Monthly evaporation forecasting using artificial neural networks and support vector machines
Evaporation is one of the most important components of the hydrological cycle, but is relatively difficult to estimate, due to its complexity, as it can be influenced by numerous factors. Estimation of evaporation is important for the design of reservoirs, especially in arid and semi-arid areas. Art...
Uloženo v:
| Vydáno v: | Theoretical and applied climatology Ročník 124; číslo 1-2; s. 69 - 80 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Vienna
Springer Vienna
01.04.2016
Springer Nature B.V |
| Témata: | |
| ISSN: | 0177-798X, 1434-4483 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Evaporation is one of the most important components of the hydrological cycle, but is relatively difficult to estimate, due to its complexity, as it can be influenced by numerous factors. Estimation of evaporation is important for the design of reservoirs, especially in arid and semi-arid areas. Artificial neural network methods and support vector machines (SVM) are frequently utilized to estimate evaporation and other hydrological variables. In this study, usability of artificial neural networks (ANNs) (multilayer perceptron (MLP) and radial basis function network (RBFN)) and ε-support vector regression (SVR) artificial intelligence methods was investigated to estimate monthly pan evaporation. For this aim, temperature, relative humidity, wind speed, and precipitation data for the period 1972 to 2005 from Beysehir meteorology station were used as input variables while pan evaporation values were used as output. The Romanenko and Meyer method was also considered for the comparison. The results were compared with observed class A pan evaporation data. In MLP method, four different training algorithms, gradient descent with momentum and adaptive learning rule backpropagation (GDX), Levenberg–Marquardt (LVM), scaled conjugate gradient (SCG), and resilient backpropagation (RBP), were used. Also, ε-SVR model was used as SVR model. The models were designed via 10-fold cross-validation (CV); algorithm performance was assessed via mean absolute error (MAE), root mean square error (RMSE), and coefficient of determination (R ²). According to the performance criteria, the ANN algorithms and ε-SVR had similar results. The ANNs and ε-SVR methods were found to perform better than the Romanenko and Meyer methods. Consequently, the best performance using the test data was obtained using SCG(4,2,2,1) with R ² = 0.905. |
|---|---|
| AbstractList | Evaporation is one of the most important components of the hydrological cycle, but is relatively difficult to estimate, due to its complexity, as it can be influenced by numerous factors. Estimation of evaporation is important for the design of reservoirs, especially in arid and semi-arid areas. Artificial neural network methods and support vector machines (SVM) are frequently utilized to estimate evaporation and other hydrological variables. In this study, usability of artificial neural networks (ANNs) (multilayer perceptron (MLP) and radial basis function network (RBFN)) and epsilon -support vector regression (SVR) artificial intelligence methods was investigated to estimate monthly pan evaporation. For this aim, temperature, relative humidity, wind speed, and precipitation data for the period 1972 to 2005 from Beysehir meteorology station were used as input variables while pan evaporation values were used as output. The Romanenko and Meyer method was also considered for the comparison. The results were compared with observed class A pan evaporation data. In MLP method, four different training algorithms, gradient descent with momentum and adaptive learning rule backpropagation (GDX), Levenberg-Marquardt (LVM), scaled conjugate gradient (SCG), and resilient backpropagation (RBP), were used. Also, epsilon -SVR model was used as SVR model. The models were designed via 10-fold cross-validation (CV); algorithm performance was assessed via mean absolute error (MAE), root mean square error (RMSE), and coefficient of determination (R super(2)). According to the performance criteria, the ANN algorithms and epsilon -SVR had similar results. The ANNs and epsilon -SVR methods were found to perform better than the Romanenko and Meyer methods. Consequently, the best performance using the test data was obtained using SCG(4,2,2,1) with R super(2)=0.905. Evaporation is one of the most important components of the hydrological cycle, but is relatively difficult to estimate, due to its complexity, as it can be influenced by numerous factors. Estimation of evaporation is important for the design of reservoirs, especially in arid and semi-arid areas. Artificial neural network methods and support vector machines (SVM) are frequently utilized to estimate evaporation and other hydrological variables. In this study, usability of artificial neural networks (ANNs) (multilayer perceptron (MLP) and radial basis function network (RBFN)) and ε-support vector regression (SVR) artificial intelligence methods was investigated to estimate monthly pan evaporation. For this aim, temperature, relative humidity, wind speed, and precipitation data for the period 1972 to 2005 from Beysehir meteorology station were used as input variables while pan evaporation values were used as output. The Romanenko and Meyer method was also considered for the comparison. The results were compared with observed class A pan evaporation data. In MLP method, four different training algorithms, gradient descent with momentum and adaptive learning rule backpropagation (GDX), Levenberg–Marquardt (LVM), scaled conjugate gradient (SCG), and resilient backpropagation (RBP), were used. Also, ε-SVR model was used as SVR model. The models were designed via 10-fold cross-validation (CV); algorithm performance was assessed via mean absolute error (MAE), root mean square error (RMSE), and coefficient of determination ( R 2 ). According to the performance criteria, the ANN algorithms and ε-SVR had similar results. The ANNs and ε-SVR methods were found to perform better than the Romanenko and Meyer methods. Consequently, the best performance using the test data was obtained using SCG(4,2,2,1) with R 2 = 0.905. Evaporation is one of the most important components of the hydrological cycle, but is relatively difficult to estimate, due to its complexity, as it can be influenced by numerous factors. Estimation of evaporation is important for the design of reservoirs, especially in arid and semi-arid areas. Artificial neural network methods and support vector machines (SVM) are frequently utilized to estimate evaporation and other hydrological variables. In this study, usability of artificial neural networks (ANNs) (multilayer perceptron (MLP) and radial basis function network (RBFN)) and ε-support vector regression (SVR) artificial intelligence methods was investigated to estimate monthly pan evaporation. For this aim, temperature, relative humidity, wind speed, and precipitation data for the period 1972 to 2005 from Beysehir meteorology station were used as input variables while pan evaporation values were used as output. The Romanenko and Meyer method was also considered for the comparison. The results were compared with observed class A pan evaporation data. In MLP method, four different training algorithms, gradient descent with momentum and adaptive learning rule backpropagation (GDX), Levenberg–Marquardt (LVM), scaled conjugate gradient (SCG), and resilient backpropagation (RBP), were used. Also, ε-SVR model was used as SVR model. The models were designed via 10-fold cross-validation (CV); algorithm performance was assessed via mean absolute error (MAE), root mean square error (RMSE), and coefficient of determination (R ²). According to the performance criteria, the ANN algorithms and ε-SVR had similar results. The ANNs and ε-SVR methods were found to perform better than the Romanenko and Meyer methods. Consequently, the best performance using the test data was obtained using SCG(4,2,2,1) with R ² = 0.905. Evaporation is one of the most important components of the hydrological cycle, but is relatively difficult to estimate, due to its complexity, as it can be influenced by numerous factors. Estimation of evaporation is important for the design of reservoirs, especially in arid and semi-arid areas. Artificial neural network methods and support vector machines (SVM) are frequently utilized to estimate evaporation and other hydrological variables. In this study, usability of artificial neural networks (ANNs) (multilayer perceptron (MLP) and radial basis function network (RBFN)) and [straight epsilon]-support vector regression (SVR) artificial intelligence methods was investigated to estimate monthly pan evaporation. For this aim, temperature, relative humidity, wind speed, and precipitation data for the period 1972 to 2005 from Beysehir meteorology station were used as input variables while pan evaporation values were used as output. The Romanenko and Meyer method was also considered for the comparison. The results were compared with observed class A pan evaporation data. In MLP method, four different training algorithms, gradient descent with momentum and adaptive learning rule backpropagation (GDX), Levenberg-Marquardt (LVM), scaled conjugate gradient (SCG), and resilient backpropagation (RBP), were used. Also, [straight epsilon]-SVR model was used as SVR model. The models were designed via 10-fold cross-validation (CV); algorithm performance was assessed via mean absolute error (MAE), root mean square error (RMSE), and coefficient of determination (R ^sup 2^). According to the performance criteria, the ANN algorithms and [straight epsilon]-SVR had similar results. The ANNs and [straight epsilon]-SVR methods were found to perform better than the Romanenko and Meyer methods. Consequently, the best performance using the test data was obtained using SCG(4,2,2,1) with R ^sup 2^=0.905. |
| Author | Buyukyildiz, Meral Tezel, Gulay |
| Author_xml | – sequence: 1 fullname: Tezel, Gulay – sequence: 2 fullname: Buyukyildiz, Meral |
| BookMark | eNqFkT1PHDEQhq2ISDlIfkCqrERDszD-2LW3jBABJBBFQKKIZBnf-DDZsw_bS8S_j49NEVFAM9M8j2fG7y7ZCTEgIV8pHFIAeZRrAdEC7VrKB9byD2RBBRetEIrvkAVQKVs5qNtPZDfnBwBgfS8X5NdlDOV-fG7wyWxiMsXH0LiY0JpcfFg1U95Wk4p33nozNgGn9NLKn5h-58aEZZOnTZVL84S2xNSsjb33AfNn8tGZMeOXf32P3Pw4uT4-ay-uTs-Pv1-0VkBfWgNIFUcnwYJh1lgKFnurrByQKzcwBDvwu145JRR1S6GWA-t6IbkZpL1DvkcO5nc3KT5OmIte-2xxHE3AOGVNFXDKgEv1PioVdByk6iq6_wp9iFMK9ZBKyQoNtN9SdKZsijkndHqT_NqkZ01Bb6PRczS6RqO30WheHfnKsb68fH1Jxo9vmmw2c50SVpj-2-kN6dssORO1WSWf9c1PBrQHoExCJ_lf52aupw |
| CitedBy_id | crossref_primary_10_1007_s13201_025_02445_x crossref_primary_10_1016_j_compag_2023_107836 crossref_primary_10_1080_19942060_2018_1448896 crossref_primary_10_1155_2018_1824317 crossref_primary_10_1016_j_watres_2023_120005 crossref_primary_10_1007_s12145_023_01160_y crossref_primary_10_3390_w17071039 crossref_primary_10_1007_s00704_023_04502_4 crossref_primary_10_1061__ASCE_NH_1527_6996_0000593 crossref_primary_10_1007_s11356_018_1867_8 crossref_primary_10_15832_ankutbd_1509731 crossref_primary_10_4018_IJAMC_296262 crossref_primary_10_1007_s00477_018_1585_2 crossref_primary_10_1038_s41598_022_17263_3 crossref_primary_10_3390_agriculture12050612 crossref_primary_10_1007_s40710_023_00669_0 crossref_primary_10_1016_j_jhydrol_2024_131704 crossref_primary_10_3390_su152115542 crossref_primary_10_1007_s00024_023_03426_4 crossref_primary_10_1016_j_knosys_2018_10_013 crossref_primary_10_3390_atmos12121654 crossref_primary_10_1088_1755_1315_428_1_012059 crossref_primary_10_1155_2016_1547526 crossref_primary_10_3934_environsci_2025034 crossref_primary_10_1080_02723646_2020_1776087 crossref_primary_10_1007_s00024_025_03737_8 crossref_primary_10_1007_s12665_019_8459_x crossref_primary_10_1007_s12665_020_09337_0 crossref_primary_10_1007_s10661_021_09060_8 crossref_primary_10_1016_j_jenvman_2023_119714 crossref_primary_10_1007_s11356_022_21662_4 crossref_primary_10_3390_land10121382 crossref_primary_10_3390_atmos12060701 crossref_primary_10_1007_s00704_024_05327_5 crossref_primary_10_1007_s00704_021_03724_8 crossref_primary_10_1007_s00704_025_05537_5 crossref_primary_10_1002_met_2091 crossref_primary_10_1016_j_jhydrol_2020_125078 crossref_primary_10_3390_w14213435 crossref_primary_10_3390_w17091384 crossref_primary_10_1007_s00477_022_02235_w crossref_primary_10_1007_s00704_021_03681_2 crossref_primary_10_3390_su13147752 crossref_primary_10_1007_s00704_025_05422_1 crossref_primary_10_1016_j_jhydrol_2019_123918 crossref_primary_10_1016_j_jhydrol_2022_128992 crossref_primary_10_3390_w13202814 crossref_primary_10_3390_w9110880 crossref_primary_10_1016_j_procs_2019_11_137 crossref_primary_10_1007_s11356_019_06597_7 crossref_primary_10_1007_s13201_022_01593_8 crossref_primary_10_3390_atmos9030083 crossref_primary_10_1016_j_agrformet_2019_107647 crossref_primary_10_14796_JWMM_C551 crossref_primary_10_1038_s41598_021_99999_y crossref_primary_10_1016_j_atmosres_2020_104868 crossref_primary_10_3390_w13172451 crossref_primary_10_1007_s12145_023_01078_5 crossref_primary_10_1007_s00521_019_04127_7 |
| Cites_doi | 10.1016/j.jneumeth.2006.10.023 10.1061/(ASCE)IR.1943-4774.0000315 10.1006/jare.1997.0269 10.1016/j.compgeo.2007.06.001 10.1002/(SICI)1099-1085(19970315)11:3<311::AID-HYP446>3.0.CO;2-Y 10.1007/s00521-012-1027-x 10.1061/(ASCE)0887-3801(1994)8:2(201) 10.1016/j.jhydrol.2009.09.029 10.5194/hess-13-411-2009 10.2134/jeq2009.0441 10.1016/j.engappai.2013.11.001 10.1061/(ASCE)0887-3801(2004)18:2(105) 10.1061/(ASCE)1084-0699(2000)5:2(124) 10.1002/hyp.7126 10.1007/s00271-012-0336-2 10.1016/j.soildyn.2006.12.009 10.1016/j.jhydrol.2012.06.019 10.1016/j.eswa.2011.08.087 10.1016/j.engstruct.2012.04.013 10.1016/B978-012443875-0/50042-2 10.1002/hyp.8278 10.1007/s00704-013-1029-3 10.1007/s00704-013-0985-y 10.1007/978-1-4757-2440-0 10.1016/j.jhydrol.2010.12.041 10.1109/ICNN.1993.298623 10.7146/dpb.v19i339.6570 10.1515/secm-2013-0002 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag Wien 2015 Springer-Verlag Wien 2016 |
| Copyright_xml | – notice: Springer-Verlag Wien 2015 – notice: Springer-Verlag Wien 2016 |
| DBID | FBQ AAYXX CITATION 3V. 7QH 7TG 7TN 7UA 7XB 88I 8FE 8FG 8FK ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W GNUQQ H96 HCIFZ KL. L.G L6V M2P M7S P5Z P62 PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U 7S9 L.6 |
| DOI | 10.1007/s00704-015-1392-3 |
| DatabaseName | AGRIS CrossRef ProQuest Central (Corporate) Aqualine Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection (via ProQuest SciTech Premium Collection) Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Natural Science Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Aqualine Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest Central (Alumni) ProQuest One Academic (New) AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Meteorology & Climatology |
| EISSN | 1434-4483 |
| EndPage | 80 |
| ExternalDocumentID | 3995243061 10_1007_s00704_015_1392_3 US201600127057 |
| GroupedDBID | -Y2 -~X .86 .VR 06D 0R~ 0VY 123 199 1N0 203 28- 29Q 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2XV 2~H 30V 4.4 406 408 409 40D 40E 53G 5QI 5VS 67M 67Z 6NX 78A 88I 8FE 8FG 8FH 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBE ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHIR ADHKG ADIMF ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHPBZ AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYFIA AYJHY AZFZN AZQEC B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BKSAR BPHCQ BSONS CAG CCPQU COF CS3 CSCUP D1K DDRTE DL5 DNIVK DPUIP DWQXO EAD EAP EBD EBLON EBS EDH EIOEI EJD EMK EPL ESBYG ESX FBQ FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IAO IEP IHE IJ- IKXTQ ISR ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6- KDC KOV KOW L6V LAS LK5 LLZTM M2P M4Y M7R M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 PCBAR PF0 PHGZT PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RIG RNI ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SDM SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK6 WK8 XXG Y6R YLTOR Z45 Z8Z ZMTXR ZY4 ~02 ~8M ~EX -5A -5G -5~ -BR -EM -~C 3V. ADINQ GQ6 IFM SZN Z5O Z7R Z7U Z7Y Z7Z Z83 Z86 Z88 Z8M Z8O Z8S Z8T Z8W Z92 AAYXX ABBRH ABFSG ABRTQ ACSTC AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHWEU AIXLP ATHPR BANNL CITATION PHGZM PQGLB 7QH 7TG 7TN 7UA 7XB 8FK C1K F1W H96 KL. L.G PKEHL PQEST PQUKI PRINS Q9U 7S9 L.6 PUEGO |
| ID | FETCH-LOGICAL-c406t-a0e183ef70c0a2cac10ce6c8c79e38f92e0c93b68f8481fd48d9256473a97cbe3 |
| IEDL.DBID | M2P |
| ISICitedReferencesCount | 74 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000373143600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0177-798X |
| IngestDate | Fri Sep 05 12:29:20 EDT 2025 Tue Oct 07 09:21:12 EDT 2025 Tue Nov 04 23:00:50 EST 2025 Tue Nov 18 22:21:34 EST 2025 Sat Nov 29 06:09:38 EST 2025 Fri Feb 21 02:41:05 EST 2025 Thu Apr 03 09:43:41 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1-2 |
| Keywords | Artificial Neural Network Model Little Square Support Vector Machine Radial Basis Function Network Support Vector Machine Root Mean Square Error |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c406t-a0e183ef70c0a2cac10ce6c8c79e38f92e0c93b68f8481fd48d9256473a97cbe3 |
| Notes | http://dx.doi.org/10.1007/s00704-015-1392-3 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PQID | 1775309165 |
| PQPubID | 48318 |
| PageCount | 12 |
| ParticipantIDs | proquest_miscellaneous_1803120378 proquest_miscellaneous_1780530785 proquest_journals_1775309165 crossref_primary_10_1007_s00704_015_1392_3 crossref_citationtrail_10_1007_s00704_015_1392_3 springer_journals_10_1007_s00704_015_1392_3 fao_agris_US201600127057 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-04-01 |
| PublicationDateYYYYMMDD | 2016-04-01 |
| PublicationDate_xml | – month: 04 year: 2016 text: 2016-04-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Vienna |
| PublicationPlace_xml | – name: Vienna – name: Wien |
| PublicationTitle | Theoretical and applied climatology |
| PublicationTitleAbbrev | Theor Appl Climatol |
| PublicationYear | 2016 |
| Publisher | Springer Vienna Springer Nature B.V |
| Publisher_xml | – name: Springer Vienna – name: Springer Nature B.V |
| References | Kisi, Uncuoglu (CR22) 2005; 12 (CR2) 2000; 5 Principe, Euliano, Lefebvre (CR31) 2000 Goh, Goh (CR9) 2007; 34 Mukherjee, Routroy (CR30) 2012; 39 Yavuz, Arslan, Baykan (CR44) 2014; 21 Ertac, Firuzan, Solum (CR6) 2014; 117 CR37 McCuen (CR26) 1998 Skapura (CR40) 1996 Vapnik (CR43) 1995 CR33 Kim, Singh, Seo (CR17) 2014; 117 CR32 Shahin, Maier, Jaksa (CR36) 2004; 18 Singh, Xu (CR39) 1997; 11 Cimen, Kisi (CR4) 2009; 378 Cheng, Cao (CR3) 2014; 28 Haykin (CR14) 1999 Hamidi, Poorolajal, Sadeghifar, Abbasi, Maryanaji, Faridi, Tapak (CR12) 2014 Terzi (CR41) 2013; 23 Ulengin, Topcu (CR42) 2000; 4 Kisi (CR19) 2012; 456 Koroglu, Ceylan, Arslan, Ilki (CR23) 2012; 42 CR5 Fu (CR8) 1994 Samui, Mandla, Krishna, Teja (CR35) 2011; 4 CR7 Kalin, Isik, Schoonover, Lockaby (CR15) 2010; 39 CR29 Goyal (CR10) 2014; 118 Samui, Dixon (CR34) 2012; 26 CR27 CR25 Shiri, Kisi (CR38) 2011; 137 Ham, Kostanic (CR11) 2001 Kisi, Cimen (CR21) 2011; 399 Han, Felker (CR13) 1997; 37 Modarres (CR28) 2009; 13 Kisi (CR18) 2009; 23 Kisi (CR20) 2013; 31 Karunanithi, Grenney, Whitley, Bovee (CR16) 1994; 8 Ahmad, El Naggar, Kahn (CR1) 2007; 27 Lehmann, Koenig, Jelic, Prichep, John, Wahlund, Dodge, Dierks (CR24) 2007; 161 H Han (1392_CR13) 1997; 37 M Ertac (1392_CR6) 2014; 117 O Kisi (1392_CR18) 2009; 23 J Shiri (1392_CR38) 2011; 137 1392_CR5 1392_CR7 FM Ham (1392_CR11) 2001 R Modarres (1392_CR28) 2009; 13 RH McCuen (1392_CR26) 1998 S Kim (1392_CR17) 2014; 117 JC Principe (1392_CR31) 2000 S Haykin (1392_CR14) 1999 MA Shahin (1392_CR36) 2004; 18 DM Skapura (1392_CR40) 1996 1392_CR25 OH Hamidi (1392_CR12) 2014 ASCE Task Committee (1392_CR2) 2000; 5 AT Goh (1392_CR9) 2007; 34 O Kisi (1392_CR21) 2011; 399 M Cimen (1392_CR4) 2009; 378 1392_CR27 O Kisi (1392_CR20) 2013; 31 1392_CR29 O Kisi (1392_CR19) 2012; 456 V Vapnik (1392_CR43) 1995 MA Koroglu (1392_CR23) 2012; 42 P Samui (1392_CR35) 2011; 4 C Lehmann (1392_CR24) 2007; 161 L Kalin (1392_CR15) 2010; 39 F Ulengin (1392_CR42) 2000; 4 L Fu (1392_CR8) 1994 P Samui (1392_CR34) 2012; 26 I Ahmad (1392_CR1) 2007; 27 MY Cheng (1392_CR3) 2014; 28 1392_CR37 G Yavuz (1392_CR44) 2014; 21 1392_CR33 O Kisi (1392_CR22) 2005; 12 I Mukherjee (1392_CR30) 2012; 39 1392_CR32 O Terzi (1392_CR41) 2013; 23 N Karunanithi (1392_CR16) 1994; 8 MK Goyal (1392_CR10) 2014; 118 VP Singh (1392_CR39) 1997; 11 |
| References_xml | – volume: 4 start-page: 188 issue: 4 year: 2011 end-page: 200 ident: CR35 article-title: Prediction of rainfall using support vector machine and relevance vector machine publication-title: Earth Sci India – volume: 161 start-page: 342 year: 2007 end-page: 350 ident: CR24 article-title: Application and comparison of classification algorithms for recognition of Alzheimer's disease in electrical brain activity (EEG) publication-title: J Neurosci Methods doi: 10.1016/j.jneumeth.2006.10.023 – volume: 137 start-page: 412 year: 2011 end-page: 425 ident: CR38 article-title: Application of artificial intelligence to estimate daily pan evaporation using available and estimated climatic data in the Khozestan Province (South Western Iran) publication-title: J Irrig Drain Eng ASCE doi: 10.1061/(ASCE)IR.1943-4774.0000315 – volume: 37 start-page: 251 year: 1997 end-page: 260 ident: CR13 article-title: Estimation of daily soil water evaporation using an artificial neural network publication-title: J Arid Environ doi: 10.1006/jare.1997.0269 – year: 2001 ident: CR11 publication-title: Principles of neurocomputing for science and engineering – volume: 34 start-page: 410 issue: 5 year: 2007 end-page: 421 ident: CR9 article-title: Support vector machines: their use in geotechnical engineering as illustrated using seismic liquefaction data publication-title: Comput Geotech doi: 10.1016/j.compgeo.2007.06.001 – year: 2014 ident: CR12 article-title: A comparative study of support vector machines and artificial neural networks for predicting precipitation in Iran publication-title: Theor Appl Climatol – volume: 11 start-page: 311 year: 1997 end-page: 324 ident: CR39 article-title: Evaluation and generalization of 13 mass transfer equations for determining free water evaporation publication-title: Hydrol Process doi: 10.1002/(SICI)1099-1085(19970315)11:3<311::AID-HYP446>3.0.CO;2-Y – volume: 23 start-page: 1035 year: 2013 end-page: 1044 ident: CR41 article-title: Daily pan evaporation estimation using gene expression programming and adaptive neural-based fuzzy inference system publication-title: Neural Comput Appli doi: 10.1007/s00521-012-1027-x – volume: 8 start-page: 201 year: 1994 end-page: 220 ident: CR16 article-title: Neural networks for river flow prediction publication-title: ASCE J Comput Civ Eng doi: 10.1061/(ASCE)0887-3801(1994)8:2(201) – volume: 21 start-page: 239 issue: 2 year: 2014 end-page: 255 ident: CR44 article-title: Shear strength predicting of FRP-strengthened RC beams by using artificial neural networks publication-title: Sci Eng Composite Mat – ident: CR37 – volume: 378 start-page: 253 year: 2009 end-page: 262 ident: CR4 article-title: Comparison of two different data-driven techniques in modeling lake level fluctuations in Turkey publication-title: J Hydrol doi: 10.1016/j.jhydrol.2009.09.029 – volume: 13 start-page: 411 year: 2009 end-page: 421 ident: CR28 article-title: Multi-criteria validation of artificial neural network rainfall-runoff modeling publication-title: Hydrol Earth Syst Sci doi: 10.5194/hess-13-411-2009 – ident: CR33 – volume: 39 start-page: 1429 year: 2010 end-page: 1440 ident: CR15 article-title: Predicting water quality in unmonitored watersheds using artificial neural networks publication-title: J Environ Qual doi: 10.2134/jeq2009.0441 – ident: CR29 – volume: 28 start-page: 86 year: 2014 end-page: 96 ident: CR3 article-title: Evolutionary multivariate adaptive regression splines for estimating shear strength in reinforced-concrete deep beams publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2013.11.001 – ident: CR25 – year: 1998 ident: CR26 publication-title: Hydrologic analysis and design – volume: 18 start-page: 105 year: 2004 end-page: 114 ident: CR36 article-title: Data division for developing neural networks applied to geotechnical engineering publication-title: J Comput Civ Eng doi: 10.1061/(ASCE)0887-3801(2004)18:2(105) – ident: CR27 – volume: 5 start-page: 124 year: 2000 end-page: 137 ident: CR2 article-title: Artificial neural networks in hydrology, II: hydrological applications publication-title: ASCE J Hydrological Eng doi: 10.1061/(ASCE)1084-0699(2000)5:2(124) – year: 1994 ident: CR8 publication-title: Neural Networks in Computer Intelligence – year: 1999 ident: CR14 publication-title: Neural networks: a comprehensive foundation – volume: 23 start-page: 213 year: 2009 end-page: 223 ident: CR18 article-title: Daily pan evaporation modelling using multi-layer perceptrons and radial basis neural networks publication-title: Hydrol Process doi: 10.1002/hyp.7126 – volume: 31 start-page: 611 issue: 4 year: 2013 end-page: 619 ident: CR20 article-title: Least squares support vector machine for modeling daily reference evapotranspiration publication-title: Irrig Sci doi: 10.1007/s00271-012-0336-2 – year: 1996 ident: CR40 publication-title: Building neural network – volume: 27 start-page: 892 issue: 9 year: 2007 end-page: 905 ident: CR1 article-title: Artificial neural network application to estimate kinematic soil pile interaction response parameters publication-title: Soil Dyn Earthq Eng doi: 10.1016/j.soildyn.2006.12.009 – volume: 456 start-page: 110 year: 2012 end-page: 120 ident: CR19 article-title: Modeling discharge-suspended sediment relationship using least square support vector machine publication-title: J Hydrol doi: 10.1016/j.jhydrol.2012.06.019 – volume: 39 start-page: 2397 year: 2012 end-page: 2407 ident: CR30 article-title: Comparing the performance of neural networks developed by using Levenberg–Marquardt and Quasi-Newton with the gradient descent algorithm for modelling a multiple response grinding process publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2011.08.087 – volume: 42 start-page: 23 year: 2012 end-page: 32 ident: CR23 article-title: Estimation of flexural capacity of quadrilateral FRP-confined RC columns using combined artificial neural network publication-title: Eng Struct doi: 10.1016/j.engstruct.2012.04.013 – volume: 4 start-page: 1403 year: 2000 end-page: 1429 ident: CR42 article-title: Knowledge-based decision support systems techniques and their application in transportation planning systems publication-title: Knowl-Based Syst doi: 10.1016/B978-012443875-0/50042-2 – ident: CR32 – volume: 26 start-page: 1361 year: 2012 end-page: 1369 ident: CR34 article-title: Application of support vector machine and relevance vector machine to determine evaporative losses in reservoirs publication-title: Hydrol Process doi: 10.1002/hyp.8278 – volume: 118 start-page: 25 year: 2014 end-page: 34 ident: CR10 article-title: Monthly rainfall prediction using wavelet regression and neural network: an analysis of 1901–2002 data, Assam, India publication-title: Theor Appl Climatol doi: 10.1007/s00704-013-1029-3 – ident: CR5 – ident: CR7 – volume: 117 start-page: 1 year: 2014 end-page: 13 ident: CR6 article-title: Forecasting Istanbul monthly temperature by multivariate partial least square publication-title: Theor Appl Climatol doi: 10.1007/s00704-013-0985-y – volume: 117 start-page: 1 year: 2014 end-page: 13 ident: CR17 article-title: Evaluation of pan evaporation modeling with two different neural networks and weather station data publication-title: Theor Appl Climatol doi: 10.1007/s00704-013-0985-y – year: 2000 ident: CR31 publication-title: Neural and adaptive systems: fundamentals through simulations – year: 1995 ident: CR43 publication-title: The nature of statistical learning theory doi: 10.1007/978-1-4757-2440-0 – volume: 12 start-page: 434 year: 2005 end-page: 442 ident: CR22 article-title: Comparison of three back-propagation training algorithms for two case studies publication-title: Indian J Eng Mater Sci – volume: 399 start-page: 132 issue: 1–2 year: 2011 end-page: 140 ident: CR21 article-title: A wavelet-support vector machine conjunction model for monthly streamflow forecasting publication-title: J Hydrol doi: 10.1016/j.jhydrol.2010.12.041 – volume: 28 start-page: 86 year: 2014 ident: 1392_CR3 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2013.11.001 – ident: 1392_CR5 – ident: 1392_CR7 – ident: 1392_CR32 doi: 10.1109/ICNN.1993.298623 – volume: 117 start-page: 1 year: 2014 ident: 1392_CR6 publication-title: Theor Appl Climatol doi: 10.1007/s00704-013-0985-y – volume: 23 start-page: 1035 year: 2013 ident: 1392_CR41 publication-title: Neural Comput Appli doi: 10.1007/s00521-012-1027-x – volume: 5 start-page: 124 year: 2000 ident: 1392_CR2 publication-title: ASCE J Hydrological Eng doi: 10.1061/(ASCE)1084-0699(2000)5:2(124) – volume: 39 start-page: 2397 year: 2012 ident: 1392_CR30 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2011.08.087 – ident: 1392_CR37 – volume-title: The nature of statistical learning theory year: 1995 ident: 1392_CR43 doi: 10.1007/978-1-4757-2440-0 – volume: 26 start-page: 1361 year: 2012 ident: 1392_CR34 publication-title: Hydrol Process doi: 10.1002/hyp.8278 – volume: 8 start-page: 201 year: 1994 ident: 1392_CR16 publication-title: ASCE J Comput Civ Eng doi: 10.1061/(ASCE)0887-3801(1994)8:2(201) – volume: 137 start-page: 412 year: 2011 ident: 1392_CR38 publication-title: J Irrig Drain Eng ASCE doi: 10.1061/(ASCE)IR.1943-4774.0000315 – volume: 118 start-page: 25 year: 2014 ident: 1392_CR10 publication-title: Theor Appl Climatol doi: 10.1007/s00704-013-1029-3 – volume: 37 start-page: 251 year: 1997 ident: 1392_CR13 publication-title: J Arid Environ doi: 10.1006/jare.1997.0269 – ident: 1392_CR29 doi: 10.7146/dpb.v19i339.6570 – volume-title: Neural networks: a comprehensive foundation year: 1999 ident: 1392_CR14 – volume: 23 start-page: 213 year: 2009 ident: 1392_CR18 publication-title: Hydrol Process doi: 10.1002/hyp.7126 – volume-title: Building neural network year: 1996 ident: 1392_CR40 – year: 2014 ident: 1392_CR12 publication-title: Theor Appl Climatol – ident: 1392_CR27 – volume: 456 start-page: 110 year: 2012 ident: 1392_CR19 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2012.06.019 – volume: 13 start-page: 411 year: 2009 ident: 1392_CR28 publication-title: Hydrol Earth Syst Sci doi: 10.5194/hess-13-411-2009 – volume: 27 start-page: 892 issue: 9 year: 2007 ident: 1392_CR1 publication-title: Soil Dyn Earthq Eng doi: 10.1016/j.soildyn.2006.12.009 – volume: 117 start-page: 1 year: 2014 ident: 1392_CR17 publication-title: Theor Appl Climatol doi: 10.1007/s00704-013-0985-y – ident: 1392_CR25 – volume: 31 start-page: 611 issue: 4 year: 2013 ident: 1392_CR20 publication-title: Irrig Sci doi: 10.1007/s00271-012-0336-2 – volume: 399 start-page: 132 issue: 1–2 year: 2011 ident: 1392_CR21 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2010.12.041 – volume: 42 start-page: 23 year: 2012 ident: 1392_CR23 publication-title: Eng Struct doi: 10.1016/j.engstruct.2012.04.013 – volume: 12 start-page: 434 year: 2005 ident: 1392_CR22 publication-title: Indian J Eng Mater Sci – volume: 11 start-page: 311 year: 1997 ident: 1392_CR39 publication-title: Hydrol Process doi: 10.1002/(SICI)1099-1085(19970315)11:3<311::AID-HYP446>3.0.CO;2-Y – volume: 18 start-page: 105 year: 2004 ident: 1392_CR36 publication-title: J Comput Civ Eng doi: 10.1061/(ASCE)0887-3801(2004)18:2(105) – volume: 378 start-page: 253 year: 2009 ident: 1392_CR4 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2009.09.029 – volume-title: Neural and adaptive systems: fundamentals through simulations year: 2000 ident: 1392_CR31 – volume: 39 start-page: 1429 year: 2010 ident: 1392_CR15 publication-title: J Environ Qual doi: 10.2134/jeq2009.0441 – volume: 4 start-page: 1403 year: 2000 ident: 1392_CR42 publication-title: Knowl-Based Syst doi: 10.1016/B978-012443875-0/50042-2 – volume: 21 start-page: 239 issue: 2 year: 2014 ident: 1392_CR44 publication-title: Sci Eng Composite Mat doi: 10.1515/secm-2013-0002 – volume: 4 start-page: 188 issue: 4 year: 2011 ident: 1392_CR35 publication-title: Earth Sci India – volume-title: Principles of neurocomputing for science and engineering year: 2001 ident: 1392_CR11 – volume: 34 start-page: 410 issue: 5 year: 2007 ident: 1392_CR9 publication-title: Comput Geotech doi: 10.1016/j.compgeo.2007.06.001 – ident: 1392_CR33 – volume-title: Hydrologic analysis and design year: 1998 ident: 1392_CR26 – volume: 161 start-page: 342 year: 2007 ident: 1392_CR24 publication-title: J Neurosci Methods doi: 10.1016/j.jneumeth.2006.10.023 – volume-title: Neural Networks in Computer Intelligence year: 1994 ident: 1392_CR8 |
| SSID | ssj0002667 |
| Score | 2.4011407 |
| Snippet | Evaporation is one of the most important components of the hydrological cycle, but is relatively difficult to estimate, due to its complexity, as it can be... |
| SourceID | proquest crossref springer fao |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 69 |
| SubjectTerms | Algorithms Aquatic Pollution Artificial intelligence Atmospheric Protection/Air Quality Control/Air Pollution Atmospheric Sciences Climate science Climatology Earth and Environmental Science Earth Sciences Evaporation Hydrologic cycle Hydrologic data Hydrologic modeling learning meteorology momentum Neural networks Original Paper Pan evaporation regression analysis Relative humidity semiarid zones support vector machines temperature Waste Water Technology Water Management Water Pollution Control Wind speed |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB9s9cGX-k2jtawgPigLazbJbh6lWHxpEWvlHoRlM5nUwjV3XO4O-t87u_nAihb0KYTMJvsxHz8ys78FeK2rjHxapxLzDGVGVSYDr5lkVS4qtIavGA-bMKendjYrPw_7uLux2n1MSUZPPW12C8w0oWIil4xaUql34C5HOxvOa_hy9m1yvxxx-j3SxkhT2tmYyvzTK24Eo53GL27gzN9SozHiHD_4r74-hL0BYIoPvUY8gjvUPobkhLHxYhV_oYs34mh-yUA13j2B72zW6x_za0FbvxwUQjCUJfRdqIkWoTT-QgQV69kmRODAjJdYQd4J39ai2ywDkhfbmAUQV7FGk7qncH788evRJzmcuSCRQ_taekVs5NQYhcqn6PG9QirQoilJ26ZMSWGpq8I2gYe_qTNbl4yaMqN9abAi_Qx220VL-yCoNr7ipjWSzhplq1pRjiZrrE8L720Capx8hwMheTgXY-4mKuU4jY6n0YVpdDqBt1OTZc_GcZvwPq-o8xfsLd35WRq49GKiPTcJHIzL7Aab7RwrTK4ZPhV5Aq-mx2xtIYXiW1psgoxlr8Ww6jYZy44yVdrwCN-N6vHLZ_7W3-f_JP0C7ocR9UVEB7C7Xm3oJdzD7fqyWx1Gk_gJvsAFkg priority: 102 providerName: Springer Nature |
| Title | Monthly evaporation forecasting using artificial neural networks and support vector machines |
| URI | https://link.springer.com/article/10.1007/s00704-015-1392-3 https://www.proquest.com/docview/1775309165 https://www.proquest.com/docview/1780530785 https://www.proquest.com/docview/1803120378 |
| Volume | 124 |
| WOSCitedRecordID | wos000373143600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1434-4483 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0002667 issn: 0177-798X databaseCode: P5Z dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 1434-4483 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0002667 issn: 0177-798X databaseCode: PCBAR dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1434-4483 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0002667 issn: 0177-798X databaseCode: M7S dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1434-4483 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0002667 issn: 0177-798X databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1434-4483 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0002667 issn: 0177-798X databaseCode: M2P dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1434-4483 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002667 issn: 0177-798X databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Ni9QwFA_urgcvfstW1yWCeFCCmaRt0pPosouXHYYdVwYRSvr6ui6M7TidGfC_9yVtR1dwLl5SSlOa8L5-5L3-HmMvdRGjU6USkMQgYixi4XnNBKlyWoA1dIXQbMKMx3Y2yyb9gVvbl1UOPjE46rIBf0b-dmQIWFNwS5N3ix_Cd43y2dW-hcYeOyBkM_IlXedqsvXEFHy636WNESazsyGrKQOJqAn1F4kgDKSEvhGX9irX3ICcf2VJQ_A5u_e_y77P7vawk7_v9OQBu4X1QxadE2JuluFgnb_iJ_Nrgq_h7hH7Ssa--jb_yXHjFr2acAK4CK71ldLcF8xfca94HQcF98yY4RLqylvu6pK364XH93wTcgP8e6jcxPYxuzw7_XTyUfSdGARQwF8JJ5FMHysjQToFDkYSMAULJkNtq0yhhEwXqa08O39VxrbMCEvFRrvMQIH6CduvmxoPGcfSuIJeLQF1XElblBITMHFlnUqdsxGTgxxy6GnKfbeMeb4lWA6iy0l0uRddriP2evvKouPo2DX5kISbuyvyofnlVHmGvZB-T0zEjgYZ5r0lt_lvAUbsxfYx2aBPrLgam7WfY8mXEdjaNceS-1RSG9rhm0Gb_vjMv9b7dPeinrE7fgtdLdER218t1_ic3YbN6rpdHrODD6fjycVxMAs_mimNk-QLjRfTz78AAKIU9A |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB21BQkufKMGChgJOIAsXDuJnQNCqFC1aruqRCvtAcl1HKdU2ibbze6i_il-I2MnWSgSe-uBkxXFTuz4eWacGb8BeCXy2BlecGqT2NLY5TH1vGYUoZzmVkksbUg2IQcDNRxmhyvwsz8L48Mqe5kYBHVRW_-P_P2mRMMalVuafBxfUJ81yntX-xQaLSz23OUP3LI1H3Y_4_y-5nz7y9HWDu2yClCLymtKDXMIY1dKZpnh1thNZl1qlZWZE6rMuGM2E3mqSs80XxaxKjK0C2IpTCZt7gQ-dxVuxJ5ZzIcK8sOF5Edl1x7PlpLKTA17LyoLpKUyxHskFG0uTsUVPbhamvqKifuXVzYou-27_9tnugd3OrOafGrXwX1YcdUDiA5wR1BPguOAvCFbozM0z8PVQ_iGwmz6fXRJ3NyMu2VA0IB31jQ-Epz4AwGnxC-slmODeObPUIS4-YaYqiDNbOz3L2QefB_kPESmuuYRHF_LYB_DWlVXbh2IK6TJsWlhnYhLpvKCucTKuFSGp8aoCFg_79p2NOw-G8hILwikA1Q0QkV7qGgRwdtFk3HLQbKs8jqCSZtT1BH6-Cv3DIIhvCCREWz0mNGdpGr0b8BE8HJxG2WMdxyZytUzX0ehrEZjclkdheqBMyFxhO969P7xmn_198nyTr2AWztHB_t6f3ew9xRu--G0cVMbsDadzNwzuGnn07Nm8jwsRQIn1w3qX6ZHbjA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB21BSEufKMGChgJOICsunYSOweEUMuKqrBaCSqtEJJxHKdUWpJls7uof41fx9hJForE3nrgFEVxPpw8z4wzz28Anog8doYXnNoktjR2eUy9rhlFKKe5VRK3NhSbkMOhGo-z0Qb87NfCeFplbxODoS5q6_-R7-5JDKzRuaXJbtnRIkYHg1fT79RXkPKZ1r6cRguRI3f2A6dvzcvDA_zWTzkfvPm4_5Z2FQaoRUc2p4Y5hLQrJbPMcGvsHrMutcrKzAlVZtwxm4k8VaVXnS-LWBUZxgixFCaTNncCr7sJlyTOMT2dcJR8WnkBdHztUm0pqczUuM-osiBgKgP3I6EYf3EqzvnEzdLU58LdvzK0wfENrv_Pr-wGXOvCbfK6HR83YcNVtyB6jzOFehYSCuQZ2Z-cYtge9m7DZzRy86-TM-KWZtoND4KBvbOm8Qxx4hcKnBA_4FrtDeIVQcMm8OkbYqqCNIupn9eQZciJkG-BseqaO3B8IZ29C1tVXbltIK6QJsdTC-tEXDKVF8wlVsalMjw1RkXAegxo28mz-yohE70Slg6w0Qgb7WGjRQTPV6dMW22SdY23EVjanKDv0McfuFcWDLSDREaw0-NHdxas0b_BE8Hj1WG0PT6hZCpXL3wbhTYcg8x1bRS6Dc6ExB6-6JH8x23-9bz31j_UI7iCWNbvDodH9-Gq701Lp9qBrfls4R7AZbucnzazh2FUEvhy0Zj-BRiFdxw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Monthly+evaporation+forecasting+using+artificial+neural+networks+and+support+vector+machines&rft.jtitle=Theoretical+and+applied+climatology&rft.au=Tezel%2C+Gulay&rft.au=Buyukyildiz%2C+Meral&rft.date=2016-04-01&rft.issn=0177-798X&rft.eissn=1434-4483&rft.volume=124&rft.issue=1-2&rft.spage=69&rft.epage=80&rft_id=info:doi/10.1007%2Fs00704-015-1392-3&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0177-798X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0177-798X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0177-798X&client=summon |