Capacitated assortment and price optimization under the nested logit model

We study the capacitated assortment and price optimization problem, where a retailer sells categories of substitutable products subject to a capacity constraint. The goal of the retailer is to determine the subset of products as well as their selling prices so as to maximize the expected revenue. We...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of global optimization Jg. 77; H. 4; S. 895 - 918
Hauptverfasser: Chen, Rui, Jiang, Hai
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.08.2020
Springer
Springer Nature B.V
Schlagworte:
ISSN:0925-5001, 1573-2916
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We study the capacitated assortment and price optimization problem, where a retailer sells categories of substitutable products subject to a capacity constraint. The goal of the retailer is to determine the subset of products as well as their selling prices so as to maximize the expected revenue. We model the customer purchase behavior using the nested logit model and formulate this problem as a non-linear binary integer program. For this NP-complete problem, we show that there exists a pseudo polynomial time approximation scheme that finds its ϵ -approximate solution. We first convert the original problem into an equivalent fixed point problem. We then show that finding an ϵ -approximate solution to the fixed point problem can be achieved by binary search, where a non-linear auxiliary problem is repeatedly approximated by a dynamic programing based algorithm involving an approximation to a series of multiple-choice parametric knapsack problems. For the special case when the capacity constraints are cardinal and nest-specific, we develop an algorithm that finds the optimal solution in strongly polynomial time. Moreover, our algorithm can be directly applied to find an ϵ -approximate solution to the capacitated assortment optimization problem under the nested logit model, which is the first approximate algorithm that is polynomial with respect to the number of nests in the literature.
AbstractList We study the capacitated assortment and price optimization problem, where a retailer sells categories of substitutable products subject to a capacity constraint. The goal of the retailer is to determine the subset of products as well as their selling prices so as to maximize the expected revenue. We model the customer purchase behavior using the nested logit model and formulate this problem as a non-linear binary integer program. For this NP-complete problem, we show that there exists a pseudo polynomial time approximation scheme that finds its ϵ -approximate solution. We first convert the original problem into an equivalent fixed point problem. We then show that finding an ϵ -approximate solution to the fixed point problem can be achieved by binary search, where a non-linear auxiliary problem is repeatedly approximated by a dynamic programing based algorithm involving an approximation to a series of multiple-choice parametric knapsack problems. For the special case when the capacity constraints are cardinal and nest-specific, we develop an algorithm that finds the optimal solution in strongly polynomial time. Moreover, our algorithm can be directly applied to find an ϵ -approximate solution to the capacitated assortment optimization problem under the nested logit model, which is the first approximate algorithm that is polynomial with respect to the number of nests in the literature.
We study the capacitated assortment and price optimization problem, where a retailer sells categories of substitutable products subject to a capacity constraint. The goal of the retailer is to determine the subset of products as well as their selling prices so as to maximize the expected revenue. We model the customer purchase behavior using the nested logit model and formulate this problem as a non-linear binary integer program. For this NP-complete problem, we show that there exists a pseudo polynomial time approximation scheme that finds its ϵ-approximate solution. We first convert the original problem into an equivalent fixed point problem. We then show that finding an ϵ-approximate solution to the fixed point problem can be achieved by binary search, where a non-linear auxiliary problem is repeatedly approximated by a dynamic programing based algorithm involving an approximation to a series of multiple-choice parametric knapsack problems. For the special case when the capacity constraints are cardinal and nest-specific, we develop an algorithm that finds the optimal solution in strongly polynomial time. Moreover, our algorithm can be directly applied to find an ϵ-approximate solution to the capacitated assortment optimization problem under the nested logit model, which is the first approximate algorithm that is polynomial with respect to the number of nests in the literature.
We study the capacitated assortment and price optimization problem, where a retailer sells categories of substitutable products subject to a capacity constraint. The goal of the retailer is to determine the subset of products as well as their selling prices so as to maximize the expected revenue. We model the customer purchase behavior using the nested logit model and formulate this problem as a non-linear binary integer program. For this NP-complete problem, we show that there exists a pseudo polynomial time approximation scheme that finds its [Formula omitted]-approximate solution. We first convert the original problem into an equivalent fixed point problem. We then show that finding an [Formula omitted]-approximate solution to the fixed point problem can be achieved by binary search, where a non-linear auxiliary problem is repeatedly approximated by a dynamic programing based algorithm involving an approximation to a series of multiple-choice parametric knapsack problems. For the special case when the capacity constraints are cardinal and nest-specific, we develop an algorithm that finds the optimal solution in strongly polynomial time. Moreover, our algorithm can be directly applied to find an [Formula omitted]-approximate solution to the capacitated assortment optimization problem under the nested logit model, which is the first approximate algorithm that is polynomial with respect to the number of nests in the literature.
Audience Academic
Author Chen, Rui
Jiang, Hai
Author_xml – sequence: 1
  givenname: Rui
  surname: Chen
  fullname: Chen, Rui
  organization: Department of Industrial Engineering, Tsinghua University
– sequence: 2
  givenname: Hai
  orcidid: 0000-0003-3414-9682
  surname: Jiang
  fullname: Jiang, Hai
  email: haijiang@tsinghua.edu.cn
  organization: Department of Industrial Engineering, Tsinghua University
BookMark eNp9kMtqAyEUhqW00CTtC3Q10PWkR-emyxB6JdBNuxbH0dQwo6kaSPv0NZlCoYug4EH-T8_5pujcOqsQusEwxwDNXcBAGc2BQA6pqvP9GZrgqilywnB9jibASJVXAPgSTUPYAACjFZmgl6XYCmmiiKrLRAjOx0HZmAnbZVtvpMrcNprBfItonM12tlM-ix8qsyockN6tTcwG16n-Cl1o0Qd1_XvO0PvD_dvyKV-9Pj4vF6tcllDHnAlNCYNCtYCLkgGtWwplg0G0ndZdDboB2eFCFi1NW1GGiYCKNVKAIroqZuh2fHfr3ecutcE3budt-pKTEjOWfACk1HxMrUWvuLHaRS9kWp0ajEz2tEn3iwbTktCGFQmgIyC9C8ErzY9a0tQJND3HwA-q-aiaJ9X8qJrvE0r-oUndIPzXaagYoZDCdq383xgnqB-NS5Oe
CitedBy_id crossref_primary_10_1287_opre_2021_2142
crossref_primary_10_1016_j_cor_2023_106336
crossref_primary_10_1016_j_ejor_2024_12_037
crossref_primary_10_1016_j_jafr_2024_101158
crossref_primary_10_1177_10591478241263857
crossref_primary_10_1007_s00291_024_00752_4
crossref_primary_10_1007_s40305_022_00438_0
crossref_primary_10_1155_2022_4870685
crossref_primary_10_1016_j_ejor_2023_10_019
Cites_doi 10.1287/msom.1050.0077
10.1007/s10479-017-2478-3
10.1068/a090285
10.1023/A:1023581927405
10.1287/msom.1080.0221
10.1287/opre.1100.0866
10.1287/opre.2013.1249
10.1016/j.orl.2009.03.009
10.1287/opre.2015.1400
10.1016/j.orl.2018.11.006
10.1287/mnsc.1110.1402
10.1016/S0022-4359(96)90013-5
10.1287/opre.2014.1256
10.1287/opre.2015.1355
10.2139/ssrn.2543309
10.1287/ijoc.2014.0629
10.1287/opre.2015.1383
10.1287/ijoc.2016.0714
10.1016/j.orl.2012.08.003
10.1007/BF02579150
10.1007/s10107-013-0646-z
10.1287/msom.1070.0169
10.1287/mnsc.2014.1931
10.1016/j.orl.2014.05.006
10.1287/mnsc.1030.0147
10.1287/opre.2018.1734
10.1287/mnsc.2016.2491
10.1162/REST_a_00420
10.1287/mnsc.46.2.327.11931
10.1287/msom.1110.0344
10.1111/poms.12402
10.1287/opre.2015.1459
10.1287/opre.1120.1093
10.1016/j.orl.2017.01.009
10.2139/ssrn.3232059
10.1007/s10878-018-0302-x
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2020
COPYRIGHT 2020 Springer
Springer Science+Business Media, LLC, part of Springer Nature 2020.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020
– notice: COPYRIGHT 2020 Springer
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2020.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
88I
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M2O
M2P
M7S
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s10898-020-00896-x
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Research Library (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library (ProQuest)
Science Database (ProQuest)
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
ProQuest Business Collection (Alumni Edition)

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Sciences (General)
Computer Science
EISSN 1573-2916
EndPage 918
ExternalDocumentID A718428793
10_1007_s10898_020_00896_x
GrantInformation_xml – fundername: Innovative Research Group Project of the National Natural Science Foundation of China
  grantid: 71622006; 71761137003
  funderid: http://dx.doi.org/10.13039/100014718
GroupedDBID -52
-57
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29K
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
7WY
88I
8AO
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYQZM
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
IHE
IJ-
IKXTQ
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M0N
M2O
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9M
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SBE
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8T
Z8U
Z8W
Z92
ZMTXR
ZWQNP
ZY4
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c406t-9af82903eb01349086b804710abdffd60f70cd13c3b83b8e8912a0597ca0e2f53
IEDL.DBID RSV
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000545218300008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-5001
IngestDate Tue Nov 04 23:04:07 EST 2025
Sat Nov 29 10:09:51 EST 2025
Sat Nov 29 01:59:35 EST 2025
Tue Nov 18 22:23:47 EST 2025
Fri Feb 21 02:42:29 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Assortment optimization
Nested logit model
Approximate algorithm
Combinatorial optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-9af82903eb01349086b804710abdffd60f70cd13c3b83b8e8912a0597ca0e2f53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3414-9682
PQID 2419900700
PQPubID 29930
PageCount 24
ParticipantIDs proquest_journals_2419900700
gale_infotracacademiconefile_A718428793
crossref_citationtrail_10_1007_s10898_020_00896_x
crossref_primary_10_1007_s10898_020_00896_x
springer_journals_10_1007_s10898_020_00896_x
PublicationCentury 2000
PublicationDate 2020-08-01
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal Dealing with Theoretical and Computational Aspects of Seeking Global Optima and Their Applications in Science, Management and Engineering
PublicationTitle Journal of global optimization
PublicationTitleAbbrev J Glob Optim
PublicationYear 2020
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References Agrawal, S., Avadhanula, V., Goyal, V., Zeevi, A.: Thompson sampling for the mnl-bandit. In: Proccedings of the Conference on Learning Theory (2017)
Papadimitriou, C.H., Yannakakis, M.: On the approximability of trade-offs and optimal access of web sources. In: 2000. Proceedings. 41st Annual Symposium on Foundations of Computer Science, pp. 86–92. IEEE (2000)
KökAGXuYOptimal and competitive assortments with endogenous pricing under hierarchical consumer choice modelsManag. Sci.2011579154615631225.91042
Agrawal, S., Avadhanula, V., Goyal, V., Zeevi, A.: Mnl-bandit: a dynamic learning approach to assortment selection. Working paper (2017)
GallegoGWangRMultiproduct price optimization and competition under the nested logit model with product-differentiated price sensitivitiesOper. Res.201462245046132091821298.91087
LiHMHuhWTPricing multiple products with the multinomial logit and nested logit models: concavity and implicationsManuf. Serv. Oper. Manag.2011134549563
AouadALeviRSegevDGreedy-like algorithms for dynamic assortment planning under multinomial logit preferencesOper. Res.2018665132113453872107
Davis, J., Gallego, G., Topaloglu, H.: Assortment planning under the multinomial logit model with totally unimodular constraint structures. Working paper (2013)
HoppWJXuXProduct line selection and pricing with modularity in designManuf. Serv. Oper. Manag.200573172187
RusmevichientongPShenZJMShmoysDBDynamic assortment optimization with a multinomial logit choice model and capacity constraintOper. Res.20105861666168027527121228.90170
DongLXKouvelisPTianZJDynamic pricing and inventory control of substitute productsManuf. Serv. Oper. Manag.2009112317339
KellerPWLeviRPerakisGEfficient formulations for pricing under attraction demand modelsMath. Program.20141451–222326132076881291.91077
TrainKEDiscrete Choice Methods with Simulation2009CambridgeCambridge University Press1269.62073
LiGRusmevichientongPA greedy algorithm for the two-level nested logit modelOper. Res. Lett.201442531932432318901408.90258
ChenKDHausmanWHTechnical note: Mathematical properties of the optimal product line selection problem using choice-based conjoint analysisManag. Sci.20004623273321231.90159
GrigolonLVerbovenFNested logit or random coefficients logit? A comparison of alternative discrete choice models of product differentiationRev. Econ. Stat.2014965916935
KarmarkarNA new polynomial-time algorithm for linear programmingCombinatorica198443733957799000557.90065
KökAGFisherMLVaidyanathanRAgrawalNSmithSAssortment planning: review of literature and industry practiceRetail Supply Chain Management2009Boston, MASpringer99153
TalluriKVan RyzinGRevenue management under a general discrete choice model of consumer behaviorManag. Sci.200450115331168.91427
ChenRJiangHCapacitated assortment and price optimization for customers with disjoint consideration setsOper. Res. Lett.201745217017436200491409.90109
GallegoGTopalogluHConstrained assortment optimization for the nested logit modelManag. Sci.20146010258326011295.90076
BesbesOSauréDProduct assortment and price competition under multinomial logit demandProd. Oper. Manag.2016251114127
LiGRusmevichientongPTopalogluHThe d-level nested logit model: assortment and price optimization problemsOper. Res.201562232534233385831327.90315
XieTGeDA tractable discrete fractional programming: application to constrained assortment optimizationJ. Comb. Optim.201836240041538170911392.90113
AlptekinoğluASempleJHThe exponomial choice model: a new alternative for assortment and price optimizationOper. Res.2016641799334632631336.91040
MittalSSchulzASA general framework for designing approximation schemes for combinatorial optimization problems with many objectives combined into oneOper. Res.201361238639730461171267.90124
SchindlerRMKibarianTMIncreased consumer sales response though use of 99-ending pricesJ. Retail.1996722187199
HuhWTLiHTechnical note: Pricing under the nested attraction model with a multistage choice structureOper. Res.201563484085033786791329.90011
Ben-AkivaMELermanSRDiscrete Choice Analysis: Theory and Application to Travel Demand1985CambridgeMIT Press
Désir, A., Goyal, V.: Near-optimal algorithms for capacity constrained assortment optimization. Working paper (2014)
JagabathulaSRusmevichientongPA nonparametric joint assortment and price choice modelManag. Sci.201663931283145
WilliamsHCOn the formation of travel demand models and economic evaluation measures of user benefitEnviron. Plan. A197793285344
RayfieldWZRusmevichientongPTopalogluHApproximation methods for pricing problems under the nested logit model with price boundsInf. J. Comput.201527233535733478821329.91088
AndersonETSimesterDIEffects of \$9 price endings on retail sales: evidence from field experimentsQuant. Mark. Econ.20031193110
RusmevichientongPShenZJMShmoysDBA ptas for capacitated sum-of-ratios optimizationOper. Res. Lett.200937423023825436691167.90493
LiuQVan RyzinGOn the choice-based linear programming model for network revenue managementManuf. Serv. Oper. Manag.2008102288310
FeldmanJBTopalogluHCapacity constraints across nests in assortment optimization under the nested logit modelOper. Res.201563481282233786771329.90087
WangRXCapacitated assortment and price optimization under the multinomial logit modelOper. Res. Lett.201240649249729986891258.91068
DavisJMGallegoGTopalogluHAssortment optimization under variants of the nested logit modelOper. Res.201462225027332091691295.90076
DavisJMTopalogluHWilliamsonDPPricing problems under the nested logit model with a quality consistency constraintINFORMS J. Comput.2017291547636123931414.91141
Chen, R., Jiang, H.: Assortment optimization with position effects under the nested logit model. Working paper (2017)
Chen, X., Wang, Y., Zhou, Y.: Dynamic assortment selection under the nested logit models. Working paper (2018)
Feldman, J., Zhang, D., Liu, X., Zhang, N.: Taking assortment optimization from theory to practice: evidence from large field experiments on Alibaba. Working paper (2018)
JiangHChenRSunHMultiproduct price optimization under the multilevel nested logit modelAnn. Oper. Res.20172541–213116436657411406.91147
KleinbergJTardosEAlgorithm Design2006BangalorePearson Education India
ChenRJiangHCapacitated assortment and price optimization under the multilevel nested logit modelOper. Res. Lett.20194713035388572307165747
HM Li (896_CR34) 2011; 13
T Xie (896_CR46) 2018; 36
PW Keller (896_CR28) 2014; 145
LX Dong (896_CR17) 2009; 11
896_CR18
896_CR9
J Kleinberg (896_CR29) 2006
WZ Rayfield (896_CR38) 2015; 27
P Rusmevichientong (896_CR40) 2010; 58
WT Huh (896_CR24) 2015; 63
KD Chen (896_CR8) 2000; 46
G Gallego (896_CR20) 2014; 60
L Grigolon (896_CR22) 2014; 96
O Besbes (896_CR7) 2016; 25
R Chen (896_CR11) 2019; 47
K Talluri (896_CR42) 2004; 50
RX Wang (896_CR44) 2012; 40
A Alptekinoğlu (896_CR3) 2016; 64
JM Davis (896_CR14) 2014; 62
AG Kök (896_CR30) 2009
S Jagabathula (896_CR25) 2016; 63
Q Liu (896_CR35) 2008; 10
H Jiang (896_CR26) 2017; 254
JB Feldman (896_CR19) 2015; 63
A Aouad (896_CR5) 2018; 66
P Rusmevichientong (896_CR39) 2009; 37
R Chen (896_CR10) 2017; 45
G Li (896_CR32) 2014; 42
ME Ben-Akiva (896_CR6) 1985
KE Train (896_CR43) 2009
S Mittal (896_CR36) 2013; 61
WJ Hopp (896_CR23) 2005; 7
RM Schindler (896_CR41) 1996; 72
AG Kök (896_CR31) 2011; 57
ET Anderson (896_CR4) 2003; 1
N Karmarkar (896_CR27) 1984; 4
896_CR37
HC Williams (896_CR45) 1977; 9
896_CR16
G Gallego (896_CR21) 2014; 62
G Li (896_CR33) 2015; 62
896_CR1
896_CR13
JM Davis (896_CR15) 2017; 29
896_CR2
896_CR12
References_xml – reference: GrigolonLVerbovenFNested logit or random coefficients logit? A comparison of alternative discrete choice models of product differentiationRev. Econ. Stat.2014965916935
– reference: TrainKEDiscrete Choice Methods with Simulation2009CambridgeCambridge University Press1269.62073
– reference: AlptekinoğluASempleJHThe exponomial choice model: a new alternative for assortment and price optimizationOper. Res.2016641799334632631336.91040
– reference: AouadALeviRSegevDGreedy-like algorithms for dynamic assortment planning under multinomial logit preferencesOper. Res.2018665132113453872107
– reference: HoppWJXuXProduct line selection and pricing with modularity in designManuf. Serv. Oper. Manag.200573172187
– reference: Davis, J., Gallego, G., Topaloglu, H.: Assortment planning under the multinomial logit model with totally unimodular constraint structures. Working paper (2013)
– reference: WangRXCapacitated assortment and price optimization under the multinomial logit modelOper. Res. Lett.201240649249729986891258.91068
– reference: Agrawal, S., Avadhanula, V., Goyal, V., Zeevi, A.: Mnl-bandit: a dynamic learning approach to assortment selection. Working paper (2017)
– reference: ChenKDHausmanWHTechnical note: Mathematical properties of the optimal product line selection problem using choice-based conjoint analysisManag. Sci.20004623273321231.90159
– reference: JagabathulaSRusmevichientongPA nonparametric joint assortment and price choice modelManag. Sci.201663931283145
– reference: KarmarkarNA new polynomial-time algorithm for linear programmingCombinatorica198443733957799000557.90065
– reference: DavisJMTopalogluHWilliamsonDPPricing problems under the nested logit model with a quality consistency constraintINFORMS J. Comput.2017291547636123931414.91141
– reference: Ben-AkivaMELermanSRDiscrete Choice Analysis: Theory and Application to Travel Demand1985CambridgeMIT Press
– reference: HuhWTLiHTechnical note: Pricing under the nested attraction model with a multistage choice structureOper. Res.201563484085033786791329.90011
– reference: FeldmanJBTopalogluHCapacity constraints across nests in assortment optimization under the nested logit modelOper. Res.201563481282233786771329.90087
– reference: KökAGFisherMLVaidyanathanRAgrawalNSmithSAssortment planning: review of literature and industry practiceRetail Supply Chain Management2009Boston, MASpringer99153
– reference: RusmevichientongPShenZJMShmoysDBA ptas for capacitated sum-of-ratios optimizationOper. Res. Lett.200937423023825436691167.90493
– reference: SchindlerRMKibarianTMIncreased consumer sales response though use of 99-ending pricesJ. Retail.1996722187199
– reference: AndersonETSimesterDIEffects of \$9 price endings on retail sales: evidence from field experimentsQuant. Mark. Econ.20031193110
– reference: KleinbergJTardosEAlgorithm Design2006BangalorePearson Education India
– reference: Papadimitriou, C.H., Yannakakis, M.: On the approximability of trade-offs and optimal access of web sources. In: 2000. Proceedings. 41st Annual Symposium on Foundations of Computer Science, pp. 86–92. IEEE (2000)
– reference: LiGRusmevichientongPTopalogluHThe d-level nested logit model: assortment and price optimization problemsOper. Res.201562232534233385831327.90315
– reference: Chen, R., Jiang, H.: Assortment optimization with position effects under the nested logit model. Working paper (2017)
– reference: RayfieldWZRusmevichientongPTopalogluHApproximation methods for pricing problems under the nested logit model with price boundsInf. J. Comput.201527233535733478821329.91088
– reference: LiGRusmevichientongPA greedy algorithm for the two-level nested logit modelOper. Res. Lett.201442531932432318901408.90258
– reference: KökAGXuYOptimal and competitive assortments with endogenous pricing under hierarchical consumer choice modelsManag. Sci.2011579154615631225.91042
– reference: WilliamsHCOn the formation of travel demand models and economic evaluation measures of user benefitEnviron. Plan. A197793285344
– reference: Chen, X., Wang, Y., Zhou, Y.: Dynamic assortment selection under the nested logit models. Working paper (2018)
– reference: DavisJMGallegoGTopalogluHAssortment optimization under variants of the nested logit modelOper. Res.201462225027332091691295.90076
– reference: BesbesOSauréDProduct assortment and price competition under multinomial logit demandProd. Oper. Manag.2016251114127
– reference: ChenRJiangHCapacitated assortment and price optimization for customers with disjoint consideration setsOper. Res. Lett.201745217017436200491409.90109
– reference: GallegoGWangRMultiproduct price optimization and competition under the nested logit model with product-differentiated price sensitivitiesOper. Res.201462245046132091821298.91087
– reference: KellerPWLeviRPerakisGEfficient formulations for pricing under attraction demand modelsMath. Program.20141451–222326132076881291.91077
– reference: XieTGeDA tractable discrete fractional programming: application to constrained assortment optimizationJ. Comb. Optim.201836240041538170911392.90113
– reference: ChenRJiangHCapacitated assortment and price optimization under the multilevel nested logit modelOper. Res. Lett.20194713035388572307165747
– reference: DongLXKouvelisPTianZJDynamic pricing and inventory control of substitute productsManuf. Serv. Oper. Manag.2009112317339
– reference: Désir, A., Goyal, V.: Near-optimal algorithms for capacity constrained assortment optimization. Working paper (2014)
– reference: MittalSSchulzASA general framework for designing approximation schemes for combinatorial optimization problems with many objectives combined into oneOper. Res.201361238639730461171267.90124
– reference: Feldman, J., Zhang, D., Liu, X., Zhang, N.: Taking assortment optimization from theory to practice: evidence from large field experiments on Alibaba. Working paper (2018)
– reference: LiHMHuhWTPricing multiple products with the multinomial logit and nested logit models: concavity and implicationsManuf. Serv. Oper. Manag.2011134549563
– reference: TalluriKVan RyzinGRevenue management under a general discrete choice model of consumer behaviorManag. Sci.200450115331168.91427
– reference: Agrawal, S., Avadhanula, V., Goyal, V., Zeevi, A.: Thompson sampling for the mnl-bandit. In: Proccedings of the Conference on Learning Theory (2017)
– reference: RusmevichientongPShenZJMShmoysDBDynamic assortment optimization with a multinomial logit choice model and capacity constraintOper. Res.20105861666168027527121228.90170
– reference: GallegoGTopalogluHConstrained assortment optimization for the nested logit modelManag. Sci.20146010258326011295.90076
– reference: JiangHChenRSunHMultiproduct price optimization under the multilevel nested logit modelAnn. Oper. Res.20172541–213116436657411406.91147
– reference: LiuQVan RyzinGOn the choice-based linear programming model for network revenue managementManuf. Serv. Oper. Manag.2008102288310
– volume-title: Discrete Choice Methods with Simulation
  year: 2009
  ident: 896_CR43
– volume: 7
  start-page: 172
  issue: 3
  year: 2005
  ident: 896_CR23
  publication-title: Manuf. Serv. Oper. Manag.
  doi: 10.1287/msom.1050.0077
– volume: 254
  start-page: 131
  issue: 1–2
  year: 2017
  ident: 896_CR26
  publication-title: Ann. Oper. Res.
  doi: 10.1007/s10479-017-2478-3
– volume: 9
  start-page: 285
  issue: 3
  year: 1977
  ident: 896_CR45
  publication-title: Environ. Plan. A
  doi: 10.1068/a090285
– volume: 1
  start-page: 93
  issue: 1
  year: 2003
  ident: 896_CR4
  publication-title: Quant. Mark. Econ.
  doi: 10.1023/A:1023581927405
– volume-title: Algorithm Design
  year: 2006
  ident: 896_CR29
– start-page: 99
  volume-title: Retail Supply Chain Management
  year: 2009
  ident: 896_CR30
– volume: 11
  start-page: 317
  issue: 2
  year: 2009
  ident: 896_CR17
  publication-title: Manuf. Serv. Oper. Manag.
  doi: 10.1287/msom.1080.0221
– volume: 58
  start-page: 1666
  issue: 6
  year: 2010
  ident: 896_CR40
  publication-title: Oper. Res.
  doi: 10.1287/opre.1100.0866
– volume: 62
  start-page: 450
  issue: 2
  year: 2014
  ident: 896_CR21
  publication-title: Oper. Res.
  doi: 10.1287/opre.2013.1249
– volume: 37
  start-page: 230
  issue: 4
  year: 2009
  ident: 896_CR39
  publication-title: Oper. Res. Lett.
  doi: 10.1016/j.orl.2009.03.009
– ident: 896_CR2
– volume: 63
  start-page: 840
  issue: 4
  year: 2015
  ident: 896_CR24
  publication-title: Oper. Res.
  doi: 10.1287/opre.2015.1400
– volume: 47
  start-page: 30
  issue: 1
  year: 2019
  ident: 896_CR11
  publication-title: Oper. Res. Lett.
  doi: 10.1016/j.orl.2018.11.006
– volume: 57
  start-page: 1546
  issue: 9
  year: 2011
  ident: 896_CR31
  publication-title: Manag. Sci.
  doi: 10.1287/mnsc.1110.1402
– volume: 72
  start-page: 187
  issue: 2
  year: 1996
  ident: 896_CR41
  publication-title: J. Retail.
  doi: 10.1016/S0022-4359(96)90013-5
– ident: 896_CR12
– volume: 62
  start-page: 250
  issue: 2
  year: 2014
  ident: 896_CR14
  publication-title: Oper. Res.
  doi: 10.1287/opre.2014.1256
– ident: 896_CR37
– volume: 62
  start-page: 325
  issue: 2
  year: 2015
  ident: 896_CR33
  publication-title: Oper. Res.
  doi: 10.1287/opre.2015.1355
– ident: 896_CR16
  doi: 10.2139/ssrn.2543309
– volume: 27
  start-page: 335
  issue: 2
  year: 2015
  ident: 896_CR38
  publication-title: Inf. J. Comput.
  doi: 10.1287/ijoc.2014.0629
– volume: 63
  start-page: 812
  issue: 4
  year: 2015
  ident: 896_CR19
  publication-title: Oper. Res.
  doi: 10.1287/opre.2015.1383
– volume-title: Discrete Choice Analysis: Theory and Application to Travel Demand
  year: 1985
  ident: 896_CR6
– ident: 896_CR9
– volume: 29
  start-page: 54
  issue: 1
  year: 2017
  ident: 896_CR15
  publication-title: INFORMS J. Comput.
  doi: 10.1287/ijoc.2016.0714
– volume: 40
  start-page: 492
  issue: 6
  year: 2012
  ident: 896_CR44
  publication-title: Oper. Res. Lett.
  doi: 10.1016/j.orl.2012.08.003
– volume: 4
  start-page: 373
  year: 1984
  ident: 896_CR27
  publication-title: Combinatorica
  doi: 10.1007/BF02579150
– volume: 145
  start-page: 223
  issue: 1–2
  year: 2014
  ident: 896_CR28
  publication-title: Math. Program.
  doi: 10.1007/s10107-013-0646-z
– volume: 10
  start-page: 288
  issue: 2
  year: 2008
  ident: 896_CR35
  publication-title: Manuf. Serv. Oper. Manag.
  doi: 10.1287/msom.1070.0169
– volume: 60
  start-page: 2583
  issue: 10
  year: 2014
  ident: 896_CR20
  publication-title: Manag. Sci.
  doi: 10.1287/mnsc.2014.1931
– volume: 42
  start-page: 319
  issue: 5
  year: 2014
  ident: 896_CR32
  publication-title: Oper. Res. Lett.
  doi: 10.1016/j.orl.2014.05.006
– volume: 50
  start-page: 15
  issue: 1
  year: 2004
  ident: 896_CR42
  publication-title: Manag. Sci.
  doi: 10.1287/mnsc.1030.0147
– volume: 66
  start-page: 1321
  issue: 5
  year: 2018
  ident: 896_CR5
  publication-title: Oper. Res.
  doi: 10.1287/opre.2018.1734
– ident: 896_CR1
– volume: 63
  start-page: 3128
  issue: 9
  year: 2016
  ident: 896_CR25
  publication-title: Manag. Sci.
  doi: 10.1287/mnsc.2016.2491
– volume: 96
  start-page: 916
  issue: 5
  year: 2014
  ident: 896_CR22
  publication-title: Rev. Econ. Stat.
  doi: 10.1162/REST_a_00420
– ident: 896_CR13
– volume: 46
  start-page: 327
  issue: 2
  year: 2000
  ident: 896_CR8
  publication-title: Manag. Sci.
  doi: 10.1287/mnsc.46.2.327.11931
– volume: 13
  start-page: 549
  issue: 4
  year: 2011
  ident: 896_CR34
  publication-title: Manuf. Serv. Oper. Manag.
  doi: 10.1287/msom.1110.0344
– volume: 25
  start-page: 114
  issue: 1
  year: 2016
  ident: 896_CR7
  publication-title: Prod. Oper. Manag.
  doi: 10.1111/poms.12402
– volume: 64
  start-page: 79
  issue: 1
  year: 2016
  ident: 896_CR3
  publication-title: Oper. Res.
  doi: 10.1287/opre.2015.1459
– volume: 61
  start-page: 386
  issue: 2
  year: 2013
  ident: 896_CR36
  publication-title: Oper. Res.
  doi: 10.1287/opre.1120.1093
– volume: 45
  start-page: 170
  issue: 2
  year: 2017
  ident: 896_CR10
  publication-title: Oper. Res. Lett.
  doi: 10.1016/j.orl.2017.01.009
– ident: 896_CR18
  doi: 10.2139/ssrn.3232059
– volume: 36
  start-page: 400
  issue: 2
  year: 2018
  ident: 896_CR46
  publication-title: J. Comb. Optim.
  doi: 10.1007/s10878-018-0302-x
SSID ssj0009852
Score 2.3138125
Snippet We study the capacitated assortment and price optimization problem, where a retailer sells categories of substitutable products subject to a capacity...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 895
SubjectTerms Algorithms
Approximation
Cardinal-birds
Computer Science
Logit models
Mathematical analysis
Mathematics
Mathematics and Statistics
Multiple choice
Operations Research/Decision Theory
Optimization
Polynomials
Real Functions
SummonAdditionalLinks – databaseName: Computer Science Database
  dbid: K7-
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fSxwxEB6q9UEftP4onrUlD4KKhmazd5vkSUR6lArig4JvIZtkQdC98-4U_3xncrlerdSXwr7tJrvsTGYmM_m-AdjTXROjCoqHbiFxgyIM17oSHCNXV-oqkNKkZhPq4kLf3JjLnHAb52OVM5uYDHUYeMqRf0dPg4YTFVScDB84dY2i6mpuobEAHwspC9Lzc8XnpLs6ddwRRvZ4D-1xBs1k6JwmcJkkXLU2FX9-5Zj-Ns9v6qTJ_fTX_vfDP8FqDjzZ6VRT1uFDbDdg5Q86wg1Yzwt9zA4yG_XhJvw6Q3fqCYkWA8NIG8N1Sigy1wY2JEYiNkCrc5_hnIwwaSOGUSVrUyaVkW2dsNRwZwuu-z-uzn7y3ICBe_TzE25cQ3XWMlKylCqEVa0FejPh6tA0oRKNEj4UpS9rjVfUppAO4zXlnYiy6ZWfYbEdtHEbGG71YrdxGMqboqtUXftYV97gKBOUk6IDxezvW5_ZyalJxp2d8yqTxCxKzCaJ2ecOHP0eM5xyc7z79D4J1dLCxZm9y_gD_D6iwLKn6KVp_2jKDuzOJGnzih7buRg7cDzThfntf7935_3ZvsCyTFpIZwp3YXEyeoxfYck_TW7Ho29Jn18AC334Pg
  priority: 102
  providerName: ProQuest
Title Capacitated assortment and price optimization under the nested logit model
URI https://link.springer.com/article/10.1007/s10898-020-00896-x
https://www.proquest.com/docview/2419900700
Volume 77
WOSCitedRecordID wos000545218300008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-2916
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009852
  issn: 0925-5001
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bSxwxFD5U7YN90Lq1dFtd8iBoaQOZmd1J8mgXpbS4LtqL7UvIJBkotKPsbKU_v-fEjGvtBSwMB4bJZEKSc0ky33cAdtRQhyC95H6Y5bhAEZorVQqOkastVOlp0sRkE3IyUWdneppAYW33t3t3JBkt9Q2wmyI4WE5IaKVLjpHjCro7Rep4cvphQbWrYp4dofMRH6EVTlCZP9fxizu6bZR_Ox2NTudw_f-a-xDWUpDJ9q9mxQbcC00P1rsEDizpcw8e3GAjxLujawrXtgcbqVTL9hI19fNH8GaMvtURLC14hmE3xu60u8hs49kF0ROxczRB3xK2kxFAbcawUtbEbVVGhnbOYvadTXh_ePBu_JqnbAzcodOfc21rOnQtAu2c0nFhWSmBrk3Yyte1L0UthfNZ4YpK4RWUznKLwZt0VoS8HhWPYbk5b8ITYLjuC8PaYlyvs6GUVeVCVTqNb2kvbS76kHWDYlyiKqeMGV_NgmSZetdg75rYu-ZHH15cv3NxRdTxz9K7NNaGtBhrdjaBEbB9xIdl9tFl02JSF33Y6qaDSerdGgx70IujtcSmvuyGf_H47999erfiz2A1jzOIfjjcguX57HvYhvvucv6lnQ1gSX78NICVVweT6QnevZUc5ZEYk8yPo5ySlKcop6PPg6goPwHODAKk
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB1VBQl6AFqourQFH4oAUQvHSRP7UKFqoWppWXEoUm-uYzsSEmSX3YWWP8VvZMbrsHyI3nqolFvifPn5zYztNwOwpQodQuUr7otMYoAiNFeqFBw9V5ur0hNoYrGJajBQp6f6_QL86LQwtK2y48RI1H7oaI78JVoaJE4EqHg1-sKpahStrnYlNGawOArfzzFkm-wevsb-fSLl_puT_gFPVQW4Q-M15do2tHiYB5oBpGWvslYCKVrY2jeNL0VTCeez3OW1wiMonUmLTkjlrAiyoSoRSPk3igKHA20VFP15kl8VK_wILXf4DvJ_EukkqZ4iMZskHbfSJb_4wxD-bQ7-WZeN5m7_7nX7UffgTnKs2d5sJCzDQmhXYOm3dIsrsJyIbMKepWzbz-_D2z66C46UdsEzjCQwHKEJU2Zbz0aUcYkNkVU_J7kqI83dmKHXzNo4U8zIdkxZLCj0AD5cyReuwmI7bMMaMAxlQ9FYDFV0VlRVXbtQl05jK-0rK0UPsq63jUvZ16kIyCczzxtNCDGIEBMRYi568OJXm9Es98ilVz8lEBkiJryzs0lfge9HKb7MHnohFB_rvAcbHXJMYqyJmcOmB9sd9uan___ch5ff7THcOjh5d2yODwdH63BbxhFA-yc3YHE6_ho24ab7Nv04GT-KY4nB2VVj8ifxqlRR
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB5VLUJwAFpABAr4AAIEVr3eZG0fEKpaIkpQ1ANIvRmv7ZWQYBOS9MFf49cx43gJD9FbD0h72_W-_PmbGdvfDMAj3TcxqqB46BcSAxRhuNaV4Oi5ulJXgUCTik2o8VgfHZnDNfjeaWFoW2XHiYmow8TTHPkOWhokTgSo2GnytojD_eGr6VdOFaRopbUrp7GEyCh-O8Xwbf7yYB_7-rGUw9fv997wXGGAezRkC25cQwuJZaTZQFoCq2otkK6Fq0PThEo0SvhQlL6sNR5Rm0I6dEiUdyLKhipGIP1voBUe0BgbKb5K-KtTtR9h5IAP0BZkwU6W7WkStknSdGtT8bPfjOKfpuGvNdpk-obX_-efdgOuZYeb7S5HyCasxXYLrv6ShnELNjPBzdnTnIX72U14u4duhCcFXgwMIwwMU2gilbk2sCllYmITZNsvWcbKSIs3Y-hNszbNIDOyKQuWCg3dgg8X8oW3Yb2dtPEOMAxxY79xGMKYoq9UXftYV95gKxOUk6IHRdfz1ues7FQc5LNd5ZMmtFhEi01osWc9eP6zzXSZk-Tcq58QoCwRFt7Zu6y7wPej1F92F70TiptN2YPtDkU2M9ncriDUgxcdDlen__3cu-ff7SFcRijadwfj0T24ItNgoG2V27C-mB3H-3DJnyw-zWcP0rBi8PGiIfkDgMlc9w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Capacitated+assortment+and+price+optimization+under+the+nested+logit+model&rft.jtitle=Journal+of+global+optimization&rft.au=Chen%2C+Rui&rft.au=Jiang%2C+Hai&rft.date=2020-08-01&rft.pub=Springer+US&rft.issn=0925-5001&rft.eissn=1573-2916&rft.volume=77&rft.issue=4&rft.spage=895&rft.epage=918&rft_id=info:doi/10.1007%2Fs10898-020-00896-x&rft.externalDocID=10_1007_s10898_020_00896_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-5001&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-5001&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-5001&client=summon