Monthly evaporation forecasting using artificial neural networks and support vector machines

Evaporation is one of the most important components of the hydrological cycle, but is relatively difficult to estimate, due to its complexity, as it can be influenced by numerous factors. Estimation of evaporation is important for the design of reservoirs, especially in arid and semi-arid areas. Art...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical and applied climatology Jg. 124; H. 1-2; S. 69 - 80
Hauptverfasser: Tezel, Gulay, Buyukyildiz, Meral
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Vienna Springer Vienna 01.04.2016
Springer Nature B.V
Schlagworte:
ISSN:0177-798X, 1434-4483
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Evaporation is one of the most important components of the hydrological cycle, but is relatively difficult to estimate, due to its complexity, as it can be influenced by numerous factors. Estimation of evaporation is important for the design of reservoirs, especially in arid and semi-arid areas. Artificial neural network methods and support vector machines (SVM) are frequently utilized to estimate evaporation and other hydrological variables. In this study, usability of artificial neural networks (ANNs) (multilayer perceptron (MLP) and radial basis function network (RBFN)) and ε-support vector regression (SVR) artificial intelligence methods was investigated to estimate monthly pan evaporation. For this aim, temperature, relative humidity, wind speed, and precipitation data for the period 1972 to 2005 from Beysehir meteorology station were used as input variables while pan evaporation values were used as output. The Romanenko and Meyer method was also considered for the comparison. The results were compared with observed class A pan evaporation data. In MLP method, four different training algorithms, gradient descent with momentum and adaptive learning rule backpropagation (GDX), Levenberg–Marquardt (LVM), scaled conjugate gradient (SCG), and resilient backpropagation (RBP), were used. Also, ε-SVR model was used as SVR model. The models were designed via 10-fold cross-validation (CV); algorithm performance was assessed via mean absolute error (MAE), root mean square error (RMSE), and coefficient of determination (R ²). According to the performance criteria, the ANN algorithms and ε-SVR had similar results. The ANNs and ε-SVR methods were found to perform better than the Romanenko and Meyer methods. Consequently, the best performance using the test data was obtained using SCG(4,2,2,1) with R ² = 0.905.
AbstractList Evaporation is one of the most important components of the hydrological cycle, but is relatively difficult to estimate, due to its complexity, as it can be influenced by numerous factors. Estimation of evaporation is important for the design of reservoirs, especially in arid and semi-arid areas. Artificial neural network methods and support vector machines (SVM) are frequently utilized to estimate evaporation and other hydrological variables. In this study, usability of artificial neural networks (ANNs) (multilayer perceptron (MLP) and radial basis function network (RBFN)) and epsilon -support vector regression (SVR) artificial intelligence methods was investigated to estimate monthly pan evaporation. For this aim, temperature, relative humidity, wind speed, and precipitation data for the period 1972 to 2005 from Beysehir meteorology station were used as input variables while pan evaporation values were used as output. The Romanenko and Meyer method was also considered for the comparison. The results were compared with observed class A pan evaporation data. In MLP method, four different training algorithms, gradient descent with momentum and adaptive learning rule backpropagation (GDX), Levenberg-Marquardt (LVM), scaled conjugate gradient (SCG), and resilient backpropagation (RBP), were used. Also, epsilon -SVR model was used as SVR model. The models were designed via 10-fold cross-validation (CV); algorithm performance was assessed via mean absolute error (MAE), root mean square error (RMSE), and coefficient of determination (R super(2)). According to the performance criteria, the ANN algorithms and epsilon -SVR had similar results. The ANNs and epsilon -SVR methods were found to perform better than the Romanenko and Meyer methods. Consequently, the best performance using the test data was obtained using SCG(4,2,2,1) with R super(2)=0.905.
Evaporation is one of the most important components of the hydrological cycle, but is relatively difficult to estimate, due to its complexity, as it can be influenced by numerous factors. Estimation of evaporation is important for the design of reservoirs, especially in arid and semi-arid areas. Artificial neural network methods and support vector machines (SVM) are frequently utilized to estimate evaporation and other hydrological variables. In this study, usability of artificial neural networks (ANNs) (multilayer perceptron (MLP) and radial basis function network (RBFN)) and ε-support vector regression (SVR) artificial intelligence methods was investigated to estimate monthly pan evaporation. For this aim, temperature, relative humidity, wind speed, and precipitation data for the period 1972 to 2005 from Beysehir meteorology station were used as input variables while pan evaporation values were used as output. The Romanenko and Meyer method was also considered for the comparison. The results were compared with observed class A pan evaporation data. In MLP method, four different training algorithms, gradient descent with momentum and adaptive learning rule backpropagation (GDX), Levenberg–Marquardt (LVM), scaled conjugate gradient (SCG), and resilient backpropagation (RBP), were used. Also, ε-SVR model was used as SVR model. The models were designed via 10-fold cross-validation (CV); algorithm performance was assessed via mean absolute error (MAE), root mean square error (RMSE), and coefficient of determination ( R 2 ). According to the performance criteria, the ANN algorithms and ε-SVR had similar results. The ANNs and ε-SVR methods were found to perform better than the Romanenko and Meyer methods. Consequently, the best performance using the test data was obtained using SCG(4,2,2,1) with R 2  = 0.905.
Evaporation is one of the most important components of the hydrological cycle, but is relatively difficult to estimate, due to its complexity, as it can be influenced by numerous factors. Estimation of evaporation is important for the design of reservoirs, especially in arid and semi-arid areas. Artificial neural network methods and support vector machines (SVM) are frequently utilized to estimate evaporation and other hydrological variables. In this study, usability of artificial neural networks (ANNs) (multilayer perceptron (MLP) and radial basis function network (RBFN)) and ε-support vector regression (SVR) artificial intelligence methods was investigated to estimate monthly pan evaporation. For this aim, temperature, relative humidity, wind speed, and precipitation data for the period 1972 to 2005 from Beysehir meteorology station were used as input variables while pan evaporation values were used as output. The Romanenko and Meyer method was also considered for the comparison. The results were compared with observed class A pan evaporation data. In MLP method, four different training algorithms, gradient descent with momentum and adaptive learning rule backpropagation (GDX), Levenberg–Marquardt (LVM), scaled conjugate gradient (SCG), and resilient backpropagation (RBP), were used. Also, ε-SVR model was used as SVR model. The models were designed via 10-fold cross-validation (CV); algorithm performance was assessed via mean absolute error (MAE), root mean square error (RMSE), and coefficient of determination (R ²). According to the performance criteria, the ANN algorithms and ε-SVR had similar results. The ANNs and ε-SVR methods were found to perform better than the Romanenko and Meyer methods. Consequently, the best performance using the test data was obtained using SCG(4,2,2,1) with R ² = 0.905.
Evaporation is one of the most important components of the hydrological cycle, but is relatively difficult to estimate, due to its complexity, as it can be influenced by numerous factors. Estimation of evaporation is important for the design of reservoirs, especially in arid and semi-arid areas. Artificial neural network methods and support vector machines (SVM) are frequently utilized to estimate evaporation and other hydrological variables. In this study, usability of artificial neural networks (ANNs) (multilayer perceptron (MLP) and radial basis function network (RBFN)) and [straight epsilon]-support vector regression (SVR) artificial intelligence methods was investigated to estimate monthly pan evaporation. For this aim, temperature, relative humidity, wind speed, and precipitation data for the period 1972 to 2005 from Beysehir meteorology station were used as input variables while pan evaporation values were used as output. The Romanenko and Meyer method was also considered for the comparison. The results were compared with observed class A pan evaporation data. In MLP method, four different training algorithms, gradient descent with momentum and adaptive learning rule backpropagation (GDX), Levenberg-Marquardt (LVM), scaled conjugate gradient (SCG), and resilient backpropagation (RBP), were used. Also, [straight epsilon]-SVR model was used as SVR model. The models were designed via 10-fold cross-validation (CV); algorithm performance was assessed via mean absolute error (MAE), root mean square error (RMSE), and coefficient of determination (R ^sup 2^). According to the performance criteria, the ANN algorithms and [straight epsilon]-SVR had similar results. The ANNs and [straight epsilon]-SVR methods were found to perform better than the Romanenko and Meyer methods. Consequently, the best performance using the test data was obtained using SCG(4,2,2,1) with R ^sup 2^=0.905.
Author Buyukyildiz, Meral
Tezel, Gulay
Author_xml – sequence: 1
  fullname: Tezel, Gulay
– sequence: 2
  fullname: Buyukyildiz, Meral
BookMark eNqFkT1PHDEQhq2ISDlIfkCqrERDszD-2LW3jBABJBBFQKKIZBnf-DDZsw_bS8S_j49NEVFAM9M8j2fG7y7ZCTEgIV8pHFIAeZRrAdEC7VrKB9byD2RBBRetEIrvkAVQKVs5qNtPZDfnBwBgfS8X5NdlDOV-fG7wyWxiMsXH0LiY0JpcfFg1U95Wk4p33nozNgGn9NLKn5h-58aEZZOnTZVL84S2xNSsjb33AfNn8tGZMeOXf32P3Pw4uT4-ay-uTs-Pv1-0VkBfWgNIFUcnwYJh1lgKFnurrByQKzcwBDvwu145JRR1S6GWA-t6IbkZpL1DvkcO5nc3KT5OmIte-2xxHE3AOGVNFXDKgEv1PioVdByk6iq6_wp9iFMK9ZBKyQoNtN9SdKZsijkndHqT_NqkZ01Bb6PRczS6RqO30WheHfnKsb68fH1Jxo9vmmw2c50SVpj-2-kN6dssORO1WSWf9c1PBrQHoExCJ_lf52aupw
CitedBy_id crossref_primary_10_1007_s13201_025_02445_x
crossref_primary_10_1016_j_compag_2023_107836
crossref_primary_10_1080_19942060_2018_1448896
crossref_primary_10_1155_2018_1824317
crossref_primary_10_1016_j_watres_2023_120005
crossref_primary_10_1007_s12145_023_01160_y
crossref_primary_10_3390_w17071039
crossref_primary_10_1007_s00704_023_04502_4
crossref_primary_10_1061__ASCE_NH_1527_6996_0000593
crossref_primary_10_1007_s11356_018_1867_8
crossref_primary_10_15832_ankutbd_1509731
crossref_primary_10_4018_IJAMC_296262
crossref_primary_10_1007_s00477_018_1585_2
crossref_primary_10_1038_s41598_022_17263_3
crossref_primary_10_3390_agriculture12050612
crossref_primary_10_1007_s40710_023_00669_0
crossref_primary_10_1016_j_jhydrol_2024_131704
crossref_primary_10_3390_su152115542
crossref_primary_10_1007_s00024_023_03426_4
crossref_primary_10_1016_j_knosys_2018_10_013
crossref_primary_10_3390_atmos12121654
crossref_primary_10_1088_1755_1315_428_1_012059
crossref_primary_10_1155_2016_1547526
crossref_primary_10_3934_environsci_2025034
crossref_primary_10_1080_02723646_2020_1776087
crossref_primary_10_1007_s00024_025_03737_8
crossref_primary_10_1007_s12665_019_8459_x
crossref_primary_10_1007_s12665_020_09337_0
crossref_primary_10_1007_s10661_021_09060_8
crossref_primary_10_1016_j_jenvman_2023_119714
crossref_primary_10_1007_s11356_022_21662_4
crossref_primary_10_3390_land10121382
crossref_primary_10_3390_atmos12060701
crossref_primary_10_1007_s00704_024_05327_5
crossref_primary_10_1007_s00704_021_03724_8
crossref_primary_10_1007_s00704_025_05537_5
crossref_primary_10_1002_met_2091
crossref_primary_10_1016_j_jhydrol_2020_125078
crossref_primary_10_3390_w14213435
crossref_primary_10_3390_w17091384
crossref_primary_10_1007_s00477_022_02235_w
crossref_primary_10_1007_s00704_021_03681_2
crossref_primary_10_3390_su13147752
crossref_primary_10_1007_s00704_025_05422_1
crossref_primary_10_1016_j_jhydrol_2019_123918
crossref_primary_10_1016_j_jhydrol_2022_128992
crossref_primary_10_3390_w13202814
crossref_primary_10_3390_w9110880
crossref_primary_10_1016_j_procs_2019_11_137
crossref_primary_10_1007_s11356_019_06597_7
crossref_primary_10_1007_s13201_022_01593_8
crossref_primary_10_3390_atmos9030083
crossref_primary_10_1016_j_agrformet_2019_107647
crossref_primary_10_14796_JWMM_C551
crossref_primary_10_1038_s41598_021_99999_y
crossref_primary_10_1016_j_atmosres_2020_104868
crossref_primary_10_3390_w13172451
crossref_primary_10_1007_s12145_023_01078_5
crossref_primary_10_1007_s00521_019_04127_7
Cites_doi 10.1016/j.jneumeth.2006.10.023
10.1061/(ASCE)IR.1943-4774.0000315
10.1006/jare.1997.0269
10.1016/j.compgeo.2007.06.001
10.1002/(SICI)1099-1085(19970315)11:3<311::AID-HYP446>3.0.CO;2-Y
10.1007/s00521-012-1027-x
10.1061/(ASCE)0887-3801(1994)8:2(201)
10.1016/j.jhydrol.2009.09.029
10.5194/hess-13-411-2009
10.2134/jeq2009.0441
10.1016/j.engappai.2013.11.001
10.1061/(ASCE)0887-3801(2004)18:2(105)
10.1061/(ASCE)1084-0699(2000)5:2(124)
10.1002/hyp.7126
10.1007/s00271-012-0336-2
10.1016/j.soildyn.2006.12.009
10.1016/j.jhydrol.2012.06.019
10.1016/j.eswa.2011.08.087
10.1016/j.engstruct.2012.04.013
10.1016/B978-012443875-0/50042-2
10.1002/hyp.8278
10.1007/s00704-013-1029-3
10.1007/s00704-013-0985-y
10.1007/978-1-4757-2440-0
10.1016/j.jhydrol.2010.12.041
10.1109/ICNN.1993.298623
10.7146/dpb.v19i339.6570
10.1515/secm-2013-0002
ContentType Journal Article
Copyright Springer-Verlag Wien 2015
Springer-Verlag Wien 2016
Copyright_xml – notice: Springer-Verlag Wien 2015
– notice: Springer-Verlag Wien 2016
DBID FBQ
AAYXX
CITATION
3V.
7QH
7TG
7TN
7UA
7XB
88I
8FE
8FG
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
GNUQQ
H96
HCIFZ
KL.
L.G
L6V
M2P
M7S
P5Z
P62
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
7S9
L.6
DOI 10.1007/s00704-015-1392-3
DatabaseName AGRIS
CrossRef
ProQuest Central (Corporate)
Aqualine
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Aqualine
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional


Aquatic Science & Fisheries Abstracts (ASFA) Professional
AGRICOLA
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
EISSN 1434-4483
EndPage 80
ExternalDocumentID 3995243061
10_1007_s00704_015_1392_3
US201600127057
GroupedDBID -Y2
-~X
.86
.VR
06D
0R~
0VY
123
199
1N0
203
28-
29Q
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2XV
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67M
67Z
6NX
78A
88I
8FE
8FG
8FH
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBE
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHPBZ
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D1K
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EAD
EAP
EBD
EBLON
EBS
EDH
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FBQ
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
IEP
IHE
IJ-
IKXTQ
ISR
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6-
KDC
KOV
KOW
L6V
LAS
LK5
LLZTM
M2P
M4Y
M7R
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
PCBAR
PF0
PHGZT
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCK
SCLPG
SDH
SDM
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK6
WK8
XXG
Y6R
YLTOR
Z45
Z8Z
ZMTXR
ZY4
~02
~8M
~EX
-5A
-5G
-5~
-BR
-EM
-~C
3V.
ADINQ
GQ6
IFM
SZN
Z5O
Z7R
Z7U
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8O
Z8S
Z8T
Z8W
Z92
AAYXX
ABBRH
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHWEU
AIXLP
ATHPR
BANNL
CITATION
PHGZM
PQGLB
7QH
7TG
7TN
7UA
7XB
8FK
C1K
F1W
H96
KL.
L.G
PKEHL
PQEST
PQUKI
PRINS
Q9U
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c406t-a0e183ef70c0a2cac10ce6c8c79e38f92e0c93b68f8481fd48d9256473a97cbe3
IEDL.DBID M2P
ISICitedReferencesCount 74
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000373143600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0177-798X
IngestDate Fri Sep 05 12:29:20 EDT 2025
Tue Oct 07 09:21:12 EDT 2025
Tue Nov 04 23:00:50 EST 2025
Tue Nov 18 22:21:34 EST 2025
Sat Nov 29 06:09:38 EST 2025
Fri Feb 21 02:41:05 EST 2025
Thu Apr 03 09:43:41 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1-2
Keywords Artificial Neural Network Model
Little Square Support Vector Machine
Radial Basis Function Network
Support Vector Machine
Root Mean Square Error
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-a0e183ef70c0a2cac10ce6c8c79e38f92e0c93b68f8481fd48d9256473a97cbe3
Notes http://dx.doi.org/10.1007/s00704-015-1392-3
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1775309165
PQPubID 48318
PageCount 12
ParticipantIDs proquest_miscellaneous_1803120378
proquest_miscellaneous_1780530785
proquest_journals_1775309165
crossref_primary_10_1007_s00704_015_1392_3
crossref_citationtrail_10_1007_s00704_015_1392_3
springer_journals_10_1007_s00704_015_1392_3
fao_agris_US201600127057
PublicationCentury 2000
PublicationDate 2016-04-01
PublicationDateYYYYMMDD 2016-04-01
PublicationDate_xml – month: 04
  year: 2016
  text: 2016-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Vienna
PublicationPlace_xml – name: Vienna
– name: Wien
PublicationTitle Theoretical and applied climatology
PublicationTitleAbbrev Theor Appl Climatol
PublicationYear 2016
Publisher Springer Vienna
Springer Nature B.V
Publisher_xml – name: Springer Vienna
– name: Springer Nature B.V
References Kisi, Uncuoglu (CR22) 2005; 12
(CR2) 2000; 5
Principe, Euliano, Lefebvre (CR31) 2000
Goh, Goh (CR9) 2007; 34
Mukherjee, Routroy (CR30) 2012; 39
Yavuz, Arslan, Baykan (CR44) 2014; 21
Ertac, Firuzan, Solum (CR6) 2014; 117
CR37
McCuen (CR26) 1998
Skapura (CR40) 1996
Vapnik (CR43) 1995
CR33
Kim, Singh, Seo (CR17) 2014; 117
CR32
Shahin, Maier, Jaksa (CR36) 2004; 18
Singh, Xu (CR39) 1997; 11
Cimen, Kisi (CR4) 2009; 378
Cheng, Cao (CR3) 2014; 28
Haykin (CR14) 1999
Hamidi, Poorolajal, Sadeghifar, Abbasi, Maryanaji, Faridi, Tapak (CR12) 2014
Terzi (CR41) 2013; 23
Ulengin, Topcu (CR42) 2000; 4
Kisi (CR19) 2012; 456
Koroglu, Ceylan, Arslan, Ilki (CR23) 2012; 42
CR5
Fu (CR8) 1994
Samui, Mandla, Krishna, Teja (CR35) 2011; 4
CR7
Kalin, Isik, Schoonover, Lockaby (CR15) 2010; 39
CR29
Goyal (CR10) 2014; 118
Samui, Dixon (CR34) 2012; 26
CR27
CR25
Shiri, Kisi (CR38) 2011; 137
Ham, Kostanic (CR11) 2001
Kisi, Cimen (CR21) 2011; 399
Han, Felker (CR13) 1997; 37
Modarres (CR28) 2009; 13
Kisi (CR18) 2009; 23
Kisi (CR20) 2013; 31
Karunanithi, Grenney, Whitley, Bovee (CR16) 1994; 8
Ahmad, El Naggar, Kahn (CR1) 2007; 27
Lehmann, Koenig, Jelic, Prichep, John, Wahlund, Dodge, Dierks (CR24) 2007; 161
H Han (1392_CR13) 1997; 37
M Ertac (1392_CR6) 2014; 117
O Kisi (1392_CR18) 2009; 23
J Shiri (1392_CR38) 2011; 137
1392_CR5
1392_CR7
FM Ham (1392_CR11) 2001
R Modarres (1392_CR28) 2009; 13
RH McCuen (1392_CR26) 1998
S Kim (1392_CR17) 2014; 117
JC Principe (1392_CR31) 2000
S Haykin (1392_CR14) 1999
MA Shahin (1392_CR36) 2004; 18
DM Skapura (1392_CR40) 1996
1392_CR25
OH Hamidi (1392_CR12) 2014
ASCE Task Committee (1392_CR2) 2000; 5
AT Goh (1392_CR9) 2007; 34
O Kisi (1392_CR21) 2011; 399
M Cimen (1392_CR4) 2009; 378
1392_CR27
O Kisi (1392_CR20) 2013; 31
1392_CR29
O Kisi (1392_CR19) 2012; 456
V Vapnik (1392_CR43) 1995
MA Koroglu (1392_CR23) 2012; 42
P Samui (1392_CR35) 2011; 4
C Lehmann (1392_CR24) 2007; 161
L Kalin (1392_CR15) 2010; 39
F Ulengin (1392_CR42) 2000; 4
L Fu (1392_CR8) 1994
P Samui (1392_CR34) 2012; 26
I Ahmad (1392_CR1) 2007; 27
MY Cheng (1392_CR3) 2014; 28
1392_CR37
G Yavuz (1392_CR44) 2014; 21
1392_CR33
O Kisi (1392_CR22) 2005; 12
I Mukherjee (1392_CR30) 2012; 39
1392_CR32
O Terzi (1392_CR41) 2013; 23
N Karunanithi (1392_CR16) 1994; 8
MK Goyal (1392_CR10) 2014; 118
VP Singh (1392_CR39) 1997; 11
References_xml – volume: 4
  start-page: 188
  issue: 4
  year: 2011
  end-page: 200
  ident: CR35
  article-title: Prediction of rainfall using support vector machine and relevance vector machine
  publication-title: Earth Sci India
– volume: 161
  start-page: 342
  year: 2007
  end-page: 350
  ident: CR24
  article-title: Application and comparison of classification algorithms for recognition of Alzheimer's disease in electrical brain activity (EEG)
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2006.10.023
– volume: 137
  start-page: 412
  year: 2011
  end-page: 425
  ident: CR38
  article-title: Application of artificial intelligence to estimate daily pan evaporation using available and estimated climatic data in the Khozestan Province (South Western Iran)
  publication-title: J Irrig Drain Eng ASCE
  doi: 10.1061/(ASCE)IR.1943-4774.0000315
– volume: 37
  start-page: 251
  year: 1997
  end-page: 260
  ident: CR13
  article-title: Estimation of daily soil water evaporation using an artificial neural network
  publication-title: J Arid Environ
  doi: 10.1006/jare.1997.0269
– year: 2001
  ident: CR11
  publication-title: Principles of neurocomputing for science and engineering
– volume: 34
  start-page: 410
  issue: 5
  year: 2007
  end-page: 421
  ident: CR9
  article-title: Support vector machines: their use in geotechnical engineering as illustrated using seismic liquefaction data
  publication-title: Comput Geotech
  doi: 10.1016/j.compgeo.2007.06.001
– year: 2014
  ident: CR12
  article-title: A comparative study of support vector machines and artificial neural networks for predicting precipitation in Iran
  publication-title: Theor Appl Climatol
– volume: 11
  start-page: 311
  year: 1997
  end-page: 324
  ident: CR39
  article-title: Evaluation and generalization of 13 mass transfer equations for determining free water evaporation
  publication-title: Hydrol Process
  doi: 10.1002/(SICI)1099-1085(19970315)11:3<311::AID-HYP446>3.0.CO;2-Y
– volume: 23
  start-page: 1035
  year: 2013
  end-page: 1044
  ident: CR41
  article-title: Daily pan evaporation estimation using gene expression programming and adaptive neural-based fuzzy inference system
  publication-title: Neural Comput Appli
  doi: 10.1007/s00521-012-1027-x
– volume: 8
  start-page: 201
  year: 1994
  end-page: 220
  ident: CR16
  article-title: Neural networks for river flow prediction
  publication-title: ASCE J Comput Civ Eng
  doi: 10.1061/(ASCE)0887-3801(1994)8:2(201)
– volume: 21
  start-page: 239
  issue: 2
  year: 2014
  end-page: 255
  ident: CR44
  article-title: Shear strength predicting of FRP-strengthened RC beams by using artificial neural networks
  publication-title: Sci Eng Composite Mat
– ident: CR37
– volume: 378
  start-page: 253
  year: 2009
  end-page: 262
  ident: CR4
  article-title: Comparison of two different data-driven techniques in modeling lake level fluctuations in Turkey
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2009.09.029
– volume: 13
  start-page: 411
  year: 2009
  end-page: 421
  ident: CR28
  article-title: Multi-criteria validation of artificial neural network rainfall-runoff modeling
  publication-title: Hydrol Earth Syst Sci
  doi: 10.5194/hess-13-411-2009
– ident: CR33
– volume: 39
  start-page: 1429
  year: 2010
  end-page: 1440
  ident: CR15
  article-title: Predicting water quality in unmonitored watersheds using artificial neural networks
  publication-title: J Environ Qual
  doi: 10.2134/jeq2009.0441
– ident: CR29
– volume: 28
  start-page: 86
  year: 2014
  end-page: 96
  ident: CR3
  article-title: Evolutionary multivariate adaptive regression splines for estimating shear strength in reinforced-concrete deep beams
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2013.11.001
– ident: CR25
– year: 1998
  ident: CR26
  publication-title: Hydrologic analysis and design
– volume: 18
  start-page: 105
  year: 2004
  end-page: 114
  ident: CR36
  article-title: Data division for developing neural networks applied to geotechnical engineering
  publication-title: J Comput Civ Eng
  doi: 10.1061/(ASCE)0887-3801(2004)18:2(105)
– ident: CR27
– volume: 5
  start-page: 124
  year: 2000
  end-page: 137
  ident: CR2
  article-title: Artificial neural networks in hydrology, II: hydrological applications
  publication-title: ASCE J Hydrological Eng
  doi: 10.1061/(ASCE)1084-0699(2000)5:2(124)
– year: 1994
  ident: CR8
  publication-title: Neural Networks in Computer Intelligence
– year: 1999
  ident: CR14
  publication-title: Neural networks: a comprehensive foundation
– volume: 23
  start-page: 213
  year: 2009
  end-page: 223
  ident: CR18
  article-title: Daily pan evaporation modelling using multi-layer perceptrons and radial basis neural networks
  publication-title: Hydrol Process
  doi: 10.1002/hyp.7126
– volume: 31
  start-page: 611
  issue: 4
  year: 2013
  end-page: 619
  ident: CR20
  article-title: Least squares support vector machine for modeling daily reference evapotranspiration
  publication-title: Irrig Sci
  doi: 10.1007/s00271-012-0336-2
– year: 1996
  ident: CR40
  publication-title: Building neural network
– volume: 27
  start-page: 892
  issue: 9
  year: 2007
  end-page: 905
  ident: CR1
  article-title: Artificial neural network application to estimate kinematic soil pile interaction response parameters
  publication-title: Soil Dyn Earthq Eng
  doi: 10.1016/j.soildyn.2006.12.009
– volume: 456
  start-page: 110
  year: 2012
  end-page: 120
  ident: CR19
  article-title: Modeling discharge-suspended sediment relationship using least square support vector machine
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2012.06.019
– volume: 39
  start-page: 2397
  year: 2012
  end-page: 2407
  ident: CR30
  article-title: Comparing the performance of neural networks developed by using Levenberg–Marquardt and Quasi-Newton with the gradient descent algorithm for modelling a multiple response grinding process
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2011.08.087
– volume: 42
  start-page: 23
  year: 2012
  end-page: 32
  ident: CR23
  article-title: Estimation of flexural capacity of quadrilateral FRP-confined RC columns using combined artificial neural network
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2012.04.013
– volume: 4
  start-page: 1403
  year: 2000
  end-page: 1429
  ident: CR42
  article-title: Knowledge-based decision support systems techniques and their application in transportation planning systems
  publication-title: Knowl-Based Syst
  doi: 10.1016/B978-012443875-0/50042-2
– ident: CR32
– volume: 26
  start-page: 1361
  year: 2012
  end-page: 1369
  ident: CR34
  article-title: Application of support vector machine and relevance vector machine to determine evaporative losses in reservoirs
  publication-title: Hydrol Process
  doi: 10.1002/hyp.8278
– volume: 118
  start-page: 25
  year: 2014
  end-page: 34
  ident: CR10
  article-title: Monthly rainfall prediction using wavelet regression and neural network: an analysis of 1901–2002 data, Assam, India
  publication-title: Theor Appl Climatol
  doi: 10.1007/s00704-013-1029-3
– ident: CR5
– ident: CR7
– volume: 117
  start-page: 1
  year: 2014
  end-page: 13
  ident: CR6
  article-title: Forecasting Istanbul monthly temperature by multivariate partial least square
  publication-title: Theor Appl Climatol
  doi: 10.1007/s00704-013-0985-y
– volume: 117
  start-page: 1
  year: 2014
  end-page: 13
  ident: CR17
  article-title: Evaluation of pan evaporation modeling with two different neural networks and weather station data
  publication-title: Theor Appl Climatol
  doi: 10.1007/s00704-013-0985-y
– year: 2000
  ident: CR31
  publication-title: Neural and adaptive systems: fundamentals through simulations
– year: 1995
  ident: CR43
  publication-title: The nature of statistical learning theory
  doi: 10.1007/978-1-4757-2440-0
– volume: 12
  start-page: 434
  year: 2005
  end-page: 442
  ident: CR22
  article-title: Comparison of three back-propagation training algorithms for two case studies
  publication-title: Indian J Eng Mater Sci
– volume: 399
  start-page: 132
  issue: 1–2
  year: 2011
  end-page: 140
  ident: CR21
  article-title: A wavelet-support vector machine conjunction model for monthly streamflow forecasting
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2010.12.041
– volume: 28
  start-page: 86
  year: 2014
  ident: 1392_CR3
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2013.11.001
– ident: 1392_CR5
– ident: 1392_CR7
– ident: 1392_CR32
  doi: 10.1109/ICNN.1993.298623
– volume: 117
  start-page: 1
  year: 2014
  ident: 1392_CR6
  publication-title: Theor Appl Climatol
  doi: 10.1007/s00704-013-0985-y
– volume: 23
  start-page: 1035
  year: 2013
  ident: 1392_CR41
  publication-title: Neural Comput Appli
  doi: 10.1007/s00521-012-1027-x
– volume: 5
  start-page: 124
  year: 2000
  ident: 1392_CR2
  publication-title: ASCE J Hydrological Eng
  doi: 10.1061/(ASCE)1084-0699(2000)5:2(124)
– volume: 39
  start-page: 2397
  year: 2012
  ident: 1392_CR30
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2011.08.087
– ident: 1392_CR37
– volume-title: The nature of statistical learning theory
  year: 1995
  ident: 1392_CR43
  doi: 10.1007/978-1-4757-2440-0
– volume: 26
  start-page: 1361
  year: 2012
  ident: 1392_CR34
  publication-title: Hydrol Process
  doi: 10.1002/hyp.8278
– volume: 8
  start-page: 201
  year: 1994
  ident: 1392_CR16
  publication-title: ASCE J Comput Civ Eng
  doi: 10.1061/(ASCE)0887-3801(1994)8:2(201)
– volume: 137
  start-page: 412
  year: 2011
  ident: 1392_CR38
  publication-title: J Irrig Drain Eng ASCE
  doi: 10.1061/(ASCE)IR.1943-4774.0000315
– volume: 118
  start-page: 25
  year: 2014
  ident: 1392_CR10
  publication-title: Theor Appl Climatol
  doi: 10.1007/s00704-013-1029-3
– volume: 37
  start-page: 251
  year: 1997
  ident: 1392_CR13
  publication-title: J Arid Environ
  doi: 10.1006/jare.1997.0269
– ident: 1392_CR29
  doi: 10.7146/dpb.v19i339.6570
– volume-title: Neural networks: a comprehensive foundation
  year: 1999
  ident: 1392_CR14
– volume: 23
  start-page: 213
  year: 2009
  ident: 1392_CR18
  publication-title: Hydrol Process
  doi: 10.1002/hyp.7126
– volume-title: Building neural network
  year: 1996
  ident: 1392_CR40
– year: 2014
  ident: 1392_CR12
  publication-title: Theor Appl Climatol
– ident: 1392_CR27
– volume: 456
  start-page: 110
  year: 2012
  ident: 1392_CR19
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2012.06.019
– volume: 13
  start-page: 411
  year: 2009
  ident: 1392_CR28
  publication-title: Hydrol Earth Syst Sci
  doi: 10.5194/hess-13-411-2009
– volume: 27
  start-page: 892
  issue: 9
  year: 2007
  ident: 1392_CR1
  publication-title: Soil Dyn Earthq Eng
  doi: 10.1016/j.soildyn.2006.12.009
– volume: 117
  start-page: 1
  year: 2014
  ident: 1392_CR17
  publication-title: Theor Appl Climatol
  doi: 10.1007/s00704-013-0985-y
– ident: 1392_CR25
– volume: 31
  start-page: 611
  issue: 4
  year: 2013
  ident: 1392_CR20
  publication-title: Irrig Sci
  doi: 10.1007/s00271-012-0336-2
– volume: 399
  start-page: 132
  issue: 1–2
  year: 2011
  ident: 1392_CR21
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2010.12.041
– volume: 42
  start-page: 23
  year: 2012
  ident: 1392_CR23
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2012.04.013
– volume: 12
  start-page: 434
  year: 2005
  ident: 1392_CR22
  publication-title: Indian J Eng Mater Sci
– volume: 11
  start-page: 311
  year: 1997
  ident: 1392_CR39
  publication-title: Hydrol Process
  doi: 10.1002/(SICI)1099-1085(19970315)11:3<311::AID-HYP446>3.0.CO;2-Y
– volume: 18
  start-page: 105
  year: 2004
  ident: 1392_CR36
  publication-title: J Comput Civ Eng
  doi: 10.1061/(ASCE)0887-3801(2004)18:2(105)
– volume: 378
  start-page: 253
  year: 2009
  ident: 1392_CR4
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2009.09.029
– volume-title: Neural and adaptive systems: fundamentals through simulations
  year: 2000
  ident: 1392_CR31
– volume: 39
  start-page: 1429
  year: 2010
  ident: 1392_CR15
  publication-title: J Environ Qual
  doi: 10.2134/jeq2009.0441
– volume: 4
  start-page: 1403
  year: 2000
  ident: 1392_CR42
  publication-title: Knowl-Based Syst
  doi: 10.1016/B978-012443875-0/50042-2
– volume: 21
  start-page: 239
  issue: 2
  year: 2014
  ident: 1392_CR44
  publication-title: Sci Eng Composite Mat
  doi: 10.1515/secm-2013-0002
– volume: 4
  start-page: 188
  issue: 4
  year: 2011
  ident: 1392_CR35
  publication-title: Earth Sci India
– volume-title: Principles of neurocomputing for science and engineering
  year: 2001
  ident: 1392_CR11
– volume: 34
  start-page: 410
  issue: 5
  year: 2007
  ident: 1392_CR9
  publication-title: Comput Geotech
  doi: 10.1016/j.compgeo.2007.06.001
– ident: 1392_CR33
– volume-title: Hydrologic analysis and design
  year: 1998
  ident: 1392_CR26
– volume: 161
  start-page: 342
  year: 2007
  ident: 1392_CR24
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2006.10.023
– volume-title: Neural Networks in Computer Intelligence
  year: 1994
  ident: 1392_CR8
SSID ssj0002667
Score 2.4011407
Snippet Evaporation is one of the most important components of the hydrological cycle, but is relatively difficult to estimate, due to its complexity, as it can be...
SourceID proquest
crossref
springer
fao
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 69
SubjectTerms Algorithms
Aquatic Pollution
Artificial intelligence
Atmospheric Protection/Air Quality Control/Air Pollution
Atmospheric Sciences
Climate science
Climatology
Earth and Environmental Science
Earth Sciences
Evaporation
Hydrologic cycle
Hydrologic data
Hydrologic modeling
learning
meteorology
momentum
Neural networks
Original Paper
Pan evaporation
regression analysis
Relative humidity
semiarid zones
support vector machines
temperature
Waste Water Technology
Water Management
Water Pollution Control
Wind speed
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB6atIde0rRNiPMoCpQeUgRey15JxxIaeulSuknZQ0HI8jhZ2HiX9e5C_n1G8oMmtIH0ZIxlWxrN47Nn9AngI30iJ5gNSq5y0uA0LR23qRJcaXRIELiwQxs2m5CjkZpM9I92HXfdVbt3KcngqfvFbp6ZxldMZJxQS8LFFrykaKf8fg0_x79690sRp1kjLSWXWk26VObfHvEgGG2Vdv4AZz5KjYaIc_Hmv_q6CzstwGRfGo14Cy-wegfRd8LG82X4hc4-sfPZlIBqOHsPv8msVzezO4Ybu2gVghGURWdrXxPNfGn8NfMq1rBNMM-BGQ6hgrxmtipYvV54JM82IQvAbkONJtZ7cHXx9fL8G2_3XOCOQvuK2xjJyLGUsYtt4qwbxA6HTjmpUahSJxg7LfKhKj0Pf1mkqtCEmlIprJYuR7EP29W8wgNg5BkyCn0DneaYoi6tFkp6gsJU54WOiwjiTvjGtYTkfl-MmemplIMYDYnReDEaEcFZf8uiYeN4qvEBzaix1-QtzdU48Vx6IdGeyQiOu2k2rc3WhhQmEwSfhlkEp_1lsjafQrEVzte-DQ2K3KJ6qo0iR5nEQqoIPnfq8cdr_tXfw2e1PoLXfkRNEdExbK-WazyBV26zmtbLD8Ek7gH0KwQm
  priority: 102
  providerName: Springer Nature
Title Monthly evaporation forecasting using artificial neural networks and support vector machines
URI https://link.springer.com/article/10.1007/s00704-015-1392-3
https://www.proquest.com/docview/1775309165
https://www.proquest.com/docview/1780530785
https://www.proquest.com/docview/1803120378
Volume 124
WOSCitedRecordID wos000373143600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1434-4483
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0002667
  issn: 0177-798X
  databaseCode: P5Z
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1434-4483
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0002667
  issn: 0177-798X
  databaseCode: PCBAR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1434-4483
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0002667
  issn: 0177-798X
  databaseCode: M7S
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1434-4483
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0002667
  issn: 0177-798X
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1434-4483
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0002667
  issn: 0177-798X
  databaseCode: M2P
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1434-4483
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002667
  issn: 0177-798X
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Ni9QwFH-4ux68-C1bXZcI4kEJpk07SU6iyy5edhh2XBlEKGmargtjO05nBvzvfS9tR1dwLl5SSlOa8r5-zXv9PYCX-Imc-CyuuC5Qg9O0ctymWnJtvPMIgUs7sqHZhBqP9WxmJv2GW9uXVQ4-MTjqsnG0R_42VgisMbiNsneLH5y6RlF2tW-hsQcHiGxiKuk6TyZbT4zBp_tdWimujJ4NWU0RSERVqL_IOGKghMsbcWmvss0NyPlXljQEn7N7_7vs-3C3h53sfacnD-CWrx9CdI6IuVmGjXX2ip3MrxG-hrNH8BWNffVt_pP5jV30asIQ4HpnW6qUZlQwf8VI8ToOCkbMmOEQ6spbZuuStesF4Xu2CbkB9j1Ubvr2MVyenX46-cj7TgzcYcBfcSs8mr6vlHDCJs66WDg_ctop46WuTOKFM7IY6YrY-asy1aVBLJUqaY1yhZdPYL9uan8IDP1FhgExNmnhU28qa6RWRFuYmqI0ooxADHLIXU9TTt0y5vmWYDmILkfR5SS6XEbwenvLouPo2DX5EIWb2yv0ofnlNCGGvZB-z1QER4MM896S2_y3ACN4sb2MNkiJFVv7Zk1z8KXQWepdczS6z0RIpSN4M2jTH4_513qf7l7UM7hDr9DVEh3B_mq59s_httusrtvlMRx8OB1PLo6DWdCopjhOsi84Xkw__wIqRxOI
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB61BQkuvFEDLRgJOIAssnms7UNVoULVqu2qEq20ByTXcSal0pIsm91F_VP8xo6dZKFI7K0HTlEU5-Hk83zjzPgbgNc0RY4w7RVcZoTgJCksN4mMuVRokVzg3PSNLzYhBgM5HKrjFfjVrYVxaZWdTfSGOq-s-0f-oSfIsSZy66fb4x_cVY1y0dWuhEYDiwO8_ElTtnpr_xN93zdRtPv5ZGePt1UFuCXymnITIsEYCxHa0ETW2F5osW-lFQpjWagIQ6virC8LpzRf5InMFfkFiYiNEjbDmK67CrcSpyzmUgWj44XlJ7JrlmcLwYWSwy6KGnrRUuHzPVJOPlfE42s8uFqY6pqL-1dU1pPd7v3_7TU9gHutW80-NuPgIaxg-QiCI5oRVBMfOGBv2c7ogtxzv_cYvpIxm34bXTKcm3E7DBg58GhN7TLBmVsQcM7cwGo0NphT_vQbnzdfM1PmrJ6N3fyFzX3sg333malYP4HTG-nsU1grqxLXgZE9TInweyrJMEFVGBVL4WQZE5XlKswDCLvvrm0rw-6qgYz0QkDaQ0UTVLSDio4DeLc4ZdxokCxrvE5g0uacOEKffomcgqBPL0hFABsdZnRrqWr9GzABvFocJhvjAkemxGrm2lCniAzksjaS6CEKYyEDeN-h94_b_Ot5ny1_qJdwZ-_k6FAf7g8OnsNd150mb2oD1qaTGW7CbTufXtSTF34oMji7aVBfAX5wbMQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3fb9MwED5tAyFe-I2WMcBIwAPIWpoftf2AENqomAZVJZhUISTjOJcxqUtK0xbtX-Ov4-wkhSHRtz3wFEVx2rj9fN9d7vwdwFMKkSNMewWXGSE4SQrLTSJjLhVaJBc4N33jm02I4VCOx2q0AT-7vTCurLKzid5Q55V178j3eoIcayK3frpXtGURo4PB6-l37jpIuUxr106jgcgRnv-g8K1-dXhA__WzKBq8_bT_jrcdBrglIptzEyJBGgsR2tBE1theaLFvpRUKY1moCEOr4qwvC6c6X-SJzBX5CImIjRI2w5g-dxOuCIoxXTnhKP28YgEivmarthBcKDnuMqqhFzAVvvYj5eR_RTy-wImbhakuuLt_ZWg98Q1u_s8_2S240brb7E2zPm7DBpZ3IPhAkUI18wkF9pztT07Jbfdnd-ELGbn5t8k5w6WZtsuDkWOP1tSuQpy5jQInzC24RnuDOUVQf_D19DUzZc7qxdTFNWzpcyLszFesYn0Pji9lsvdhq6xK3AZGdjIlR6CnkgwTVIVRsRROrjFRWa7CPICww4C2rTy76xIy0SthaQ8bTbDRDjY6DuDF6pZpo02ybvA2AUubE-IOffwxcsqCvuwgFQHsdvjRrQWr9W_wBPBkdZlsj0somRKrhRtDkyKSkOvGSKKNKIyFDOBlh-Q_vuZfz7uz_qEewzXCsn5_ODx6ANfdbJpyql3Yms8W-BCu2uX8tJ498quSwdfLxvQv9kN1sA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Monthly+evaporation+forecasting+using+artificial+neural+networks+and+support+vector+machines&rft.jtitle=Theoretical+and+applied+climatology&rft.au=Tezel%2C+Gulay&rft.au=Buyukyildiz%2C+Meral&rft.date=2016-04-01&rft.issn=0177-798X&rft.eissn=1434-4483&rft.volume=124&rft.issue=1-2&rft.spage=69&rft.epage=80&rft_id=info:doi/10.1007%2Fs00704-015-1392-3&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0177-798X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0177-798X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0177-798X&client=summon