Capacitated assortment and price optimization under the nested logit model
We study the capacitated assortment and price optimization problem, where a retailer sells categories of substitutable products subject to a capacity constraint. The goal of the retailer is to determine the subset of products as well as their selling prices so as to maximize the expected revenue. We...
Gespeichert in:
| Veröffentlicht in: | Journal of global optimization Jg. 77; H. 4; S. 895 - 918 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Springer US
01.08.2020
Springer Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0925-5001, 1573-2916 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | We study the capacitated assortment and price optimization problem, where a retailer sells categories of substitutable products subject to a capacity constraint. The goal of the retailer is to determine the subset of products as well as their selling prices so as to maximize the expected revenue. We model the customer purchase behavior using the nested logit model and formulate this problem as a non-linear binary integer program. For this NP-complete problem, we show that there exists a pseudo polynomial time approximation scheme that finds its
ϵ
-approximate solution. We first convert the original problem into an equivalent fixed point problem. We then show that finding an
ϵ
-approximate solution to the fixed point problem can be achieved by binary search, where a non-linear auxiliary problem is repeatedly approximated by a dynamic programing based algorithm involving an approximation to a series of multiple-choice parametric knapsack problems. For the special case when the capacity constraints are cardinal and nest-specific, we develop an algorithm that finds the optimal solution in strongly polynomial time. Moreover, our algorithm can be directly applied to find an
ϵ
-approximate solution to the capacitated assortment optimization problem under the nested logit model, which is the first approximate algorithm that is polynomial with respect to the number of nests in the literature. |
|---|---|
| AbstractList | We study the capacitated assortment and price optimization problem, where a retailer sells categories of substitutable products subject to a capacity constraint. The goal of the retailer is to determine the subset of products as well as their selling prices so as to maximize the expected revenue. We model the customer purchase behavior using the nested logit model and formulate this problem as a non-linear binary integer program. For this NP-complete problem, we show that there exists a pseudo polynomial time approximation scheme that finds its
ϵ
-approximate solution. We first convert the original problem into an equivalent fixed point problem. We then show that finding an
ϵ
-approximate solution to the fixed point problem can be achieved by binary search, where a non-linear auxiliary problem is repeatedly approximated by a dynamic programing based algorithm involving an approximation to a series of multiple-choice parametric knapsack problems. For the special case when the capacity constraints are cardinal and nest-specific, we develop an algorithm that finds the optimal solution in strongly polynomial time. Moreover, our algorithm can be directly applied to find an
ϵ
-approximate solution to the capacitated assortment optimization problem under the nested logit model, which is the first approximate algorithm that is polynomial with respect to the number of nests in the literature. We study the capacitated assortment and price optimization problem, where a retailer sells categories of substitutable products subject to a capacity constraint. The goal of the retailer is to determine the subset of products as well as their selling prices so as to maximize the expected revenue. We model the customer purchase behavior using the nested logit model and formulate this problem as a non-linear binary integer program. For this NP-complete problem, we show that there exists a pseudo polynomial time approximation scheme that finds its ϵ-approximate solution. We first convert the original problem into an equivalent fixed point problem. We then show that finding an ϵ-approximate solution to the fixed point problem can be achieved by binary search, where a non-linear auxiliary problem is repeatedly approximated by a dynamic programing based algorithm involving an approximation to a series of multiple-choice parametric knapsack problems. For the special case when the capacity constraints are cardinal and nest-specific, we develop an algorithm that finds the optimal solution in strongly polynomial time. Moreover, our algorithm can be directly applied to find an ϵ-approximate solution to the capacitated assortment optimization problem under the nested logit model, which is the first approximate algorithm that is polynomial with respect to the number of nests in the literature. We study the capacitated assortment and price optimization problem, where a retailer sells categories of substitutable products subject to a capacity constraint. The goal of the retailer is to determine the subset of products as well as their selling prices so as to maximize the expected revenue. We model the customer purchase behavior using the nested logit model and formulate this problem as a non-linear binary integer program. For this NP-complete problem, we show that there exists a pseudo polynomial time approximation scheme that finds its [Formula omitted]-approximate solution. We first convert the original problem into an equivalent fixed point problem. We then show that finding an [Formula omitted]-approximate solution to the fixed point problem can be achieved by binary search, where a non-linear auxiliary problem is repeatedly approximated by a dynamic programing based algorithm involving an approximation to a series of multiple-choice parametric knapsack problems. For the special case when the capacity constraints are cardinal and nest-specific, we develop an algorithm that finds the optimal solution in strongly polynomial time. Moreover, our algorithm can be directly applied to find an [Formula omitted]-approximate solution to the capacitated assortment optimization problem under the nested logit model, which is the first approximate algorithm that is polynomial with respect to the number of nests in the literature. |
| Audience | Academic |
| Author | Chen, Rui Jiang, Hai |
| Author_xml | – sequence: 1 givenname: Rui surname: Chen fullname: Chen, Rui organization: Department of Industrial Engineering, Tsinghua University – sequence: 2 givenname: Hai orcidid: 0000-0003-3414-9682 surname: Jiang fullname: Jiang, Hai email: haijiang@tsinghua.edu.cn organization: Department of Industrial Engineering, Tsinghua University |
| BookMark | eNp9kMtqAyEUhqW00CTtC3Q10PWkR-emyxB6JdBNuxbH0dQwo6kaSPv0NZlCoYug4EH-T8_5pujcOqsQusEwxwDNXcBAGc2BQA6pqvP9GZrgqilywnB9jibASJVXAPgSTUPYAACjFZmgl6XYCmmiiKrLRAjOx0HZmAnbZVtvpMrcNprBfItonM12tlM-ix8qsyockN6tTcwG16n-Cl1o0Qd1_XvO0PvD_dvyKV-9Pj4vF6tcllDHnAlNCYNCtYCLkgGtWwplg0G0ndZdDboB2eFCFi1NW1GGiYCKNVKAIroqZuh2fHfr3ecutcE3budt-pKTEjOWfACk1HxMrUWvuLHaRS9kWp0ajEz2tEn3iwbTktCGFQmgIyC9C8ErzY9a0tQJND3HwA-q-aiaJ9X8qJrvE0r-oUndIPzXaagYoZDCdq383xgnqB-NS5Oe |
| CitedBy_id | crossref_primary_10_1287_opre_2021_2142 crossref_primary_10_1016_j_cor_2023_106336 crossref_primary_10_1016_j_ejor_2024_12_037 crossref_primary_10_1016_j_jafr_2024_101158 crossref_primary_10_1177_10591478241263857 crossref_primary_10_1007_s00291_024_00752_4 crossref_primary_10_1007_s40305_022_00438_0 crossref_primary_10_1155_2022_4870685 crossref_primary_10_1016_j_ejor_2023_10_019 |
| Cites_doi | 10.1287/msom.1050.0077 10.1007/s10479-017-2478-3 10.1068/a090285 10.1023/A:1023581927405 10.1287/msom.1080.0221 10.1287/opre.1100.0866 10.1287/opre.2013.1249 10.1016/j.orl.2009.03.009 10.1287/opre.2015.1400 10.1016/j.orl.2018.11.006 10.1287/mnsc.1110.1402 10.1016/S0022-4359(96)90013-5 10.1287/opre.2014.1256 10.1287/opre.2015.1355 10.2139/ssrn.2543309 10.1287/ijoc.2014.0629 10.1287/opre.2015.1383 10.1287/ijoc.2016.0714 10.1016/j.orl.2012.08.003 10.1007/BF02579150 10.1007/s10107-013-0646-z 10.1287/msom.1070.0169 10.1287/mnsc.2014.1931 10.1016/j.orl.2014.05.006 10.1287/mnsc.1030.0147 10.1287/opre.2018.1734 10.1287/mnsc.2016.2491 10.1162/REST_a_00420 10.1287/mnsc.46.2.327.11931 10.1287/msom.1110.0344 10.1111/poms.12402 10.1287/opre.2015.1459 10.1287/opre.1120.1093 10.1016/j.orl.2017.01.009 10.2139/ssrn.3232059 10.1007/s10878-018-0302-x |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2020 COPYRIGHT 2020 Springer Springer Science+Business Media, LLC, part of Springer Nature 2020. |
| Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020 – notice: COPYRIGHT 2020 Springer – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020. |
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 88I 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L6V L7M L~C L~D M0C M0N M2O M2P M7S MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
| DOI | 10.1007/s10898-020-00896-x |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Research Library (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Business Premium Collection ProQuest Technology Collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library (ProQuest) Science Database (ProQuest) Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea ProQuest Research Library Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ProQuest Business Collection (Alumni Edition) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics Sciences (General) Computer Science |
| EISSN | 1573-2916 |
| EndPage | 918 |
| ExternalDocumentID | A718428793 10_1007_s10898_020_00896_x |
| GrantInformation_xml | – fundername: Innovative Research Group Project of the National Natural Science Foundation of China grantid: 71622006; 71761137003 funderid: http://dx.doi.org/10.13039/100014718 |
| GroupedDBID | -52 -57 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29K 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 7WY 88I 8AO 8FE 8FG 8FL 8G5 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYQZM AZFZN AZQEC B-. BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP D-I DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IAO IHE IJ- IKXTQ ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW L6V LAK LLZTM M0C M0N M2O M2P M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9M PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SBE SCLPG SDD SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8T Z8U Z8W Z92 ZMTXR ZWQNP ZY4 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c406t-9af82903eb01349086b804710abdffd60f70cd13c3b83b8e8912a0597ca0e2f53 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000545218300008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0925-5001 |
| IngestDate | Tue Nov 04 23:04:07 EST 2025 Sat Nov 29 10:09:51 EST 2025 Sat Nov 29 01:59:35 EST 2025 Tue Nov 18 22:23:47 EST 2025 Fri Feb 21 02:42:29 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Assortment optimization Nested logit model Approximate algorithm Combinatorial optimization |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c406t-9af82903eb01349086b804710abdffd60f70cd13c3b83b8e8912a0597ca0e2f53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-3414-9682 |
| PQID | 2419900700 |
| PQPubID | 29930 |
| PageCount | 24 |
| ParticipantIDs | proquest_journals_2419900700 gale_infotracacademiconefile_A718428793 crossref_citationtrail_10_1007_s10898_020_00896_x crossref_primary_10_1007_s10898_020_00896_x springer_journals_10_1007_s10898_020_00896_x |
| PublicationCentury | 2000 |
| PublicationDate | 2020-08-01 |
| PublicationDateYYYYMMDD | 2020-08-01 |
| PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationSubtitle | An International Journal Dealing with Theoretical and Computational Aspects of Seeking Global Optima and Their Applications in Science, Management and Engineering |
| PublicationTitle | Journal of global optimization |
| PublicationTitleAbbrev | J Glob Optim |
| PublicationYear | 2020 |
| Publisher | Springer US Springer Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer – name: Springer Nature B.V |
| References | Agrawal, S., Avadhanula, V., Goyal, V., Zeevi, A.: Thompson sampling for the mnl-bandit. In: Proccedings of the Conference on Learning Theory (2017) Papadimitriou, C.H., Yannakakis, M.: On the approximability of trade-offs and optimal access of web sources. In: 2000. Proceedings. 41st Annual Symposium on Foundations of Computer Science, pp. 86–92. IEEE (2000) KökAGXuYOptimal and competitive assortments with endogenous pricing under hierarchical consumer choice modelsManag. Sci.2011579154615631225.91042 Agrawal, S., Avadhanula, V., Goyal, V., Zeevi, A.: Mnl-bandit: a dynamic learning approach to assortment selection. Working paper (2017) GallegoGWangRMultiproduct price optimization and competition under the nested logit model with product-differentiated price sensitivitiesOper. Res.201462245046132091821298.91087 LiHMHuhWTPricing multiple products with the multinomial logit and nested logit models: concavity and implicationsManuf. Serv. Oper. Manag.2011134549563 AouadALeviRSegevDGreedy-like algorithms for dynamic assortment planning under multinomial logit preferencesOper. Res.2018665132113453872107 Davis, J., Gallego, G., Topaloglu, H.: Assortment planning under the multinomial logit model with totally unimodular constraint structures. Working paper (2013) HoppWJXuXProduct line selection and pricing with modularity in designManuf. Serv. Oper. Manag.200573172187 RusmevichientongPShenZJMShmoysDBDynamic assortment optimization with a multinomial logit choice model and capacity constraintOper. Res.20105861666168027527121228.90170 DongLXKouvelisPTianZJDynamic pricing and inventory control of substitute productsManuf. Serv. Oper. Manag.2009112317339 KellerPWLeviRPerakisGEfficient formulations for pricing under attraction demand modelsMath. Program.20141451–222326132076881291.91077 TrainKEDiscrete Choice Methods with Simulation2009CambridgeCambridge University Press1269.62073 LiGRusmevichientongPA greedy algorithm for the two-level nested logit modelOper. Res. Lett.201442531932432318901408.90258 ChenKDHausmanWHTechnical note: Mathematical properties of the optimal product line selection problem using choice-based conjoint analysisManag. Sci.20004623273321231.90159 GrigolonLVerbovenFNested logit or random coefficients logit? A comparison of alternative discrete choice models of product differentiationRev. Econ. Stat.2014965916935 KarmarkarNA new polynomial-time algorithm for linear programmingCombinatorica198443733957799000557.90065 KökAGFisherMLVaidyanathanRAgrawalNSmithSAssortment planning: review of literature and industry practiceRetail Supply Chain Management2009Boston, MASpringer99153 TalluriKVan RyzinGRevenue management under a general discrete choice model of consumer behaviorManag. Sci.200450115331168.91427 ChenRJiangHCapacitated assortment and price optimization for customers with disjoint consideration setsOper. Res. Lett.201745217017436200491409.90109 GallegoGTopalogluHConstrained assortment optimization for the nested logit modelManag. Sci.20146010258326011295.90076 BesbesOSauréDProduct assortment and price competition under multinomial logit demandProd. Oper. Manag.2016251114127 LiGRusmevichientongPTopalogluHThe d-level nested logit model: assortment and price optimization problemsOper. Res.201562232534233385831327.90315 XieTGeDA tractable discrete fractional programming: application to constrained assortment optimizationJ. Comb. Optim.201836240041538170911392.90113 AlptekinoğluASempleJHThe exponomial choice model: a new alternative for assortment and price optimizationOper. Res.2016641799334632631336.91040 MittalSSchulzASA general framework for designing approximation schemes for combinatorial optimization problems with many objectives combined into oneOper. Res.201361238639730461171267.90124 SchindlerRMKibarianTMIncreased consumer sales response though use of 99-ending pricesJ. Retail.1996722187199 HuhWTLiHTechnical note: Pricing under the nested attraction model with a multistage choice structureOper. Res.201563484085033786791329.90011 Ben-AkivaMELermanSRDiscrete Choice Analysis: Theory and Application to Travel Demand1985CambridgeMIT Press Désir, A., Goyal, V.: Near-optimal algorithms for capacity constrained assortment optimization. Working paper (2014) JagabathulaSRusmevichientongPA nonparametric joint assortment and price choice modelManag. Sci.201663931283145 WilliamsHCOn the formation of travel demand models and economic evaluation measures of user benefitEnviron. Plan. A197793285344 RayfieldWZRusmevichientongPTopalogluHApproximation methods for pricing problems under the nested logit model with price boundsInf. J. Comput.201527233535733478821329.91088 AndersonETSimesterDIEffects of \$9 price endings on retail sales: evidence from field experimentsQuant. Mark. Econ.20031193110 RusmevichientongPShenZJMShmoysDBA ptas for capacitated sum-of-ratios optimizationOper. Res. Lett.200937423023825436691167.90493 LiuQVan RyzinGOn the choice-based linear programming model for network revenue managementManuf. Serv. Oper. Manag.2008102288310 FeldmanJBTopalogluHCapacity constraints across nests in assortment optimization under the nested logit modelOper. Res.201563481282233786771329.90087 WangRXCapacitated assortment and price optimization under the multinomial logit modelOper. Res. Lett.201240649249729986891258.91068 DavisJMGallegoGTopalogluHAssortment optimization under variants of the nested logit modelOper. Res.201462225027332091691295.90076 DavisJMTopalogluHWilliamsonDPPricing problems under the nested logit model with a quality consistency constraintINFORMS J. Comput.2017291547636123931414.91141 Chen, R., Jiang, H.: Assortment optimization with position effects under the nested logit model. Working paper (2017) Chen, X., Wang, Y., Zhou, Y.: Dynamic assortment selection under the nested logit models. Working paper (2018) Feldman, J., Zhang, D., Liu, X., Zhang, N.: Taking assortment optimization from theory to practice: evidence from large field experiments on Alibaba. Working paper (2018) JiangHChenRSunHMultiproduct price optimization under the multilevel nested logit modelAnn. Oper. Res.20172541–213116436657411406.91147 KleinbergJTardosEAlgorithm Design2006BangalorePearson Education India ChenRJiangHCapacitated assortment and price optimization under the multilevel nested logit modelOper. Res. Lett.20194713035388572307165747 HM Li (896_CR34) 2011; 13 T Xie (896_CR46) 2018; 36 PW Keller (896_CR28) 2014; 145 LX Dong (896_CR17) 2009; 11 896_CR18 896_CR9 J Kleinberg (896_CR29) 2006 WZ Rayfield (896_CR38) 2015; 27 P Rusmevichientong (896_CR40) 2010; 58 WT Huh (896_CR24) 2015; 63 KD Chen (896_CR8) 2000; 46 G Gallego (896_CR20) 2014; 60 L Grigolon (896_CR22) 2014; 96 O Besbes (896_CR7) 2016; 25 R Chen (896_CR11) 2019; 47 K Talluri (896_CR42) 2004; 50 RX Wang (896_CR44) 2012; 40 A Alptekinoğlu (896_CR3) 2016; 64 JM Davis (896_CR14) 2014; 62 AG Kök (896_CR30) 2009 S Jagabathula (896_CR25) 2016; 63 Q Liu (896_CR35) 2008; 10 H Jiang (896_CR26) 2017; 254 JB Feldman (896_CR19) 2015; 63 A Aouad (896_CR5) 2018; 66 P Rusmevichientong (896_CR39) 2009; 37 R Chen (896_CR10) 2017; 45 G Li (896_CR32) 2014; 42 ME Ben-Akiva (896_CR6) 1985 KE Train (896_CR43) 2009 S Mittal (896_CR36) 2013; 61 WJ Hopp (896_CR23) 2005; 7 RM Schindler (896_CR41) 1996; 72 AG Kök (896_CR31) 2011; 57 ET Anderson (896_CR4) 2003; 1 N Karmarkar (896_CR27) 1984; 4 896_CR37 HC Williams (896_CR45) 1977; 9 896_CR16 G Gallego (896_CR21) 2014; 62 G Li (896_CR33) 2015; 62 896_CR1 896_CR13 JM Davis (896_CR15) 2017; 29 896_CR2 896_CR12 |
| References_xml | – reference: GrigolonLVerbovenFNested logit or random coefficients logit? A comparison of alternative discrete choice models of product differentiationRev. Econ. Stat.2014965916935 – reference: TrainKEDiscrete Choice Methods with Simulation2009CambridgeCambridge University Press1269.62073 – reference: AlptekinoğluASempleJHThe exponomial choice model: a new alternative for assortment and price optimizationOper. Res.2016641799334632631336.91040 – reference: AouadALeviRSegevDGreedy-like algorithms for dynamic assortment planning under multinomial logit preferencesOper. Res.2018665132113453872107 – reference: HoppWJXuXProduct line selection and pricing with modularity in designManuf. Serv. Oper. Manag.200573172187 – reference: Davis, J., Gallego, G., Topaloglu, H.: Assortment planning under the multinomial logit model with totally unimodular constraint structures. Working paper (2013) – reference: WangRXCapacitated assortment and price optimization under the multinomial logit modelOper. Res. Lett.201240649249729986891258.91068 – reference: Agrawal, S., Avadhanula, V., Goyal, V., Zeevi, A.: Mnl-bandit: a dynamic learning approach to assortment selection. Working paper (2017) – reference: ChenKDHausmanWHTechnical note: Mathematical properties of the optimal product line selection problem using choice-based conjoint analysisManag. Sci.20004623273321231.90159 – reference: JagabathulaSRusmevichientongPA nonparametric joint assortment and price choice modelManag. Sci.201663931283145 – reference: KarmarkarNA new polynomial-time algorithm for linear programmingCombinatorica198443733957799000557.90065 – reference: DavisJMTopalogluHWilliamsonDPPricing problems under the nested logit model with a quality consistency constraintINFORMS J. Comput.2017291547636123931414.91141 – reference: Ben-AkivaMELermanSRDiscrete Choice Analysis: Theory and Application to Travel Demand1985CambridgeMIT Press – reference: HuhWTLiHTechnical note: Pricing under the nested attraction model with a multistage choice structureOper. Res.201563484085033786791329.90011 – reference: FeldmanJBTopalogluHCapacity constraints across nests in assortment optimization under the nested logit modelOper. Res.201563481282233786771329.90087 – reference: KökAGFisherMLVaidyanathanRAgrawalNSmithSAssortment planning: review of literature and industry practiceRetail Supply Chain Management2009Boston, MASpringer99153 – reference: RusmevichientongPShenZJMShmoysDBA ptas for capacitated sum-of-ratios optimizationOper. Res. Lett.200937423023825436691167.90493 – reference: SchindlerRMKibarianTMIncreased consumer sales response though use of 99-ending pricesJ. Retail.1996722187199 – reference: AndersonETSimesterDIEffects of \$9 price endings on retail sales: evidence from field experimentsQuant. Mark. Econ.20031193110 – reference: KleinbergJTardosEAlgorithm Design2006BangalorePearson Education India – reference: Papadimitriou, C.H., Yannakakis, M.: On the approximability of trade-offs and optimal access of web sources. In: 2000. Proceedings. 41st Annual Symposium on Foundations of Computer Science, pp. 86–92. IEEE (2000) – reference: LiGRusmevichientongPTopalogluHThe d-level nested logit model: assortment and price optimization problemsOper. Res.201562232534233385831327.90315 – reference: Chen, R., Jiang, H.: Assortment optimization with position effects under the nested logit model. Working paper (2017) – reference: RayfieldWZRusmevichientongPTopalogluHApproximation methods for pricing problems under the nested logit model with price boundsInf. J. Comput.201527233535733478821329.91088 – reference: LiGRusmevichientongPA greedy algorithm for the two-level nested logit modelOper. Res. Lett.201442531932432318901408.90258 – reference: KökAGXuYOptimal and competitive assortments with endogenous pricing under hierarchical consumer choice modelsManag. Sci.2011579154615631225.91042 – reference: WilliamsHCOn the formation of travel demand models and economic evaluation measures of user benefitEnviron. Plan. A197793285344 – reference: Chen, X., Wang, Y., Zhou, Y.: Dynamic assortment selection under the nested logit models. Working paper (2018) – reference: DavisJMGallegoGTopalogluHAssortment optimization under variants of the nested logit modelOper. Res.201462225027332091691295.90076 – reference: BesbesOSauréDProduct assortment and price competition under multinomial logit demandProd. Oper. Manag.2016251114127 – reference: ChenRJiangHCapacitated assortment and price optimization for customers with disjoint consideration setsOper. Res. Lett.201745217017436200491409.90109 – reference: GallegoGWangRMultiproduct price optimization and competition under the nested logit model with product-differentiated price sensitivitiesOper. Res.201462245046132091821298.91087 – reference: KellerPWLeviRPerakisGEfficient formulations for pricing under attraction demand modelsMath. Program.20141451–222326132076881291.91077 – reference: XieTGeDA tractable discrete fractional programming: application to constrained assortment optimizationJ. Comb. Optim.201836240041538170911392.90113 – reference: ChenRJiangHCapacitated assortment and price optimization under the multilevel nested logit modelOper. Res. Lett.20194713035388572307165747 – reference: DongLXKouvelisPTianZJDynamic pricing and inventory control of substitute productsManuf. Serv. Oper. Manag.2009112317339 – reference: Désir, A., Goyal, V.: Near-optimal algorithms for capacity constrained assortment optimization. Working paper (2014) – reference: MittalSSchulzASA general framework for designing approximation schemes for combinatorial optimization problems with many objectives combined into oneOper. Res.201361238639730461171267.90124 – reference: Feldman, J., Zhang, D., Liu, X., Zhang, N.: Taking assortment optimization from theory to practice: evidence from large field experiments on Alibaba. Working paper (2018) – reference: LiHMHuhWTPricing multiple products with the multinomial logit and nested logit models: concavity and implicationsManuf. Serv. Oper. Manag.2011134549563 – reference: TalluriKVan RyzinGRevenue management under a general discrete choice model of consumer behaviorManag. Sci.200450115331168.91427 – reference: Agrawal, S., Avadhanula, V., Goyal, V., Zeevi, A.: Thompson sampling for the mnl-bandit. In: Proccedings of the Conference on Learning Theory (2017) – reference: RusmevichientongPShenZJMShmoysDBDynamic assortment optimization with a multinomial logit choice model and capacity constraintOper. Res.20105861666168027527121228.90170 – reference: GallegoGTopalogluHConstrained assortment optimization for the nested logit modelManag. Sci.20146010258326011295.90076 – reference: JiangHChenRSunHMultiproduct price optimization under the multilevel nested logit modelAnn. Oper. Res.20172541–213116436657411406.91147 – reference: LiuQVan RyzinGOn the choice-based linear programming model for network revenue managementManuf. Serv. Oper. Manag.2008102288310 – volume-title: Discrete Choice Methods with Simulation year: 2009 ident: 896_CR43 – volume: 7 start-page: 172 issue: 3 year: 2005 ident: 896_CR23 publication-title: Manuf. Serv. Oper. Manag. doi: 10.1287/msom.1050.0077 – volume: 254 start-page: 131 issue: 1–2 year: 2017 ident: 896_CR26 publication-title: Ann. Oper. Res. doi: 10.1007/s10479-017-2478-3 – volume: 9 start-page: 285 issue: 3 year: 1977 ident: 896_CR45 publication-title: Environ. Plan. A doi: 10.1068/a090285 – volume: 1 start-page: 93 issue: 1 year: 2003 ident: 896_CR4 publication-title: Quant. Mark. Econ. doi: 10.1023/A:1023581927405 – volume-title: Algorithm Design year: 2006 ident: 896_CR29 – start-page: 99 volume-title: Retail Supply Chain Management year: 2009 ident: 896_CR30 – volume: 11 start-page: 317 issue: 2 year: 2009 ident: 896_CR17 publication-title: Manuf. Serv. Oper. Manag. doi: 10.1287/msom.1080.0221 – volume: 58 start-page: 1666 issue: 6 year: 2010 ident: 896_CR40 publication-title: Oper. Res. doi: 10.1287/opre.1100.0866 – volume: 62 start-page: 450 issue: 2 year: 2014 ident: 896_CR21 publication-title: Oper. Res. doi: 10.1287/opre.2013.1249 – volume: 37 start-page: 230 issue: 4 year: 2009 ident: 896_CR39 publication-title: Oper. Res. Lett. doi: 10.1016/j.orl.2009.03.009 – ident: 896_CR2 – volume: 63 start-page: 840 issue: 4 year: 2015 ident: 896_CR24 publication-title: Oper. Res. doi: 10.1287/opre.2015.1400 – volume: 47 start-page: 30 issue: 1 year: 2019 ident: 896_CR11 publication-title: Oper. Res. Lett. doi: 10.1016/j.orl.2018.11.006 – volume: 57 start-page: 1546 issue: 9 year: 2011 ident: 896_CR31 publication-title: Manag. Sci. doi: 10.1287/mnsc.1110.1402 – volume: 72 start-page: 187 issue: 2 year: 1996 ident: 896_CR41 publication-title: J. Retail. doi: 10.1016/S0022-4359(96)90013-5 – ident: 896_CR12 – volume: 62 start-page: 250 issue: 2 year: 2014 ident: 896_CR14 publication-title: Oper. Res. doi: 10.1287/opre.2014.1256 – ident: 896_CR37 – volume: 62 start-page: 325 issue: 2 year: 2015 ident: 896_CR33 publication-title: Oper. Res. doi: 10.1287/opre.2015.1355 – ident: 896_CR16 doi: 10.2139/ssrn.2543309 – volume: 27 start-page: 335 issue: 2 year: 2015 ident: 896_CR38 publication-title: Inf. J. Comput. doi: 10.1287/ijoc.2014.0629 – volume: 63 start-page: 812 issue: 4 year: 2015 ident: 896_CR19 publication-title: Oper. Res. doi: 10.1287/opre.2015.1383 – volume-title: Discrete Choice Analysis: Theory and Application to Travel Demand year: 1985 ident: 896_CR6 – ident: 896_CR9 – volume: 29 start-page: 54 issue: 1 year: 2017 ident: 896_CR15 publication-title: INFORMS J. Comput. doi: 10.1287/ijoc.2016.0714 – volume: 40 start-page: 492 issue: 6 year: 2012 ident: 896_CR44 publication-title: Oper. Res. Lett. doi: 10.1016/j.orl.2012.08.003 – volume: 4 start-page: 373 year: 1984 ident: 896_CR27 publication-title: Combinatorica doi: 10.1007/BF02579150 – volume: 145 start-page: 223 issue: 1–2 year: 2014 ident: 896_CR28 publication-title: Math. Program. doi: 10.1007/s10107-013-0646-z – volume: 10 start-page: 288 issue: 2 year: 2008 ident: 896_CR35 publication-title: Manuf. Serv. Oper. Manag. doi: 10.1287/msom.1070.0169 – volume: 60 start-page: 2583 issue: 10 year: 2014 ident: 896_CR20 publication-title: Manag. Sci. doi: 10.1287/mnsc.2014.1931 – volume: 42 start-page: 319 issue: 5 year: 2014 ident: 896_CR32 publication-title: Oper. Res. Lett. doi: 10.1016/j.orl.2014.05.006 – volume: 50 start-page: 15 issue: 1 year: 2004 ident: 896_CR42 publication-title: Manag. Sci. doi: 10.1287/mnsc.1030.0147 – volume: 66 start-page: 1321 issue: 5 year: 2018 ident: 896_CR5 publication-title: Oper. Res. doi: 10.1287/opre.2018.1734 – ident: 896_CR1 – volume: 63 start-page: 3128 issue: 9 year: 2016 ident: 896_CR25 publication-title: Manag. Sci. doi: 10.1287/mnsc.2016.2491 – volume: 96 start-page: 916 issue: 5 year: 2014 ident: 896_CR22 publication-title: Rev. Econ. Stat. doi: 10.1162/REST_a_00420 – ident: 896_CR13 – volume: 46 start-page: 327 issue: 2 year: 2000 ident: 896_CR8 publication-title: Manag. Sci. doi: 10.1287/mnsc.46.2.327.11931 – volume: 13 start-page: 549 issue: 4 year: 2011 ident: 896_CR34 publication-title: Manuf. Serv. Oper. Manag. doi: 10.1287/msom.1110.0344 – volume: 25 start-page: 114 issue: 1 year: 2016 ident: 896_CR7 publication-title: Prod. Oper. Manag. doi: 10.1111/poms.12402 – volume: 64 start-page: 79 issue: 1 year: 2016 ident: 896_CR3 publication-title: Oper. Res. doi: 10.1287/opre.2015.1459 – volume: 61 start-page: 386 issue: 2 year: 2013 ident: 896_CR36 publication-title: Oper. Res. doi: 10.1287/opre.1120.1093 – volume: 45 start-page: 170 issue: 2 year: 2017 ident: 896_CR10 publication-title: Oper. Res. Lett. doi: 10.1016/j.orl.2017.01.009 – ident: 896_CR18 doi: 10.2139/ssrn.3232059 – volume: 36 start-page: 400 issue: 2 year: 2018 ident: 896_CR46 publication-title: J. Comb. Optim. doi: 10.1007/s10878-018-0302-x |
| SSID | ssj0009852 |
| Score | 2.3138125 |
| Snippet | We study the capacitated assortment and price optimization problem, where a retailer sells categories of substitutable products subject to a capacity... |
| SourceID | proquest gale crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 895 |
| SubjectTerms | Algorithms Approximation Cardinal-birds Computer Science Logit models Mathematical analysis Mathematics Mathematics and Statistics Multiple choice Operations Research/Decision Theory Optimization Polynomials Real Functions |
| SummonAdditionalLinks | – databaseName: Computer Science Database dbid: K7- link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fSxwxEB6q9UEftP4onrUlD4KKhmazd5vkSUR6lArig4JvIZtkQdC98-4U_3xncrlerdSXwr7tJrvsTGYmM_m-AdjTXROjCoqHbiFxgyIM17oSHCNXV-oqkNKkZhPq4kLf3JjLnHAb52OVM5uYDHUYeMqRf0dPg4YTFVScDB84dY2i6mpuobEAHwspC9Lzc8XnpLs6ddwRRvZ4D-1xBs1k6JwmcJkkXLU2FX9-5Zj-Ns9v6qTJ_fTX_vfDP8FqDjzZ6VRT1uFDbDdg5Q86wg1Yzwt9zA4yG_XhJvw6Q3fqCYkWA8NIG8N1Sigy1wY2JEYiNkCrc5_hnIwwaSOGUSVrUyaVkW2dsNRwZwuu-z-uzn7y3ICBe_TzE25cQ3XWMlKylCqEVa0FejPh6tA0oRKNEj4UpS9rjVfUppAO4zXlnYiy6ZWfYbEdtHEbGG71YrdxGMqboqtUXftYV97gKBOUk6IDxezvW5_ZyalJxp2d8yqTxCxKzCaJ2ecOHP0eM5xyc7z79D4J1dLCxZm9y_gD_D6iwLKn6KVp_2jKDuzOJGnzih7buRg7cDzThfntf7935_3ZvsCyTFpIZwp3YXEyeoxfYck_TW7Ho29Jn18AC334Pg priority: 102 providerName: ProQuest |
| Title | Capacitated assortment and price optimization under the nested logit model |
| URI | https://link.springer.com/article/10.1007/s10898-020-00896-x https://www.proquest.com/docview/2419900700 |
| Volume | 77 |
| WOSCitedRecordID | wos000545218300008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-2916 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009852 issn: 0925-5001 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bSxwxFD5U7YN90Lq1dFtd8iBoaQOZmd1J8mgXpbS4LtqL7UvIJBkotKPsbKU_v-fEjGvtBSwMB4bJZEKSc0ky33cAdtRQhyC95H6Y5bhAEZorVQqOkastVOlp0sRkE3IyUWdneppAYW33t3t3JBkt9Q2wmyI4WE5IaKVLjpHjCro7Rep4cvphQbWrYp4dofMRH6EVTlCZP9fxizu6bZR_Ox2NTudw_f-a-xDWUpDJ9q9mxQbcC00P1rsEDizpcw8e3GAjxLujawrXtgcbqVTL9hI19fNH8GaMvtURLC14hmE3xu60u8hs49kF0ROxczRB3xK2kxFAbcawUtbEbVVGhnbOYvadTXh_ePBu_JqnbAzcodOfc21rOnQtAu2c0nFhWSmBrk3Yyte1L0UthfNZ4YpK4RWUznKLwZt0VoS8HhWPYbk5b8ITYLjuC8PaYlyvs6GUVeVCVTqNb2kvbS76kHWDYlyiKqeMGV_NgmSZetdg75rYu-ZHH15cv3NxRdTxz9K7NNaGtBhrdjaBEbB9xIdl9tFl02JSF33Y6qaDSerdGgx70IujtcSmvuyGf_H47999erfiz2A1jzOIfjjcguX57HvYhvvucv6lnQ1gSX78NICVVweT6QnevZUc5ZEYk8yPo5ySlKcop6PPg6goPwHODAKk |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB1VBQl6AFqourQFH4oAUQvHSRP7UKFqoWppWXEoUm-uYzsSEmSX3YWWP8VvZMbrsHyI3nqolFvifPn5zYztNwOwpQodQuUr7otMYoAiNFeqFBw9V5ur0hNoYrGJajBQp6f6_QL86LQwtK2y48RI1H7oaI78JVoaJE4EqHg1-sKpahStrnYlNGawOArfzzFkm-wevsb-fSLl_puT_gFPVQW4Q-M15do2tHiYB5oBpGWvslYCKVrY2jeNL0VTCeez3OW1wiMonUmLTkjlrAiyoSoRSPk3igKHA20VFP15kl8VK_wILXf4DvJ_EukkqZ4iMZskHbfSJb_4wxD-bQ7-WZeN5m7_7nX7UffgTnKs2d5sJCzDQmhXYOm3dIsrsJyIbMKepWzbz-_D2z66C46UdsEzjCQwHKEJU2Zbz0aUcYkNkVU_J7kqI83dmKHXzNo4U8zIdkxZLCj0AD5cyReuwmI7bMMaMAxlQ9FYDFV0VlRVXbtQl05jK-0rK0UPsq63jUvZ16kIyCczzxtNCDGIEBMRYi568OJXm9Es98ilVz8lEBkiJryzs0lfge9HKb7MHnohFB_rvAcbHXJMYqyJmcOmB9sd9uan___ch5ff7THcOjh5d2yODwdH63BbxhFA-yc3YHE6_ho24ab7Nv04GT-KY4nB2VVj8ifxqlRR |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB5VLUJwAFpABAr4AAIEVr3eZG0fEKpaIkpQ1ANIvRmv7ZWQYBOS9MFf49cx43gJD9FbD0h72_W-_PmbGdvfDMAj3TcxqqB46BcSAxRhuNaV4Oi5ulJXgUCTik2o8VgfHZnDNfjeaWFoW2XHiYmow8TTHPkOWhokTgSo2GnytojD_eGr6VdOFaRopbUrp7GEyCh-O8Xwbf7yYB_7-rGUw9fv997wXGGAezRkC25cQwuJZaTZQFoCq2otkK6Fq0PThEo0SvhQlL6sNR5Rm0I6dEiUdyLKhipGIP1voBUe0BgbKb5K-KtTtR9h5IAP0BZkwU6W7WkStknSdGtT8bPfjOKfpuGvNdpk-obX_-efdgOuZYeb7S5HyCasxXYLrv6ShnELNjPBzdnTnIX72U14u4duhCcFXgwMIwwMU2gilbk2sCllYmITZNsvWcbKSIs3Y-hNszbNIDOyKQuWCg3dgg8X8oW3Yb2dtPEOMAxxY79xGMKYoq9UXftYV95gKxOUk6IHRdfz1ues7FQc5LNd5ZMmtFhEi01osWc9eP6zzXSZk-Tcq58QoCwRFt7Zu6y7wPej1F92F70TiptN2YPtDkU2M9ncriDUgxcdDlen__3cu-ff7SFcRijadwfj0T24ItNgoG2V27C-mB3H-3DJnyw-zWcP0rBi8PGiIfkDgMlc9w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Capacitated+assortment+and+price+optimization+under+the+nested+logit+model&rft.jtitle=Journal+of+global+optimization&rft.au=Chen%2C+Rui&rft.au=Jiang%2C+Hai&rft.date=2020-08-01&rft.pub=Springer+US&rft.issn=0925-5001&rft.eissn=1573-2916&rft.volume=77&rft.issue=4&rft.spage=895&rft.epage=918&rft_id=info:doi/10.1007%2Fs10898-020-00896-x&rft.externalDocID=10_1007_s10898_020_00896_x |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-5001&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-5001&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-5001&client=summon |