.1016/j.net.2021.05.003_bib47) 2013
Gomez (10.1016/j.net.2021.05.003_bib17) 2017; 324
Foshch (10.1016/j.net.2021.05.003_bib18) 2016; 100
Burchard-levine (10.1016/j.net.2021.05.003_bib14) 2014; 143
Nawi (10.1016/j.net.2021.05.003_bib28) 2008
United States Nuclear Regulatory Commission (10.1016/j.net.2021.05.003_bib41) 2017
Perin (10.1016/j.net.2021.05.003_bib50) 2017; 321
El-Sefy (10.1016/j.net.2021.05.003_bib56) 2021
Lawrence (10.1016/j.net.2021.05.003_bib36) 1997
Min (10.1016/j.net.2021.05.003_bib2) 2019; 349
Mikolov (10.1016/j.net.2021.05.003_bib26) 2010
Knochenhauer (10.1016/j.net.2021.05.003_bib40) 2011
O'Shea (10.1016/j.net.2021.05.003_bib25) 2015
Krylatov (10.1016/j.net.2021.05.003_bib66) 2017
Solomatine (10.1016/j.net.2021.05.003_bib10) 2008; 10
Hecht-Nielsen (10.1016/j.net.2021.05.003_bib65) 1987
Abiodun (10.1016/j.net.2021.05.003_bib22) 2018
IAEA (10.1016/j.net.2021.05.003_bib1) 2015; vol. 16
Xu (10.1016/j.net.2021.05.003_bib64) 2008
Zimmerman (10.1016/j.net.2021.05.003_bib54) 1999
Tamimi (10.1016/j.net.2021.05.003_bib3) 2019
Cybenkot (10.1016/j.net.2021.05.003_bib62) 1989; 2
Montáns (10.1016/j.net.2021.05.003_bib12) 2019; 347
Rätz (10.1016/j.net.2021.05.003_bib8) 2019; 202
Moller (10.1016/j.net.2021.05.003_bib29) 1993; 6
Romojaro (10.1016/j.net.2021.05.003_bib55) 2019; 126
Patra (10.1016/j.net.2021.05.003_bib20) 2010; 1
Sánchez (10.1016/j.net.2021.05.003_bib49) 2018; 174
Phillips-Wren (10.1016/j.net.2021.05.003_bib7) 2013
Filip (10.1016/j.net.2021.05.003_bib6) 2008; 32
Moller (10.1016/j.net.2021.05.003_bib30) 1997
Guo (10.1016/j.net.2021.05.003_bib38) 2017; 5450
Perez (10.1016/j.net.2021.05.003_bib58) 2019
Setiono (10.1016/j.net.2021.05.003_bib68) 1995; 6
Fahrmeir (10.1016/j.net.2021.05.003_bib19) 2013
Sharma (10.1016/j.net.2021.05.003_bib33) 2014; 16
Maljovec (10.1016/j.net.2021.05.003_bib21) 2016; 145
Singh (10.1016/j.net.2021.05.003_bib27) 2009; 5
Haykin (10.1016/j.net.2021.05.003_bib61) 1999
Brown (10.1016/j.net.2021.05.003_bib52) 2016; 95
Zhang (10.1016/j.net.2021.05.003_bib15) 2011; 12
Kerlin (10.1016/j.net.2021.05.003_bib44) 1976; 30
(10.1016/j.net.2021.05.003_bib57) 2018
Johansson (10.1016/j.net.2021.05.003_bib67) 1992; 2
Hagan (10.1016/j.net.2021.05.003_bib32) 1994; 5
Oxtoby (10.1016/j.net.2021.05.003_bib16) 2018
Uhrig (10.1016/j.net.2021.05.003_bib37) 1993; 32
Battiti (10.1016/j.net.2021.05.003_bib31) 1992; 4
Thakkar (10.1016/j.net.2021.05.003_bib43) 1975
Korovin (10.1016/j.net.2021.05.003_bib4) 2015
Radaideh (10.1016/j.net.2021.05.003_bib51) 2018
Demazière (10.1016/j.net.2021.05.003_bib53) 2002; 140
Puchalski (10.1016/j.net.2021.05.003_bib48) 2017; 322
Rallo (10.1016/j.net.2021.05.003_bib60) 2002; 26
Arda (10.1016/j.net.2021.05.003_bib46) 2013
Arce-Medina (10.1016/j.net.2021.05.003_bib59) 2009; 49
Ali (10.1016/j.net.2021.05.003_bib45) 1976
References_xml – volume: 12
  start-page: 1624
  year: 2011
  end-page: 1639
  ident: bib15
  article-title: Data-driven intelligent transportation Systems : a survey
  publication-title: IEEE Trans. Intell. Transport. Syst.
– volume: 1
  year: 2010
  ident: bib20
  article-title: Artificial neural network model for intermediate heat exchanger of nuclear reactor
  publication-title: Int. J. Comput. Appl.
– volume: 16
  start-page: 31
  year: 2014
  end-page: 35
  ident: bib33
  article-title: Comparison of neural network training functions for hematoma classification in brain CT images
  publication-title: IOSR J. Comput. Eng.
– year: 2010
  ident: bib26
  article-title: Recurrent neural network based language model
  publication-title: Interspeech
– year: 1999
  ident: bib54
  article-title: PWR Reactor Physics Methodology Using CASMO-4/SIMULATE-3
– volume: 30
  start-page: 299
  year: 1976
  end-page: 316
  ident: bib44
  article-title: Theoretical and experimental dynamic analysis of the HB Robinson nuclear plant
  publication-title: Nucl. Technol.
– year: 2017
  ident: bib41
  article-title: Acceptance criteria for emergency core cooling systems for light-water nuclear power reactors
– year: 2011
  ident: bib39
  article-title: Bayesian Network Representing System Dynamics in Risk Analysis of Nuclear Systems
– year: 1999
  ident: bib61
  article-title: Neural Networks
– year: 2013
  ident: bib19
  article-title: Regression Models
– year: 2015
  ident: bib25
  article-title: An introduction to convolutional neural networks
– volume: 95
  start-page: 188
  year: 2016
  end-page: 201
  ident: bib52
  article-title: Uncertainty quantification and sensitivity analysis with CASL Core Simulator VERA-CS
  publication-title: Ann. Nucl. Energy J.
– volume: 5450
  year: 2017
  ident: bib38
  article-title: Use of artificial neural networks to analyze nuclear power plant performance
  publication-title: Nucl. Technol.
– year: 2018
  ident: bib57
  publication-title: MATLAB and Statistics Toolbox Release 2018a
– volume: 126
  start-page: 410
  year: 2019
  end-page: 418
  ident: bib55
  article-title: Sensitivity methods for effective delayed neutron fraction and neutron generation time with summon
  publication-title: Ann. Nucl. Energy
– start-page: 7
  year: 2017
  end-page: 69404
  ident: bib66
  article-title: Projection approach versus gradient descent for network’ s flows assignment problem
  publication-title: Learn. Intell. Optim.
– year: 2013
  ident: bib46
  article-title: Development of a linearized model of a pressurized water reactor generating station for power system dynamic simulations
  publication-title: 45th North Am. Power Symp
– volume: vol. 16
  year: 2015
  ident: bib1
  publication-title: Accident Monitoring Systems for Nuclear Power Plants
– start-page: 66
  year: 2019
  end-page: 72
  ident: bib23
  article-title: A data driven artificial neural network model for predicting radiative properties of metallic packed beds
  publication-title: Quant. Spectrosc. Radiat. Transf.
– start-page: 46
  year: 2008
  end-page: 55
  ident: bib28
  article-title: An improved conjugate gradient based learning algorithm for back propagation neural networks
  publication-title: Int. J. Comput. Intell.
– year: 2011
  ident: bib40
  article-title: Guidance for the Definition and Application of Probabilistic Safety Criteria
– volume: 145
  start-page: 262
  year: 2016
  end-page: 276
  ident: bib21
  article-title: Analyzing simulation-based PRA data through traditional and topological clustering : a BWR station blackout case study
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 6
  start-page: 525
  year: 1993
  end-page: 533
  ident: bib29
  article-title: A scaled conjugate gradient algorithm for fast supervised learning
  publication-title: Neural Network.
– volume: 51
  start-page: 1540
  year: 2019
  end-page: 1553
  ident: bib42
  article-title: System dynamics simulation of the thermal dynamic processes in nuclear power plants
  publication-title: Nucl. Eng. Technol.
– year: 1976
  ident: bib45
  article-title: Lumped Parameter, State Variable Dynamic Models for U-Tube Recirculation Type Nuclear Steam Generators
– year: 1975
  ident: bib43
  article-title: Correlation of Theory and Experiment for the Dynamics of a Pressurized Water Reactor
– volume: 9
  start-page: 1297
  year: 2010
  end-page: 1306
  ident: bib35
  article-title: The effect of training set size for the performance of neural networks of classification
  publication-title: WSEAS Trans. Comput.
– volume: 322
  start-page: 444
  year: 2017
  end-page: 463
  ident: bib48
  article-title: Nodal models of Pressurized Water Reactor core for control purposes – a comparison study
  publication-title: Nucl. Eng. Des.
– year: 2021
  ident: bib56
  article-title: Dynamic probabilistic risk assessment of core damage under different transients using system dynamics simulation approach
– year: 1987
  ident: bib65
  article-title: Kolmogorov's mapping neural network existence theorem
  publication-title: IEEE First Int. Conf
– year: 1997
  ident: bib11
  article-title: Machine Learning
– start-page: 391
  year: 2006
  end-page: 410
  ident: bib5
  article-title: An intelligent decision support system for management of floods
  publication-title: Water Resour. Manag.
– year: 2019
  ident: bib3
  article-title: An Artificial Intelligence Decision Support System for Unconventional Field Development Design
– start-page: 1
  year: 2018
  end-page: 16
  ident: bib16
  article-title: Data-driven models of dominantly-inherited Alzheimer's disease progression
  publication-title: Brain
– volume: 100
  start-page: 253
  year: 2016
  end-page: 262
  ident: bib18
  article-title: Regression models of the nuclear power unit VVER-1000 using data mining techniques
  publication-title: Procedia Comput. Sci.
– volume: 140
  start-page: 147
  year: 2002
  end-page: 163
  ident: bib53
  article-title: Evaluation of the boron dilution method for moderator temperature coefficient measurements
  publication-title: Nucl. Technol.
– start-page: 540
  year: 1997
  end-page: 545
  ident: bib36
  article-title: Lessons in neural network training: overfitting may be harder than expected
  publication-title: Proc. Fourteenth Natl. Conf. Artif. Intell. AAAI-97
– year: 2013
  ident: bib47
  article-title: Implementing a Nuclear Power Plant Model for Evaluating Load-Following Capability on a Small Grid
– year: 2014
  ident: bib13
  article-title: Harness Oil and Gas Big Data with Analytics: Optimize Exploration and Production with Data-Driven Models
– year: 2018
  ident: bib22
  article-title: State-of-the-art in artificial neural network applications: a survey
  publication-title: Heliyon
– volume: 10
  year: 2008
  ident: bib10
  article-title: Data-driven modelling: some past experiences and new approaches approaches
  publication-title: J. Hydroinf.
– volume: 4
  start-page: 141
  year: 1992
  end-page: 166
  ident: bib31
  article-title: First- and second-order methods for learning: between steepest descent and Newton's method
  publication-title: Neural Comput.
– volume: 88
  start-page: 63
  year: 2015
  end-page: 72
  ident: bib63
  article-title: Advances in Engineering Software Assessment of artificial neural network and genetic programming as predictive tools
  publication-title: Adv. Eng. Software
– volume: 321
  start-page: 48
  year: 2017
  end-page: 56
  ident: bib50
  article-title: Application of the best-estimate plus uncertainty approach on a BWR ATWS transient using the NURESIM European code platform
  publication-title: Nucl. Eng. Des.
– year: 2013
  ident: bib7
  article-title: Intelligent Decision Support Systems
– volume: 26
  start-page: 1735
  year: 2002
  end-page: 1754
  ident: bib60
  article-title: Neural virtual sensor for the inferential prediction of product quality from process variables
  publication-title: Comput. Chem. Eng.
– volume: 2
  start-page: 291
  year: 1992
  end-page: 301
  ident: bib67
  article-title: Backpropagation learning for multilayer feed-forward neural networks using the conjugate gradient method
  publication-title: Int. J. Neural Syst.
– volume: 6
  year: 1995
  ident: bib68
  article-title: Use of a quasi-Newton method in a feedforward neural network construction algorithm
  publication-title: IEEE Trans. Neural Network.
– volume: 347
  start-page: 845
  year: 2019
  end-page: 855
  ident: bib12
  article-title: Data-driven modeling and learning in science and engineering
  publication-title: Compt. Rendus Mec.
– volume: 349
  start-page: 56
  year: 2019
  end-page: 62
  ident: bib2
  article-title: Demonstration of the validity of the early warning in online monitoring system for nuclear power plants
  publication-title: Nucl. Eng. Des.
– volume: 5
  start-page: 2
  year: 1994
  end-page: 6
  ident: bib32
  article-title: Training feedforward networks with the marquardt algorithm
  publication-title: IEEE Trans. Neural Network.
– volume: 49
  start-page: 207
  year: 2009
  end-page: 214
  ident: bib59
  article-title: Artificial neural network modeling techniques applied to the hydrodesulfurization process
  publication-title: Math. Comput. Model.
– volume: 32
  start-page: 61
  year: 2008
  end-page: 70
  ident: bib6
  article-title: Decision support and control for large-scale complex systems
  publication-title: Annu. Rev. Contr.
– year: 2019
  ident: bib58
  article-title: Neural Networks Using Matlab. Cluster Analysis and Classification
– volume: 202
  year: 2019
  ident: bib8
  article-title: Automated data-driven modeling of building energy systems via machine learning algorithms
  publication-title: Energy Build.
– volume: 174
  start-page: 19
  year: 2018
  end-page: 28
  ident: bib49
  article-title: Uncertainty analysis of a large break loss of coolant accident in a pressurized water reactor using non-parametric methods
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 5
  start-page: 36
  year: 2009
  end-page: 42
  ident: bib27
  article-title: Neural networks in data mining
  publication-title: J. Theor. Appl. Inf. Technol.
– volume: 2
  start-page: 303
  year: 1989
  end-page: 314
  ident: bib62
  article-title: Approximation by superpositions of a sigmoidal function
  publication-title: Math. Control. Signals, Syst.
– year: 1997
  ident: bib30
  article-title: Efficient Training of Feed-Forward Neural Networks
– volume: 349
  start-page: 27
  year: 2019
  end-page: 45
  ident: bib9
  article-title: A data-driven framework for error estimation and mesh-model optimization in system-level thermal-hydraulic simulation
  publication-title: Nucl. Eng. Des.
– volume: 32
  start-page: 139
  year: 1993
  end-page: 145
  ident: bib37
  article-title: Use of neural networks in nuclear power plants
  publication-title: ISA Trans.
– volume: 324
  start-page: 27
  year: 2017
  end-page: 34
  ident: bib17
  article-title: Nuclear energy system's behavior and decision making using machine learning
  publication-title: Nucl. Eng. Des.
– start-page: 141
  year: 2015
  end-page: 144
  ident: bib4
  article-title: Modern decision support systems in oil industry: types, approaches and applications
  publication-title: Int. Conf. Test, Meas. Comput. Method
– volume: 14
  start-page: 92
  year: 2014
  end-page: 95
  ident: bib34
  article-title: Selection of most appropriate backpropagation training algorithm in data pattern recognition
  publication-title: Int. J. Comput. Trends Technol.
– volume: 169
  year: 2012
  ident: bib24
  article-title: Brief introduction of back propagation (BP) neural network algorithm and its improvement
  publication-title: Adv. Comput. Sci. Inf. Eng.
– year: 2018
  ident: bib51
  article-title: A new framework for sampling-based uncertainty quantification of the six-group reactor kinetic parameters
  publication-title: Ann. Nucl. Energy
– start-page: 683
  year: 2008
  end-page: 686
  ident: bib64
  article-title: A novel approach for determining the optimal number of hidden layer neurons for FNN's and its application in data mining
  publication-title: 5th Int. Conf. Inf. Technol. Appl
– volume: 143
  start-page: 8
  year: 2014
  end-page: 16
  ident: bib14
  article-title: A hybrid evolutionary data driven model for river water quality early warning
  publication-title: J. Environ. Manag.
– year: 2014
  ident: 10.1016/j.net.2021.05.003_bib13
– volume: 30
  start-page: 299
  year: 1976
  ident: 10.1016/j.net.2021.05.003_bib44
  article-title: Theoretical and experimental dynamic analysis of the HB Robinson nuclear plant
  publication-title: Nucl. Technol.
  doi: 10.13182/NT76-A31645
– year: 2018
  ident: 10.1016/j.net.2021.05.003_bib22
  article-title: State-of-the-art in artificial neural network applications: a survey
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2018.e00938
– volume: 140
  start-page: 147
  year: 2002
  ident: 10.1016/j.net.2021.05.003_bib53
  article-title: Evaluation of the boron dilution method for moderator temperature coefficient measurements
  publication-title: Nucl. Technol.
  doi: 10.13182/NT02-A3329
– start-page: 540
  year: 1997
  ident: 10.1016/j.net.2021.05.003_bib36
  article-title: Lessons in neural network training: overfitting may be harder than expected
– year: 2011
  ident: 10.1016/j.net.2021.05.003_bib40
– year: 2011
  ident: 10.1016/j.net.2021.05.003_bib39
– year: 2019
  ident: 10.1016/j.net.2021.05.003_bib58
– volume: 6
  year: 1995
  ident: 10.1016/j.net.2021.05.003_bib68
  article-title: Use of a quasi-Newton method in a feedforward neural network construction algorithm
  publication-title: IEEE Trans. Neural Network.
  doi: 10.1109/72.363426
– volume: 32
  start-page: 139
  year: 1993
  ident: 10.1016/j.net.2021.05.003_bib37
  article-title: Use of neural networks in nuclear power plants
  publication-title: ISA Trans.
  doi: 10.1016/0019-0578(93)90036-V
– year: 2018
  ident: 10.1016/j.net.2021.05.003_bib57
– year: 1987
  ident: 10.1016/j.net.2021.05.003_bib65
  article-title: Kolmogorov's mapping neural network existence theorem
– volume: 5
  start-page: 36
  year: 2009
  ident: 10.1016/j.net.2021.05.003_bib27
  article-title: Neural networks in data mining
  publication-title: J. Theor. Appl. Inf. Technol.
– volume: 2
  start-page: 303
  year: 1989
  ident: 10.1016/j.net.2021.05.003_bib62
  article-title: Approximation by superpositions of a sigmoidal function
  publication-title: Math. Control. Signals, Syst.
  doi: 10.1007/BF02551274
– year: 2015
  ident: 10.1016/j.net.2021.05.003_bib25
– volume: 6
  start-page: 525
  year: 1993
  ident: 10.1016/j.net.2021.05.003_bib29
  article-title: A scaled conjugate gradient algorithm for fast supervised learning
  publication-title: Neural Network.
  doi: 10.1016/S0893-6080(05)80056-5
– year: 1999
  ident: 10.1016/j.net.2021.05.003_bib54
– volume: 1
  year: 2010
  ident: 10.1016/j.net.2021.05.003_bib20
  article-title: Artificial neural network model for intermediate heat exchanger of nuclear reactor
  publication-title: Int. J. Comput. Appl.
– year: 2013
  ident: 10.1016/j.net.2021.05.003_bib47
– volume: 349
  start-page: 27
  year: 2019
  ident: 10.1016/j.net.2021.05.003_bib9
  article-title: A data-driven framework for error estimation and mesh-model optimization in system-level thermal-hydraulic simulation
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/j.nucengdes.2019.04.023
– year: 1997
  ident: 10.1016/j.net.2021.05.003_bib11
– volume: 14
  start-page: 92
  year: 2014
  ident: 10.1016/j.net.2021.05.003_bib34
  article-title: Selection of most appropriate backpropagation training algorithm in data pattern recognition
  publication-title: Int. J. Comput. Trends Technol.
  doi: 10.14445/22312803/IJCTT-V14P120
– year: 1976
  ident: 10.1016/j.net.2021.05.003_bib45
– volume: 347
  start-page: 845
  year: 2019
  ident: 10.1016/j.net.2021.05.003_bib12
  article-title: Data-driven modeling and learning in science and engineering
  publication-title: Compt. Rendus Mec.
– volume: 169
  year: 2012
  ident: 10.1016/j.net.2021.05.003_bib24
  article-title: Brief introduction of back propagation (BP) neural network algorithm and its improvement
  publication-title: Adv. Comput. Sci. Inf. Eng.
– volume: 5
  start-page: 2
  year: 1994
  ident: 10.1016/j.net.2021.05.003_bib32
  article-title: Training feedforward networks with the marquardt algorithm
  publication-title: IEEE Trans. Neural Network.
  doi: 10.1109/72.329697
– volume: vol. 16
  year: 2015
  ident: 10.1016/j.net.2021.05.003_bib1
– year: 1975
  ident: 10.1016/j.net.2021.05.003_bib43
– start-page: 1
  year: 2018
  ident: 10.1016/j.net.2021.05.003_bib16
  article-title: Data-driven models of dominantly-inherited Alzheimer's disease progression
  publication-title: Brain
– volume: 95
  start-page: 188
  year: 2016
  ident: 10.1016/j.net.2021.05.003_bib52
  article-title: Uncertainty quantification and sensitivity analysis with CASL Core Simulator VERA-CS
  publication-title: Ann. Nucl. Energy J.
  doi: 10.1016/j.anucene.2016.05.016
– year: 2017
  ident: 10.1016/j.net.2021.05.003_bib41
– volume: 126
  start-page: 410
  year: 2019
  ident: 10.1016/j.net.2021.05.003_bib55
  article-title: Sensitivity methods for effective delayed neutron fraction and neutron generation time with summon
  publication-title: Ann. Nucl. Energy
  doi: 10.1016/j.anucene.2018.11.042
– year: 2021
  ident: 10.1016/j.net.2021.05.003_bib56
– start-page: 7
  year: 2017
  ident: 10.1016/j.net.2021.05.003_bib66
  article-title: Projection approach versus gradient descent for network’ s flows assignment problem
  publication-title: Learn. Intell. Optim.
– volume: 321
  start-page: 48
  year: 2017
  ident: 10.1016/j.net.2021.05.003_bib50
  article-title: Application of the best-estimate plus uncertainty approach on a BWR ATWS transient using the NURESIM European code platform
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/j.nucengdes.2017.05.018
– year: 2013
  ident: 10.1016/j.net.2021.05.003_bib46
  article-title: Development of a linearized model of a pressurized water reactor generating station for power system dynamic simulations
– volume: 145
  start-page: 262
  year: 2016
  ident: 10.1016/j.net.2021.05.003_bib21
  article-title: Analyzing simulation-based PRA data through traditional and topological clustering : a BWR station blackout case study
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2015.07.001
– year: 2019
  ident: 10.1016/j.net.2021.05.003_bib3
– volume: 51
  start-page: 1540
  year: 2019
  ident: 10.1016/j.net.2021.05.003_bib42
  article-title: System dynamics simulation of the thermal dynamic processes in nuclear power plants
  publication-title: Nucl. Eng. Technol.
  doi: 10.1016/j.net.2019.04.017
– volume: 322
  start-page: 444
  year: 2017
  ident: 10.1016/j.net.2021.05.003_bib48
  article-title: Nodal models of Pressurized Water Reactor core for control purposes – a comparison study
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/j.nucengdes.2017.07.005
– year: 1997
  ident: 10.1016/j.net.2021.05.003_bib30
– volume: 174
  start-page: 19
  year: 2018
  ident: 10.1016/j.net.2021.05.003_bib49
  article-title: Uncertainty analysis of a large break loss of coolant accident in a pressurized water reactor using non-parametric methods
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2018.02.005
– volume: 100
  start-page: 253
  year: 2016
  ident: 10.1016/j.net.2021.05.003_bib18
  article-title: Regression models of the nuclear power unit VVER-1000 using data mining techniques
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2016.09.151
– volume: 49
  start-page: 207
  year: 2009
  ident: 10.1016/j.net.2021.05.003_bib59
  article-title: Artificial neural network modeling techniques applied to the hydrodesulfurization process
  publication-title: Math. Comput. Model.
  doi: 10.1016/j.mcm.2008.05.010
– volume: 26
  start-page: 1735
  year: 2002
  ident: 10.1016/j.net.2021.05.003_bib60
  article-title: Neural virtual sensor for the inferential prediction of product quality from process variables
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/S0098-1354(02)00148-5
– volume: 12
  start-page: 1624
  year: 2011
  ident: 10.1016/j.net.2021.05.003_bib15
  article-title: Data-driven intelligent transportation Systems : a survey
  publication-title: IEEE Trans. Intell. Transport. Syst.
  doi: 10.1109/TITS.2011.2158001
– volume: 324
  start-page: 27
  year: 2017
  ident: 10.1016/j.net.2021.05.003_bib17
  article-title: Nuclear energy system's behavior and decision making using machine learning
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/j.nucengdes.2017.08.020
– volume: 5450
  year: 2017
  ident: 10.1016/j.net.2021.05.003_bib38
  article-title: Use of artificial neural networks to analyze nuclear power plant performance
  publication-title: Nucl. Technol.
– start-page: 141
  year: 2015
  ident: 10.1016/j.net.2021.05.003_bib4
  article-title: Modern decision support systems in oil industry: types, approaches and applications
– volume: 349
  start-page: 56
  year: 2019
  ident: 10.1016/j.net.2021.05.003_bib2
  article-title: Demonstration of the validity of the early warning in online monitoring system for nuclear power plants
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/j.nucengdes.2019.04.028
– volume: 32
  start-page: 61
  year: 2008
  ident: 10.1016/j.net.2021.05.003_bib6
  article-title: Decision support and control for large-scale complex systems
  publication-title: Annu. Rev. Contr.
  doi: 10.1016/j.arcontrol.2008.03.002
– year: 2010
  ident: 10.1016/j.net.2021.05.003_bib26
  article-title: Recurrent neural network based language model
– start-page: 683
  year: 2008
  ident: 10.1016/j.net.2021.05.003_bib64
  article-title: A novel approach for determining the optimal number of hidden layer neurons for FNN's and its application in data mining
– volume: 9
  start-page: 1297
  year: 2010
  ident: 10.1016/j.net.2021.05.003_bib35
  article-title: The effect of training set size for the performance of neural networks of classification
  publication-title: WSEAS Trans. Comput.
– year: 2013
  ident: 10.1016/j.net.2021.05.003_bib19
– volume: 202
  year: 2019
  ident: 10.1016/j.net.2021.05.003_bib8
  article-title: Automated data-driven modeling of building energy systems via machine learning algorithms
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2019.109384
– start-page: 391
  year: 2006
  ident: 10.1016/j.net.2021.05.003_bib5
  article-title: An intelligent decision support system for management of floods
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-006-0326-3
– volume: 2
  start-page: 291
  year: 1992
  ident: 10.1016/j.net.2021.05.003_bib67
  article-title: Backpropagation learning for multilayer feed-forward neural networks using the conjugate gradient method
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065791000261
– year: 2013
  ident: 10.1016/j.net.2021.05.003_bib7
– year: 2018
  ident: 10.1016/j.net.2021.05.003_bib51
  article-title: A new framework for sampling-based uncertainty quantification of the six-group reactor kinetic parameters
  publication-title: Ann. Nucl. Energy
– start-page: 66
  year: 2019
  ident: 10.1016/j.net.2021.05.003_bib23
  article-title: A data driven artificial neural network model for predicting radiative properties of metallic packed beds
  publication-title: Quant. Spectrosc. Radiat. Transf.
  doi: 10.1016/j.jqsrt.2019.01.013
– volume: 4
  start-page: 141
  year: 1992
  ident: 10.1016/j.net.2021.05.003_bib31
  article-title: First- and second-order methods for learning: between steepest descent and Newton's method
  publication-title: Neural Comput.
  doi: 10.1162/neco.1992.4.2.141
– volume: 10
  year: 2008
  ident: 10.1016/j.net.2021.05.003_bib10
  article-title: Data-driven modelling: some past experiences and new approaches approaches
  publication-title: J. Hydroinf.
– year: 1999
  ident: 10.1016/j.net.2021.05.003_bib61
– volume: 88
  start-page: 63
  year: 2015
  ident: 10.1016/j.net.2021.05.003_bib63
  article-title: Advances in Engineering Software Assessment of artificial neural network and genetic programming as predictive tools
  publication-title: Adv. Eng. Software
  doi: 10.1016/j.advengsoft.2015.05.007
– volume: 143
  start-page: 8
  year: 2014
  ident: 10.1016/j.net.2021.05.003_bib14
  article-title: A hybrid evolutionary data driven model for river water quality early warning
  publication-title: J. Environ. Manag.
– start-page: 46
  year: 2008
  ident: 10.1016/j.net.2021.05.003_bib28
  article-title: An improved conjugate gradient based learning algorithm for back propagation neural networks
  publication-title: Int. J. Comput. Intell.
– volume: 16
  start-page: 31
  year: 2014
  ident: 10.1016/j.net.2021.05.003_bib33
  article-title: Comparison of neural network training functions for hematoma classification in brain CT images
  publication-title: IOSR J. Comput. Eng.
  doi: 10.9790/0661-16123135
SSID ssj0064470
Score 2.4546006
Snippet A Nuclear Power Plant (NPP) is a complex dynamic system-of-systems with highly nonlinear behaviors. In order to control the plant operation under both normal...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 3275
SubjectTerms Artificial intelligence
Artificial neural network
Back-propagation algorithm
Data-driven models
Nuclear power plant
Title Artificial neural network for predicting nuclear power plant dynamic behaviors
URI https://dx.doi.org/10.1016/j.net.2021.05.003
https://doaj.org/article/82899a16165a404aa1e78f606ecf1c1e
Volume 53
WOSCitedRecordID wos000687759300005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Open Access: DOAJ - Directory of Open Access Journals
  issn: 1738-5733
  databaseCode: DOA
  dateStart: 20130101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: false
  ssIdentifier: ssj0064470
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxQAD4inKSx6YkCLs2I7jERAVA6oYOnSzHD-koipUbeH3c7aTqguwMEVynHNyvvju5PP3IXQLGRdVVlYFE5IU3DlTgBtxhXCE-spyVbnEWvIqx-N6OlVvW1RfsSYswwNnxd2njMBAXFIJwwk3hnpZBwi7vQ3UUh9XXyJVn0zlNRicvMxHIeF3joh__X5mquyCnB8Sw5ImyM6eLavzSAm4f8sxbTmb0SE66KJE_JDf7gjt-PYY7W9hB56gcbyZ4R9wBKVMl1TSjSEOxYtl3IGJNc24jZDFBpoiIRpezEGX2GUietyf0l-dosnoefL0UnTkCIUFH7wuDKus9HUQ1lIlZEMNZB4VN44Kx6hjxgdhrFSqcaXi0kdc-pIFY5hihjt2hgbtR-vPEfYhNMFJD3OjOKlNY2lJrAKBTaWM8kNEev1o2wGHR_6Kue4rxN41fKCOKtVERLTRIbrbPLLIqBm_dX6MSt90jIDXqQHMQHdmoP8ygyHi_ZTpLnbIMQGImv089sV_jH2J9qLIXOJ3hQbr5ae_Rrv2az1bLW-SYX4DTgXmhA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+neural+network+for+predicting+nuclear+power+plant+dynamic+behaviors&rft.jtitle=Nuclear+engineering+and+technology&rft.au=El-Sefy%2C+M.&rft.au=Yosri%2C+A.&rft.au=El-Dakhakhni%2C+W.&rft.au=Nagasaki%2C+S.&rft.date=2021-10-01&rft.issn=1738-5733&rft.volume=53&rft.issue=10&rft.spage=3275&rft.epage=3285&rft_id=info:doi/10.1016%2Fj.net.2021.05.003&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_net_2021_05_003
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1738-5733&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1738-5733&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1738-5733&client=summon