Artificial intelligence linear regression model for mobility robustness optimization algorithm in 5G cellular networks
Ensuring reliable and stable communication links between User Equipment (UE) and serving cellular networks during UE movement is one of the significant difficulties facing the deployment of the Fifth Generation (5G) and Sixth Generation (6G) of cellular networks. Therefore, the Handover Parameters S...
Uložené v:
| Vydané v: | Alexandria engineering journal Ročník 89; s. 125 - 148 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
01.02.2024
Elsevier |
| Predmet: | |
| ISSN: | 1110-0168 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Ensuring reliable and stable communication links between User Equipment (UE) and serving cellular networks during UE movement is one of the significant difficulties facing the deployment of the Fifth Generation (5G) and Sixth Generation (6G) of cellular networks. Therefore, the Handover Parameters Self-Optimization (HPSO) function has been introduced in modern cellular networks to address mobility management issues. Its main purpose to automatically optimize Handover Control Parameters (HCPs) settings. But the probability of estimating suboptimal HCP settings remains an issue, leading to a critical impact on the network performance. This results in an increase in Handover Probability (HOP), Handover Ping-Pong Probability (HPPP), and Radio Link Failure (RLF). The challenge becomes even more critical with the advent of 5G and 6G in cellular networks, owing to various factors. These factors include the extensive deployment of small base stations and the massive growth of connected devices. Despite the development of several HPSO algorithms, the existing techniques fall short of providing optimal solutions. Furthermore, the issue of suboptimal parameters remains unaddressed. This paper introduces an Artificial Intelligence Multiple Linear Regression (AI-MLR) model as an algorithm for optimizing mobility robustness in 5G cellular networks. The objective of the AI-MLR model is to automatically optimize HCP settings based on network experiences, leveraging the Instantaneous Indication Measure (IIM) Function. The AI-MLR model dynamically and instantly estimates HCP settings for UE by utilizing the IIM function. This function evaluates UE experiences through instantaneous Signal-to-Interference-plus-Noise Ratio (SINR) levels from both the target and serving base stations. Initially, the UE captures instantaneous measurements of SINR levels, serving as input parameters for the IIM function. The function then produces an output that acts as an indicator for automating the optimization process of the HCP settings. The proposed algorithm undergoes a comprehensive investigation and validation against various benchmark methods found in the literature, encompassing different mobility speed scenarios over a 5 G cellular network. This study involved the development of a simulation model using Matlab software. Performance evaluation utilized a range of Key Performance Indicators (KPIs), including HOP, HPPP, and RLF. The simulation results demonstrate that the proposed solution achieves significant improvements in terms of HOP, HPPP, and RLF under diverse movement speed scenarios, compared to the algorithms examined in the literature. |
|---|---|
| AbstractList | Ensuring reliable and stable communication links between User Equipment (UE) and serving cellular networks during UE movement is one of the significant difficulties facing the deployment of the Fifth Generation (5G) and Sixth Generation (6G) of cellular networks. Therefore, the Handover Parameters Self-Optimization (HPSO) function has been introduced in modern cellular networks to address mobility management issues. Its main purpose to automatically optimize Handover Control Parameters (HCPs) settings. But the probability of estimating suboptimal HCP settings remains an issue, leading to a critical impact on the network performance. This results in an increase in Handover Probability (HOP), Handover Ping-Pong Probability (HPPP), and Radio Link Failure (RLF). The challenge becomes even more critical with the advent of 5G and 6G in cellular networks, owing to various factors. These factors include the extensive deployment of small base stations and the massive growth of connected devices. Despite the development of several HPSO algorithms, the existing techniques fall short of providing optimal solutions. Furthermore, the issue of suboptimal parameters remains unaddressed. This paper introduces an Artificial Intelligence Multiple Linear Regression (AI-MLR) model as an algorithm for optimizing mobility robustness in 5G cellular networks. The objective of the AI-MLR model is to automatically optimize HCP settings based on network experiences, leveraging the Instantaneous Indication Measure (IIM) Function. The AI-MLR model dynamically and instantly estimates HCP settings for UE by utilizing the IIM function. This function evaluates UE experiences through instantaneous Signal-to-Interference-plus-Noise Ratio (SINR) levels from both the target and serving base stations. Initially, the UE captures instantaneous measurements of SINR levels, serving as input parameters for the IIM function. The function then produces an output that acts as an indicator for automating the optimization process of the HCP settings. The proposed algorithm undergoes a comprehensive investigation and validation against various benchmark methods found in the literature, encompassing different mobility speed scenarios over a 5 G cellular network. This study involved the development of a simulation model using Matlab software. Performance evaluation utilized a range of Key Performance Indicators (KPIs), including HOP, HPPP, and RLF. The simulation results demonstrate that the proposed solution achieves significant improvements in terms of HOP, HPPP, and RLF under diverse movement speed scenarios, compared to the algorithms examined in the literature. |
| Author | Saad, Sawsan Ali Sid Ahmed, Nada M.O. Shayea, Ibraheem |
| Author_xml | – sequence: 1 givenname: Sawsan Ali surname: Saad fullname: Saad, Sawsan Ali organization: Department of Computer Engineering, University of Ha’il, Ha’il, 55211, Saudi Arabia – sequence: 2 givenname: Ibraheem surname: Shayea fullname: Shayea, Ibraheem email: shayea@itu.edu.tr, ibr.shayea@gmail.com organization: Electronics and Communication Engineering Department, Faculty of Electrical and Electronics Eng., Istanbul Technical University (ITU), 34469 Istanbul, Turkey – sequence: 3 givenname: Nada M.O. surname: Sid Ahmed fullname: Sid Ahmed, Nada M.O. organization: Department of Computer Engineering, University of Ha’il, Ha’il, 55211, Saudi Arabia |
| BookMark | eNp9kctOQyEQhllo4vUB3PECrUA5t7hqGm-JiRtdEw4MdY700ABq9OnltMaFC8kkTGD-L-TjhByMYQRCLjibc8bry2GuYZgLJuSc8VLygBxzztmsXLZH5DylgZVVNZ3s6mPyvowZHRrUnuKYwXtcw2iAehxBRxphHSElDCPdBAueuhBL16PH_Elj6N9SHssADduMG_zSeRrVfh0i5pdNYdLqlprCffMFN0L-CPE1nZFDp32C85_9lDzfXD-t7mYPj7f3q-XDzEhW51nXWFG51oEzVi5YLYXm4BwHqBhIZ0GC67ioW9PpHrhlNQBMo2Bb2zSwOCX3e64NelDbiBsdP1XQqHYHIa6VLgKMByWdFEKCcG0jJbOiF03DOsEWvTSLqraFxfcsE0NKEdwvjzM1uVeDKu7V5F4xXkqWTPMnYzDvHOWo0f-bvNonoeh5R4gqGZx-xmIEk8v78Z_0N4TDpio |
| CitedBy_id | crossref_primary_10_1007_s44443_025_00048_9 crossref_primary_10_1109_ACCESS_2024_3390559 crossref_primary_10_1007_s42979_025_03762_3 crossref_primary_10_1155_etep_9877968 crossref_primary_10_3390_s24072313 crossref_primary_10_1007_s10922_025_09903_6 crossref_primary_10_1016_j_adhoc_2025_103929 crossref_primary_10_1016_j_jestch_2024_101722 crossref_primary_10_3390_math12243985 crossref_primary_10_3390_technologies13080352 |
| Cites_doi | 10.1109/ICCoSITE57641.2023.10127687 10.1109/VETECS.2011.5956234 10.1109/RTUWO.2018.8587895 10.1016/j.procs.2015.05.078 10.1109/WCSP.2015.7341220 10.3390/fi14030087 10.3390/s22072692 10.1109/TVT.2013.2247778 10.1109/TVT.2017.2711582 10.1109/JPHOT.2019.2953863 10.1109/TNSM.2021.3073244 10.1109/ACCESS.2018.2811047 10.1109/ACCESS.2019.2961186 10.1016/j.aej.2023.01.034 10.1109/ACCESS.2020.3023802 10.1109/ACCESS.2022.3161511 10.1109/VTCSpring.2015.7145646 10.1007/s11235-020-00718-1 10.1016/j.aej.2023.02.022 10.1109/ACCESS.2021.3067503 10.3390/app10041354 10.1007/s11277-017-4222-3 10.1109/VETECF.2010.5594477 10.3390/math9111227 10.1016/j.aej.2022.01.036 10.1155/2023/6205689 10.1109/ACCESS.2021.3051097 10.3390/s22176424 10.1109/PIMRC.2011.6139784 10.1109/LCOMM.2010.09.092356 10.1109/ACCESS.2020.3027258 10.1007/s11276-016-1348-2 10.1109/ACCESS.2021.3083554 10.1109/TNSM.2016.2522080 10.1109/PIMRC.2011.6139958 10.1109/ACCESS.2020.3030762 10.1186/1687-1499-2013-27 10.1109/GLOCOMW.2013.6824965 10.3390/s22166199 10.3390/app12010426 10.1007/s11276-019-02111-6 10.1016/j.orl.2021.12.004 10.1109/MPEL.2020.3047718 10.1016/j.comnet.2014.10.027 10.3390/electronics11030313 10.1109/MNET.011.2000195 10.1016/j.aej.2020.11.018 10.7763/IJFCC.2015.V4.391 10.1016/j.comcom.2020.07.016 10.1109/GLOBECOM42002.2020.9322618 10.1007/978-981-15-1002-1_28 10.1016/j.aej.2022.10.052 10.1016/j.aej.2021.11.028 10.1109/ACCESS.2022.3168717 10.1007/s11277-019-06463-2 10.3390/s22166013 10.1016/j.cie.2023.109254 10.1186/1687-1499-2011-98 10.3390/s22031200 10.1007/s11277-008-9631-x 10.3390/electronics11091366 10.1109/MWSCAS.2018.8623826 10.1016/j.aej.2022.10.050 10.1007/s11277-012-0883-0 10.1109/ACCESS.2020.3037048 |
| ContentType | Journal Article |
| Copyright | 2024 The Authors |
| Copyright_xml | – notice: 2024 The Authors |
| DBID | 6I. AAFTH AAYXX CITATION DOA |
| DOI | 10.1016/j.aej.2024.01.014 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EndPage | 148 |
| ExternalDocumentID | oai_doaj_org_article_4f4224e2f87440d2b27709203b4c356d 10_1016_j_aej_2024_01_014 S1110016824000176 |
| GroupedDBID | --K 0R~ 0SF 4.4 457 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABMAC ACGFS ADBBV ADEZE AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV EBS EJD FDB GROUPED_DOAJ HZ~ IPNFZ IXB KQ8 M41 NCXOZ O-L O9- OK1 P2P RIG ROL SES SSZ XH2 AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AIGII AKBMS AKRWK AKYEP CITATION |
| ID | FETCH-LOGICAL-c406t-97d25f8fefcd430642a1eff1ee50e4fde4ef91268c9abe1d06eeecd43ed8d77e3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 10 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001171800300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1110-0168 |
| IngestDate | Fri Oct 03 12:39:34 EDT 2025 Wed Oct 29 21:13:16 EDT 2025 Tue Nov 18 22:28:12 EST 2025 Sat Feb 17 16:07:52 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Mobility robustness optimization Self-optimization 6G Heterogenous networks 5G LTE-advanced system Handover optimization algorithm Handover control parameters Adaptive handover parameters |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c406t-97d25f8fefcd430642a1eff1ee50e4fde4ef91268c9abe1d06eeecd43ed8d77e3 |
| OpenAccessLink | https://doaj.org/article/4f4224e2f87440d2b27709203b4c356d |
| PageCount | 24 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_4f4224e2f87440d2b27709203b4c356d crossref_primary_10_1016_j_aej_2024_01_014 crossref_citationtrail_10_1016_j_aej_2024_01_014 elsevier_sciencedirect_doi_10_1016_j_aej_2024_01_014 |
| PublicationCentury | 2000 |
| PublicationDate | February 2024 2024-02-00 2024-02-01 |
| PublicationDateYYYYMMDD | 2024-02-01 |
| PublicationDate_xml | – month: 02 year: 2024 text: February 2024 |
| PublicationDecade | 2020 |
| PublicationTitle | Alexandria engineering journal |
| PublicationYear | 2024 |
| Publisher | Elsevier B.V Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier |
| References | Shayea, Ismail, Nordin, Ergen, Ahmad, Abdullah (bib31) 2019; vol. 108 Christopoulou, Barmpounakis, Koumaras, Kaloxylos (bib76) 2022 Lin, Casanova, Fatty (bib36) 2016; vol. 2016 Shayea, Ergen, Azizan, Ismail, Daradkeh (bib99) 2020; vol. 8 C.H. Chin, N. Choi, and S. Faccin, Residential/enterprise network connection management and handover scenarios ed: Google Patents; 2013. Osamy, Khedr, Salim, AlAli, El-Sawy (bib84) 2022; vol. 11 3GPP, "Self-configuring and self-optimizing network (SON) use cases and solutions (Release 9), TR 36.902 V9.3.1," ed. France: 3GPP, 2011. Gures, Shayea, Ergen, Azmi, El-Saleh (bib89) 2022; vol. 10 Alraih, Nordin, Abu-Samah, Shayea, Abdullah, Alhammadi (bib53) 2022; vol. 22 Silva, Becvar, Frances (bib29) 2018; vol. 6 Fouda, Nasr, Hussein (bib70) 2022; vol. 61 Zheng, Zhang, Chu, Wen (bib17) 2013; vol. 2013 Algriree, Sulaiman, Isa, Sahbudin, Hassan, Salman (bib69) 2023; vol. 65 Alhammadi, Roslee, Alias, Shayea, Alraih, Mohamed (bib98) 2020; vol. 8 3GPP, "Telecommunication Management; Self-Organizing Networks (SON) Policy Network Resource Model (NRM) Integration Reference Point (IRP); Requirements (Release 11), 3GPP TS 32.521 V11.1.0," ed. Valbonne - FRANCE: 3GPP, 2012. Ahmad, Sundararajan, Khalifeh (bib92) 2020; vol. 75 Kosmopoulos, Skondras, Michalas, Michailidis, Vergados (bib62) 2022; vol. 14 Shayea, Ergen, Azmi, Çolak, Nordin, Daradkeh (bib1) 2020; vol. 8 Nguyen, Kwon (bib39) 2021; vol. 9 P. Sapkale, U. Kolekar, Handover decision algorithm for next generation, in: Proceedings of International Conference on Wireless Communication, 2020, pp. 269–277. Hyun-Ho (bib59) 2010; vol. 14 Alshaibani, Shayea, Caglar, Din, Daradkeh (bib57) 2022; vol. 22 A. Klein, N.P. Kuruvatti, J. Schneider, H.D. Schotten, Fuzzy Q-learning for mobility robustness optimization in wireless networks, in 2013 IEEE Globecom Workshops (GC Wkshps), 2013, pp. 76–81. 3GPP, "Title," unpublished|. Shayea, Dushi, Banafaa, Rashid, Ali, Sarijari (bib60) 2022; vol. 22 Munoz, Barco, d. l. B. I (bib16) 2013; vol. VOL. 62 Ben-Mubarak, Ali, Noordin, Ismail, Ng (bib27) 2013; vol. 71 3GPP, "LTE Evolved Universal Terrestrial Radio Access (E-UTRA) Radio Frequency (RF) system scenarios," TR 36.942 version 16.0. 0 Release 16 2020. Jain, Lopez-Aguilera, Demirkol (bib93) 2020; vol. 161 Ray, Tang (bib14) 2015; vol. 4 Khan, Shayea, Ergen, Mohamad (bib61) 2022 Zaidi, Manalastas, Farooq, Imran (bib90) 2020; vol. 8 Yazici, Shayea, Din (bib82) 2023; vol. 44 Mwanje, Schmelz, Mitschele-Thiel (bib40) 2016; vol. 13 Zhao, Wang (bib83) 2021; vol. 8 Tashan, Shayea, Aldirmaz-Colak, Ergen, Azmi, Alhammadi (bib55) 2022; vol. 10 Banafaa, Shayea, Din, Azmi, Alashbi, Daradkeh (bib9) 2022 K. Kitagawa, T. Komine, T. Yamamoto, S. Konishi, A handover optimization algorithm with mobility robustness for LTE systems, in Personal Indoor and Mobile Radio Communications (PIMRC), 2011 IEEE 22nd International Symposium on, 2011, pp. 1647–1651. Tanveer, Haider, Ali, Kim (bib77) 2022; vol. 12 A. Alhammadi, M. Roslee, M.Y. Alias, I. Shayea, S. Alraih, Dynamic handover control parameters for LTE-A/5G mobile communications, in 2018 Advances in Wireless and Optical Communications (RTUWO), 2018, pp. 39–44. 3GPP, "Telecommunication management; Self-Organizing Networks (SON) Policy Network Resource Model (NRM) Integration Reference Point (IRP); Information Service (IS) (Release 11), 3GPP TS 32.522 V11.7.0," ed. Valbonne - France: 3GPP, 2013. Marí-Altozano, Mwanje, Ramírez, Toril, Sanneck, Gijón (bib43) 2021; vol. 18 3GPP, "Further Advancements for E-UTRA (LTE-Advanced) (Release 15), 3GPP TR 36.912 V15.0.0," ed. Valbonne - FRANCE: 3GPP, 2018. 3GPP, "Self-Organizing Networks (SON) Policy Network Resource Model (NRM) Integration Reference Point (IRP); Requirements (Release 15), 3GPP TS 28.627 V15.0.0," ed. Valbonne - FRANCE, 2018. 3GPP, "Self-Organizing Networks (SON) Policy, Network Resource Model (NRM), Integration Reference Point (IRP); Information Service (IS) (Release 15), 3GPP TS 28.628 V15.0.0," ed. Valbonne - FRANCE: 3GPP, 2018. Tuyisenge, Ayaida, Tohme, Afilal (bib65) 2020 Kumari, Singh (bib37) 2019; vol. 25 Shao, Liu, Khreishah, Ayyash, Elgala, Little (bib42) 2020; vol. 12 Alhammadi, Roslee, Alias, Shayea, Alquhali (bib32) 2020; vol. 10 Gures, Shayea, Alhammadi, Ergen, Mohamad (bib91) 2020; vol. 8 Nie, Wu, Zhao, Gu, Zhang, Lu (bib15) 2015; vol. 52 Park, Lim (bib26) 2010; vol. 52 Jang, Raza, Kim, Choo (bib73) 2022; vol. 22 Shayea, Ismail, Nordin, Mohamad, Abd Rahman, Abdullah (bib30) 2016 J. Wu, J. Liu, Z. Huang, S. Zheng, Dynamic fuzzy Q-learning for handover parameters optimization in 5G multi-tier networks, in 2015 International Conference on Wireless Communications & Signal Processing (WCSP), 2015, pp. 1–5. Hussain, Yusof, Asuncion, Hussain (bib75) 2021; vol. 22 Li, Li, Chen (bib10) 2023; vol. 69 Abrar, Arif, Zaini (bib50) 2023; vol. 69 Bălan, Irina, Sas, Jansen, Moerman, Spaey (bib18) 2011; vol. 2011 Siddiqui, Qamar, Tayyab, Hindia, Nguyen, Hassan (bib95) 2022; vol. 11 Shodamola, Masood, Manalastas, Imran (bib34) 2020; 2005 Shayea, Ergen, Azmi (bib58) 2020 Saad, Shayea, Alhammadi, Sheikh, El-Saleh (bib72) 2023; vol. 42 Basahel, Sattari, Taylan, Nazemi (bib86) 2021; vol. 9 A. Abdelmohsen, M. Abdelwahab, M. Adel, M.S. Darweesh, H. Mostafa, LTE handover parameters optimization using Q-learning technique, in 2018 IEEE 61st International Midwest Symposium on Circuits and Systems (MWSCAS), 2018, pp. 194–197. Luntovskyy, Shubyn, Maksymyuk, Klymash (bib67) 2021 Z.H. Huang, Y.L. Hsu, P.K. Chang, M.J. Tsai, Efficient handover algorithm in 5G Networks using Deep Learning, in GLOBECOM 2020 - 2020 IEEE Global Communications Conference, 2020, pp. 1–6. Yang, Alphones, Xiong, Niyato, Zhao, Wu (bib88) 2020; vol. 34 A.F. Ashour, M.M. Fouda, AI-based approaches for handover optimization in 5G new radio and 6G wireless networks, in: Proceedings of International Conference on Computer Science, Information Technology and Engineering (ICCoSITE), 2023, pp. 336–34. Muñoz, Barco, de la Bandera (bib47) 2015; vol. 76 Alhammadi, Roslee, Alias, Shayea, Alraih, Mohamed (bib28) 2019; vol. 8 Amirrudin, Ariffin, Malik, Ghazali (bib11) 2017; vol. 97 L. Ewe, H. Bakker, Base station distributed handover optimization in LTE self-organizing networks, in Personal Indoor and Mobile Radio Communications (PIMRC), 2011 IEEE 22nd International Symposium on, 2011, pp. 243–247. Huang, Wu, Yang, Sun, Zhang, Nallanathan (bib48) 2022 A. Awada, B. Wegmann, D. Rose, I. Viering, A. Klein, Towards self-organizing mobility robustness optimization in inter-RAT scenario, in Vehicular Technology Conference (VTC Spring), 2011 IEEE 73rd, 2011, pp. 1–5. Zaidi, Dai, Imran, Tran (bib80) 2023; vol. 180 H. Tullberg and J. Ottersten, "Machine learning for handover," ed: Google Patents; 2022. Mollel, Abubakar, Ozturk, Kaijage, Kisangiri, Hussain (bib94) 2021; vol. 9 3GPP, "Radio Frequency (RF) system scenarios (Release 15), TR 25.942 V15.0.0 ", ed. Valbonne - FRANCE: 3GPP, 2018. Gures, Shayea, Alhammadi, Ergen, Mohamad (bib49) 2020 Angjo, Shayea, Ergen, Mohamad, Alhammadi, Daradkeh (bib63) 2021; vol. 9 Jahandar, Kouhalvandi, Shayea, Ergen, Azmi, Mohamad (bib56) 2022; vol. 22 El Azaly, Badran, Kheirallah, Farag (bib71) 2021; vol. 60 Hegazy, Nasr, Kamal (bib44) 2018; vol. 24 3GPP, "LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Base Station (BS) radio transmission and reception," 3GPP TS 36.104 version 16.9.0 Release 16, 2021. Schröder, Lundqvist, Nunzi (bib25) 2008 El-Saleh, Al Jahdhami, Alhammadi, Shamsan, Shayea, Hassan (bib54) 2023; vol. 2023 L. Yejee, S. Bongjhin, L. Jaechan, D. Hong, Effects of time-to-trigger parameter on handover performance in SON-based LTE systems, presented at the Communications (APCC), 2010 16th Asia-Pacific Conference on, 2010. G.H. Legg P., Johansson J., A Simulation Study of LTE Intra-Frequency Handover Performance, presented at the IEEE 72nd Vehicular Technology Conference Fall (VTC 2010-Fall); 2010. B. Sas, K. Spaey, C. Blondia, A SON function for steering users in multi-layer LTE networks based on their mobility behaviour, presented at the 2015 IEEE 81st Vehicular Technology Conference (VTC Spring), 2015. Song, Wen, Wang, Guo, Yu (bib24) 2009 Fabry, Agnetis, Berghman, Briand (bib74) 2022; vol. 50 Shayea, Alhammadi, El-Saleh, Hassan, Mohamad, Ergen (bib52) 2022; vol. 61 Imran, Sun, Zaidi, Abbas, Nazir (bib81) 2023; vol. 136 El-Saleh, Alhammadi, Shayea, Hassan, Honnurvali, Daradkeh (bib51) 2023; vol. 66 Tkachenko, Kuzior, Kwilinski (bib87) 2019; vol. 22 Trinder, Wang, Sowmya, Palhang (bib85) 1997 A.D. Radulescu, A. Gholmieh, T. Kadous, C.S. Patel, Coding of handover messages between nodes of different radio access technologies, ed: Google Patents, 2019. Castro-Hernandez, Paranjape (bib38) 2018; vol. 67 Castro-Hernandez, Paranjape (bib12) 2018; vol. 67 Schröder (10.1016/j.aej.2024.01.014_bib25) 2008 Castro-Hernandez (10.1016/j.aej.2024.01.014_bib12) 2018; vol. 67 Alshaibani (10.1016/j.aej.2024.01.014_bib57) 2022; vol. 22 El Azaly (10.1016/j.aej.2024.01.014_bib71) 2021; vol. 60 Tuyisenge (10.1016/j.aej.2024.01.014_bib65) 2020 10.1016/j.aej.2024.01.014_bib100 10.1016/j.aej.2024.01.014_bib22 10.1016/j.aej.2024.01.014_bib23 Yazici (10.1016/j.aej.2024.01.014_bib82) 2023; vol. 44 Banafaa (10.1016/j.aej.2024.01.014_bib9) 2022 10.1016/j.aej.2024.01.014_bib20 10.1016/j.aej.2024.01.014_bib21 Jahandar (10.1016/j.aej.2024.01.014_bib56) 2022; vol. 22 10.1016/j.aej.2024.01.014_bib2 Tkachenko (10.1016/j.aej.2024.01.014_bib87) 2019; vol. 22 10.1016/j.aej.2024.01.014_bib3 Amirrudin (10.1016/j.aej.2024.01.014_bib11) 2017; vol. 97 Fabry (10.1016/j.aej.2024.01.014_bib74) 2022; vol. 50 10.1016/j.aej.2024.01.014_bib6 10.1016/j.aej.2024.01.014_bib7 10.1016/j.aej.2024.01.014_bib4 10.1016/j.aej.2024.01.014_bib5 10.1016/j.aej.2024.01.014_bib35 Jain (10.1016/j.aej.2024.01.014_bib93) 2020; vol. 161 10.1016/j.aej.2024.01.014_bib8 10.1016/j.aej.2024.01.014_bib33 Khan (10.1016/j.aej.2024.01.014_bib61) 2022 Zhao (10.1016/j.aej.2024.01.014_bib83) 2021; vol. 8 Shayea (10.1016/j.aej.2024.01.014_bib58) 2020 Alhammadi (10.1016/j.aej.2024.01.014_bib28) 2019; vol. 8 Hegazy (10.1016/j.aej.2024.01.014_bib44) 2018; vol. 24 Luntovskyy (10.1016/j.aej.2024.01.014_bib67) 2021 Shayea (10.1016/j.aej.2024.01.014_bib31) 2019; vol. 108 Marí-Altozano (10.1016/j.aej.2024.01.014_bib43) 2021; vol. 18 Alraih (10.1016/j.aej.2024.01.014_bib53) 2022; vol. 22 Fouda (10.1016/j.aej.2024.01.014_bib70) 2022; vol. 61 Siddiqui (10.1016/j.aej.2024.01.014_bib95) 2022; vol. 11 Lin (10.1016/j.aej.2024.01.014_bib36) 2016; vol. 2016 Alhammadi (10.1016/j.aej.2024.01.014_bib98) 2020; vol. 8 Huang (10.1016/j.aej.2024.01.014_bib48) 2022 Basahel (10.1016/j.aej.2024.01.014_bib86) 2021; vol. 9 Algriree (10.1016/j.aej.2024.01.014_bib69) 2023; vol. 65 Hyun-Ho (10.1016/j.aej.2024.01.014_bib59) 2010; vol. 14 Nguyen (10.1016/j.aej.2024.01.014_bib39) 2021; vol. 9 Christopoulou (10.1016/j.aej.2024.01.014_bib76) 2022 Shayea (10.1016/j.aej.2024.01.014_bib1) 2020; vol. 8 Ahmad (10.1016/j.aej.2024.01.014_bib92) 2020; vol. 75 Kumari (10.1016/j.aej.2024.01.014_bib37) 2019; vol. 25 Saad (10.1016/j.aej.2024.01.014_bib72) 2023; vol. 42 Munoz (10.1016/j.aej.2024.01.014_bib16) 2013; vol. VOL. 62 Gures (10.1016/j.aej.2024.01.014_bib49) 2020 Yang (10.1016/j.aej.2024.01.014_bib88) 2020; vol. 34 Shayea (10.1016/j.aej.2024.01.014_bib60) 2022; vol. 22 Zaidi (10.1016/j.aej.2024.01.014_bib80) 2023; vol. 180 10.1016/j.aej.2024.01.014_bib19 Shayea (10.1016/j.aej.2024.01.014_bib30) 2016 Mollel (10.1016/j.aej.2024.01.014_bib94) 2021; vol. 9 Mwanje (10.1016/j.aej.2024.01.014_bib40) 2016; vol. 13 10.1016/j.aej.2024.01.014_bib13 Park (10.1016/j.aej.2024.01.014_bib26) 2010; vol. 52 Kosmopoulos (10.1016/j.aej.2024.01.014_bib62) 2022; vol. 14 10.1016/j.aej.2024.01.014_bib97 10.1016/j.aej.2024.01.014_bib96 Muñoz (10.1016/j.aej.2024.01.014_bib47) 2015; vol. 76 Castro-Hernandez (10.1016/j.aej.2024.01.014_bib38) 2018; vol. 67 Angjo (10.1016/j.aej.2024.01.014_bib63) 2021; vol. 9 Zaidi (10.1016/j.aej.2024.01.014_bib90) 2020; vol. 8 Shao (10.1016/j.aej.2024.01.014_bib42) 2020; vol. 12 10.1016/j.aej.2024.01.014_bib68 El-Saleh (10.1016/j.aej.2024.01.014_bib54) 2023; vol. 2023 10.1016/j.aej.2024.01.014_bib66 Tanveer (10.1016/j.aej.2024.01.014_bib77) 2022; vol. 12 Gures (10.1016/j.aej.2024.01.014_bib91) 2020; vol. 8 Shayea (10.1016/j.aej.2024.01.014_bib99) 2020; vol. 8 Tashan (10.1016/j.aej.2024.01.014_bib55) 2022; vol. 10 10.1016/j.aej.2024.01.014_bib64 Trinder (10.1016/j.aej.2024.01.014_bib85) 1997 Shayea (10.1016/j.aej.2024.01.014_bib52) 2022; vol. 61 Bălan (10.1016/j.aej.2024.01.014_bib18) 2011; vol. 2011 Osamy (10.1016/j.aej.2024.01.014_bib84) 2022; vol. 11 10.1016/j.aej.2024.01.014_bib79 Shodamola (10.1016/j.aej.2024.01.014_bib34) 2020; 2005 10.1016/j.aej.2024.01.014_bib78 Zheng (10.1016/j.aej.2024.01.014_bib17) 2013; vol. 2013 10.1016/j.aej.2024.01.014_bib46 Nie (10.1016/j.aej.2024.01.014_bib15) 2015; vol. 52 10.1016/j.aej.2024.01.014_bib45 Alhammadi (10.1016/j.aej.2024.01.014_bib32) 2020; vol. 10 Ray (10.1016/j.aej.2024.01.014_bib14) 2015; vol. 4 Li (10.1016/j.aej.2024.01.014_bib10) 2023; vol. 69 Hussain (10.1016/j.aej.2024.01.014_bib75) 2021; vol. 22 Gures (10.1016/j.aej.2024.01.014_bib89) 2022; vol. 10 El-Saleh (10.1016/j.aej.2024.01.014_bib51) 2023; vol. 66 10.1016/j.aej.2024.01.014_bib41 Song (10.1016/j.aej.2024.01.014_bib24) 2009 Ben-Mubarak (10.1016/j.aej.2024.01.014_bib27) 2013; vol. 71 Silva (10.1016/j.aej.2024.01.014_bib29) 2018; vol. 6 Jang (10.1016/j.aej.2024.01.014_bib73) 2022; vol. 22 Imran (10.1016/j.aej.2024.01.014_bib81) 2023; vol. 136 Abrar (10.1016/j.aej.2024.01.014_bib50) 2023; vol. 69 |
| References_xml | – reference: A.F. Ashour, M.M. Fouda, AI-based approaches for handover optimization in 5G new radio and 6G wireless networks, in: Proceedings of International Conference on Computer Science, Information Technology and Engineering (ICCoSITE), 2023, pp. 336–34. – reference: G.H. Legg P., Johansson J., A Simulation Study of LTE Intra-Frequency Handover Performance, presented at the IEEE 72nd Vehicular Technology Conference Fall (VTC 2010-Fall); 2010. – volume: vol. 61 start-page: 5983 year: 2022 end-page: 5999 ident: bib70 article-title: A highly efficient approach for performance enhancement of multiple antenna elements based spectrum sensing techniques using side lobe level reduction publication-title: Alex. Eng. J. – volume: vol. 24 start-page: 481 year: 2018 end-page: 495 ident: bib44 article-title: Optimization of user behavior based handover using fuzzy Q-learning for LTE networks publication-title: Wirel. Netw. – reference: B. Sas, K. Spaey, C. Blondia, A SON function for steering users in multi-layer LTE networks based on their mobility behaviour, presented at the 2015 IEEE 81st Vehicular Technology Conference (VTC Spring), 2015. – volume: vol. 12 start-page: 426 year: 2022 ident: bib77 article-title: An overview of reinforcement learning algorithms for handover management in 5G ultra-dense small cell networks publication-title: Appl. Sci. – year: 2020 ident: bib58 article-title: Mobility management in 5g networks: a survey on key challenges drivers and solutions publication-title: IEEE Access – volume: vol. 13 start-page: 85 year: 2016 end-page: 98 ident: bib40 article-title: Cognitive Cellular Networks: a Q-learning framework for self-organizing networks publication-title: IEEE Trans. Netw. Serv. Manag. – volume: vol. 6 start-page: 17178 year: 2018 end-page: 17189 ident: bib29 article-title: Adaptive hysteresis margin based on fuzzy logic for handover in mobile networks with dense small cells publication-title: IEEE Access – start-page: 223 year: 2021 end-page: 255 ident: bib67 article-title: 5G slicing and handover scenarios: compulsoriness and machine learning publication-title: Current Trends in Communication and Information Technologies – volume: vol. 76 start-page: 112 year: 2015 end-page: 125 ident: bib47 article-title: Load balancing and handover joint optimization in LTE networks using fuzzy logic and reinforcement learning publication-title: Comput. Netw. – start-page: 257 year: 1997 end-page: 266 ident: bib85 article-title: Artificial intelligence in 3-D feature extraction publication-title: Automatic Extraction of Man-Made Objects from Aerialand Space Images (II) – volume: vol. 50 start-page: 50 year: 2022 end-page: 56 ident: bib74 article-title: Complexity of flow time minimization in a crossdock truck scheduling problem with asymmetric handover relations publication-title: Oper. Res. Lett. – volume: vol. 71 start-page: 1421 year: 2013 end-page: 1442 ident: bib27 article-title: Fuzzy logic based self-adaptive handover algorithm for mobile WiMAX publication-title: Wirel. Pers. Commun. – volume: vol. 9 start-page: 45770 year: 2021 end-page: 45802 ident: bib94 article-title: A survey of machine learning applications to handover management in 5G and beyond publication-title: IEEE Access – volume: vol. 44 year: 2023 ident: bib82 article-title: A survey of applications of artificial intelligence and machine learning in future mobile networks-enabled systems publication-title: Eng. Sci. Technol. Int. J. – reference: 3GPP, "Self-Organizing Networks (SON) Policy Network Resource Model (NRM) Integration Reference Point (IRP); Requirements (Release 15), 3GPP TS 28.627 V15.0.0," ed. Valbonne - FRANCE, 2018. – reference: L. Ewe, H. Bakker, Base station distributed handover optimization in LTE self-organizing networks, in Personal Indoor and Mobile Radio Communications (PIMRC), 2011 IEEE 22nd International Symposium on, 2011, pp. 243–247. – year: 2009 ident: bib24 article-title: Time-adaptive vertical handoff triggering methods for heterogeneous systems publication-title: Presente Int. Workshop Adv. Parallel Process. Technol. – year: 2022 ident: bib48 article-title: Self-adapting handover parameters Optimization for SDN-enabled UDN publication-title: IEEE Trans. Wirel. Commun. – volume: vol. 10 start-page: 37689 year: 2022 end-page: 37717 ident: bib89 article-title: Machine learning-based load balancing algorithms in future heterogeneous networks: a survey publication-title: IEEE Access – volume: vol. 18 start-page: 3541 year: 2021 end-page: 3555 ident: bib43 article-title: A service-centric Q-learning algorithm for mobility robustness optimization in LTE publication-title: IEEE Trans. Netw. Serv. Manag. – volume: vol. 4 start-page: 231 year: 2015 ident: bib14 article-title: Hysteresis margin and load balancing for handover in heterogeneous network publication-title: Int. J. Future Comput. Commun. – volume: vol. 22 start-page: 2692 year: 2022 ident: bib56 article-title: Mobility-aware offloading decision for multi-access edge computing in 5G networks publication-title: Sensors – reference: J. Wu, J. Liu, Z. Huang, S. Zheng, Dynamic fuzzy Q-learning for handover parameters optimization in 5G multi-tier networks, in 2015 International Conference on Wireless Communications & Signal Processing (WCSP), 2015, pp. 1–5. – volume: vol. 97 start-page: 1929 year: 2017 end-page: 1946 ident: bib11 article-title: Analysis of handover performance in LTE femtocells network publication-title: Wirel. Pers. Commun. – volume: vol. VOL. 62 start-page: 1895 year: 2013 end-page: 1905 ident: bib16 article-title: On the potential of handover parameter optimization for self-organizing networks. publication-title: IEEE Trans. Veh. Technol. – reference: C.H. Chin, N. Choi, and S. Faccin, Residential/enterprise network connection management and handover scenarios ed: Google Patents; 2013. – start-page: 1 year: 2020 end-page: 64 ident: bib65 article-title: Handover mechanisms in internet of vehicles (IoV): survey, trends, challenges, and issues publication-title: Global Advancements in Connected and Intelligent Mobility: Emerging Research and Opportunities – volume: vol. 2013 start-page: 1 year: 2013 end-page: 10 ident: bib17 article-title: Mobility robustness optimization in self-organizing LTE femtocell networks publication-title: EURASIP J. Wirel. Commun. Netw. – volume: vol. 161 start-page: 50 year: 2020 end-page: 75 ident: bib93 article-title: Are mobility management solutions ready for 5G and beyond? publication-title: Comput. Commun. – year: 2022 ident: bib61 article-title: Handover management over dual connectivity in 5G technology with future ultra-dense mobile heterogeneous networks: a review publication-title: Eng. Sci. Technol. Int. J. – volume: vol. 8 start-page: 294 year: 2019 end-page: 304 ident: bib28 article-title: Auto tuning self-optimization algorithm for mobility management in LTE-A and 5G HetNets publication-title: IEEE Access – year: 2022 ident: bib76 article-title: Artificial Intelligence and Machine Learning as key enablers for V2X communications: a comprehensive survey publication-title: Veh. Commun. – volume: vol. 22 start-page: 1124 year: 2021 end-page: 1134 ident: bib75 article-title: Artificial intelligence based handover decision and network selection in heterogeneous internet of vehicles publication-title: Indones. J. Electr. Eng. Comput. Sci. – volume: vol. 22 start-page: 6199 year: 2022 ident: bib53 article-title: Robust handover optimization technique with fuzzy logic controller for beyond 5G mobile networks publication-title: Sensors – volume: vol. 22 start-page: 1200 year: 2022 ident: bib73 article-title: Proactive handover decision for UAVs with deep reinforcement learning publication-title: Sensors – volume: vol. 69 start-page: 785 year: 2023 end-page: 808 ident: bib50 article-title: A systematic analysis and review on producer mobility management in named data networks: research background and challenges publication-title: Alex. Eng. J. – volume: vol. 8 start-page: 183505 year: 2020 end-page: 183533 ident: bib90 article-title: Mobility management in emerging ultra-dense cellular networks: a survey, outlook, and future research directions publication-title: IEEE Access – volume: vol. 66 start-page: 927 year: 2023 end-page: 946 ident: bib51 article-title: Measurement analysis and performance evaluation of mobile broadband cellular networks in a populated city publication-title: Alex. Eng. J. – reference: 3GPP, "Self-configuring and self-optimizing network (SON) use cases and solutions (Release 9), TR 36.902 V9.3.1," ed. France: 3GPP, 2011. – reference: 3GPP, "Telecommunication Management; Self-Organizing Networks (SON) Policy Network Resource Model (NRM) Integration Reference Point (IRP); Requirements (Release 11), 3GPP TS 32.521 V11.1.0," ed. Valbonne - FRANCE: 3GPP, 2012. – year: 2016 ident: bib30 article-title: Novel handover optimization with a coordinated contiguous carrier aggregation deployment scenario in LTE-advanced systems publication-title: Mob. Inf. Syst. – volume: vol. 8 start-page: 195883 year: 2020 end-page: 195913 ident: bib91 article-title: A comprehensive survey on mobility management in 5g heterogeneous networks: Architectures, challenges and solutions publication-title: IEEE Access – reference: A.D. Radulescu, A. Gholmieh, T. Kadous, C.S. Patel, Coding of handover messages between nodes of different radio access technologies, ed: Google Patents, 2019. – reference: 3GPP, "LTE Evolved Universal Terrestrial Radio Access (E-UTRA) Radio Frequency (RF) system scenarios," TR 36.942 version 16.0. 0 Release 16 2020. – volume: vol. 11 start-page: 313 year: 2022 ident: bib84 article-title: Recent studies utilizing artificial intelligence techniques for solving data collection, aggregation and dissemination challenges in wireless sensor networks: a review publication-title: Electronics – volume: vol. 8 start-page: 172534 year: 2020 end-page: 172552 ident: bib1 article-title: Key challenges, drivers and solutions for mobility management in 5G networks: a survey publication-title: IEEE Access – reference: P. Sapkale, U. Kolekar, Handover decision algorithm for next generation, in: Proceedings of International Conference on Wireless Communication, 2020, pp. 269–277. – volume: vol. 61 start-page: 8051 year: 2022 end-page: 8067 ident: bib52 article-title: Time series forecasting model of future spectrum demands for mobile broadband networks in Malaysia, Turkey, and Oman publication-title: Alex. Eng. J. – reference: 3GPP, "Telecommunication management; Self-Organizing Networks (SON) Policy Network Resource Model (NRM) Integration Reference Point (IRP); Information Service (IS) (Release 11), 3GPP TS 32.522 V11.7.0," ed. Valbonne - France: 3GPP, 2013. – reference: 3GPP, "Self-Organizing Networks (SON) Policy, Network Resource Model (NRM), Integration Reference Point (IRP); Information Service (IS) (Release 15), 3GPP TS 28.628 V15.0.0," ed. Valbonne - FRANCE: 3GPP, 2018. – reference: Z.H. Huang, Y.L. Hsu, P.K. Chang, M.J. Tsai, Efficient handover algorithm in 5G Networks using Deep Learning, in GLOBECOM 2020 - 2020 IEEE Global Communications Conference, 2020, pp. 1–6. – volume: vol. 22 start-page: 1 year: 2019 end-page: 10 ident: bib87 article-title: Introduction of artificial intelligence tools into the training methods of entrepreneurship activities publication-title: J. Entrep. Educ. – volume: vol. 34 start-page: 272 year: 2020 end-page: 280 ident: bib88 article-title: Artificial-intelligence-enabled intelligent 6G networks publication-title: IEEE Netw. – volume: vol. 67 start-page: 5260 year: 2018 end-page: 5273 ident: bib12 article-title: Optimization of handover parameters for LTE/LTE-A in-building systems publication-title: IEEE Trans. Veh. Technol. – reference: A. Awada, B. Wegmann, D. Rose, I. Viering, A. Klein, Towards self-organizing mobility robustness optimization in inter-RAT scenario, in Vehicular Technology Conference (VTC Spring), 2011 IEEE 73rd, 2011, pp. 1–5. – volume: vol. 42 year: 2023 ident: bib72 article-title: Handover and load balancing self-optimization models in 5G mobile networks publication-title: Eng. Sci. Technol. Int. J. – reference: L. Yejee, S. Bongjhin, L. Jaechan, D. Hong, Effects of time-to-trigger parameter on handover performance in SON-based LTE systems, presented at the Communications (APCC), 2010 16th Asia-Pacific Conference on, 2010. – volume: 2005 year: 2020 ident: bib34 article-title: A machine learning based framework for KPI maximization in emerging networks using mobility parameters – volume: vol. 9 start-page: 12803 year: 2021 end-page: 12823 ident: bib63 article-title: Handover management of drones in future mobile networks: 6G technologies publication-title: IEEE Access – reference: 3GPP, "Title," unpublished|. – volume: vol. 25 start-page: 5001 year: 2019 end-page: 5009 ident: bib37 article-title: Data-driven handover optimization in small cell networks publication-title: Wirel. Netw. – volume: vol. 136 year: 2023 ident: bib81 article-title: Effect of measurement error on the multivariate CUSUM control chart for compositional data publication-title: CMES-Comput. Model. Eng. Sci. – year: 2022 ident: bib9 article-title: 6G mobile communication technology: requirements, targets, applications, challenges, advantages, and opportunities publication-title: Alex. Eng. J. – volume: vol. 10 start-page: 45522 year: 2022 end-page: 45541 ident: bib55 article-title: Mobility robustness optimization in future mobile heterogeneous networks: a survey publication-title: IEEE Access – reference: 3GPP, "Radio Frequency (RF) system scenarios (Release 15), TR 25.942 V15.0.0 ", ed. Valbonne - FRANCE: 3GPP, 2018. – volume: vol. 12 start-page: 1 year: 2020 end-page: 15 ident: bib42 article-title: Optimizing handover parameters by Q-learning for heterogeneous radio-optical networks publication-title: IEEE Photonics J. – volume: vol. 2023 year: 2023 ident: bib54 article-title: Measurements and analyses of 4G/5G mobile broadband networks: an overview and a case study publication-title: Wirel. Commun. Mob. Comput. – volume: vol. 108 start-page: 1179 year: 2019 end-page: 1199 ident: bib31 article-title: New weight function for adapting handover margin level over contiguous carrier aggregation deployment scenarios in LTE-advanced system publication-title: Wirel. Pers. Commun. – volume: vol. 180 year: 2023 ident: bib80 article-title: Analyzing abnormal pattern of hotelling T2 control chart for compositional data using artificial neural networks publication-title: Comput. Ind. Eng. – volume: vol. 22 start-page: 6424 year: 2022 ident: bib60 article-title: Handover management for drones in future mobile networks—a survey publication-title: Sensors – volume: vol. 8 start-page: 294 year: 2020 end-page: 304 ident: bib98 article-title: Auto tuning self-optimization algorithm for mobility management in LTE-A and 5G HetNets publication-title: IEEE Access – volume: vol. 9 start-page: 77830 year: 2021 end-page: 77844 ident: bib39 article-title: Machine learning–based mobility robustness optimization under dynamic cellular networks publication-title: IEEE Access – year: 2020 ident: bib49 article-title: A comprehensive survey on mobility management in 5G heterogeneous networks: architectures, challenges and solutions publication-title: IEEE Access – reference: A. Abdelmohsen, M. Abdelwahab, M. Adel, M.S. Darweesh, H. Mostafa, LTE handover parameters optimization using Q-learning technique, in 2018 IEEE 61st International Midwest Symposium on Circuits and Systems (MWSCAS), 2018, pp. 194–197. – volume: vol. 8 start-page: 214392 year: 2020 end-page: 214412 ident: bib99 article-title: Individualistic dynamic handover parameter self-optimization algorithm for 5G networks based on automatic weight function publication-title: IEEE Access – reference: H. Tullberg and J. Ottersten, "Machine learning for handover," ed: Google Patents; 2022. – volume: vol. 9 start-page: 1227 year: 2021 ident: bib86 article-title: Application of feature extraction and artificial intelligence techniques for increasing the accuracy of X-ray radiation based two phase flow meter publication-title: Mathematics – volume: vol. 14 start-page: 87 year: 2022 ident: bib62 article-title: Handover management in 5G vehicular networks publication-title: Future Internet – reference: K. Kitagawa, T. Komine, T. Yamamoto, S. Konishi, A handover optimization algorithm with mobility robustness for LTE systems, in Personal Indoor and Mobile Radio Communications (PIMRC), 2011 IEEE 22nd International Symposium on, 2011, pp. 1647–1651. – volume: vol. 11 start-page: 1366 year: 2022 ident: bib95 article-title: Mobility management issues and solutions in 5G-and-beyond networks: a comprehensive review publication-title: Electronics – volume: vol. 67 start-page: 5260 year: 2018 end-page: 5273 ident: bib38 article-title: Optimization of handover parameters for LTE/LTE-A in-building systems publication-title: IEEE Trans. Veh. Technol. – volume: vol. 10 start-page: 1354 year: 2020 ident: bib32 article-title: Velocity-aware handover self-optimization management for next generation networks publication-title: Appl. Sci. – volume: vol. 60 start-page: 1677 year: 2021 end-page: 1688 ident: bib71 article-title: Performance analysis of centralized dynamic spectrum access via channel reservation mechanism in cognitive radio networks publication-title: Alex. Eng. J. – volume: vol. 22 start-page: 6013 year: 2022 ident: bib57 article-title: Mobility management of unmanned aerial vehicles in ultra–dense heterogeneous networks publication-title: Sensors – reference: 3GPP, "Further Advancements for E-UTRA (LTE-Advanced) (Release 15), 3GPP TR 36.912 V15.0.0," ed. Valbonne - FRANCE: 3GPP, 2018. – year: 2008 ident: bib25 article-title: Distributed self-optimization of handover for the long term evolution publication-title: Presente Int. Workshop Self-Organ. Syst. – reference: A. Alhammadi, M. Roslee, M.Y. Alias, I. Shayea, S. Alraih, Dynamic handover control parameters for LTE-A/5G mobile communications, in 2018 Advances in Wireless and Optical Communications (RTUWO), 2018, pp. 39–44. – volume: vol. 69 start-page: 25 year: 2023 end-page: 33 ident: bib10 article-title: A UAV migration-based decision-making scheme for on-demand service in 6G network publication-title: Alex. Eng. J. – volume: vol. 75 start-page: 481 year: 2020 end-page: 507 ident: bib92 article-title: A survey on femtocell handover management in dense heterogeneous 5G networks publication-title: Telecommun. Syst. – reference: 3GPP, "LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Base Station (BS) radio transmission and reception," 3GPP TS 36.104 version 16.9.0 Release 16, 2021. – volume: vol. 2016 start-page: 1 year: 2016 end-page: 11 ident: bib36 article-title: Data-driven handover optimization in next generation mobile communication networks publication-title: Mob. Inf. Syst. – volume: vol. 2011 start-page: 1 year: 2011 end-page: 11 ident: bib18 article-title: An enhanced weighted performance-based handover parameter optimization algorithm for LTE networks. publication-title: EURASIP J. Wirel. Commun. Netw. – reference: A. Klein, N.P. Kuruvatti, J. Schneider, H.D. Schotten, Fuzzy Q-learning for mobility robustness optimization in wireless networks, in 2013 IEEE Globecom Workshops (GC Wkshps), 2013, pp. 76–81. – volume: vol. 52 start-page: 501 year: 2010 end-page: 516 ident: bib26 article-title: A handover prediction model and its application to link layer triggers for fast handover publication-title: Wirel. Pers. Commun. – volume: vol. 65 start-page: 627 year: 2023 end-page: 648 ident: bib69 article-title: An analysis of low complexity of 5G-MIMO communication system based CR using hybrid filter detection publication-title: Alex. Eng. J. – volume: vol. 14 start-page: 851 year: 2010 end-page: 853 ident: bib59 article-title: An optimal handover decision for throughput enhancement publication-title: IEEE Commun. Lett. – volume: vol. 52 start-page: 270 year: 2015 end-page: 277 ident: bib15 article-title: An enhanced mobility state estimation based handover optimization algorithm in LTE-A self-organizing network publication-title: Procedia Comput. Sci. – volume: vol. 8 start-page: 18 year: 2021 end-page: 27 ident: bib83 article-title: Enabling data-driven condition monitoring of power electronic systems with artificial intelligence: Concepts, tools, and developments publication-title: IEEE Power Electron. Mag. – ident: 10.1016/j.aej.2024.01.014_bib78 doi: 10.1109/ICCoSITE57641.2023.10127687 – volume: vol. 22 start-page: 1 year: 2019 ident: 10.1016/j.aej.2024.01.014_bib87 article-title: Introduction of artificial intelligence tools into the training methods of entrepreneurship activities publication-title: J. Entrep. Educ. – ident: 10.1016/j.aej.2024.01.014_bib68 – year: 2008 ident: 10.1016/j.aej.2024.01.014_bib25 article-title: Distributed self-optimization of handover for the long term evolution publication-title: Presente Int. Workshop Self-Organ. Syst. – volume: vol. 22 start-page: 1124 year: 2021 ident: 10.1016/j.aej.2024.01.014_bib75 article-title: Artificial intelligence based handover decision and network selection in heterogeneous internet of vehicles publication-title: Indones. J. Electr. Eng. Comput. Sci. – ident: 10.1016/j.aej.2024.01.014_bib21 doi: 10.1109/VETECS.2011.5956234 – ident: 10.1016/j.aej.2024.01.014_bib33 doi: 10.1109/RTUWO.2018.8587895 – volume: vol. 52 start-page: 270 year: 2015 ident: 10.1016/j.aej.2024.01.014_bib15 article-title: An enhanced mobility state estimation based handover optimization algorithm in LTE-A self-organizing network publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2015.05.078 – ident: 10.1016/j.aej.2024.01.014_bib46 doi: 10.1109/WCSP.2015.7341220 – volume: vol. 14 start-page: 87 year: 2022 ident: 10.1016/j.aej.2024.01.014_bib62 article-title: Handover management in 5G vehicular networks publication-title: Future Internet doi: 10.3390/fi14030087 – volume: 2005 start-page: 01474 year: 2020 ident: 10.1016/j.aej.2024.01.014_bib34 article-title: A machine learning based framework for KPI maximization in emerging networks using mobility parameters publication-title: arXiv Prepr. arXiv – year: 2022 ident: 10.1016/j.aej.2024.01.014_bib9 article-title: 6G mobile communication technology: requirements, targets, applications, challenges, advantages, and opportunities publication-title: Alex. Eng. J. – ident: 10.1016/j.aej.2024.01.014_bib97 – volume: vol. 22 start-page: 2692 year: 2022 ident: 10.1016/j.aej.2024.01.014_bib56 article-title: Mobility-aware offloading decision for multi-access edge computing in 5G networks publication-title: Sensors doi: 10.3390/s22072692 – ident: 10.1016/j.aej.2024.01.014_bib2 – volume: vol. VOL. 62 start-page: 1895 year: 2013 ident: 10.1016/j.aej.2024.01.014_bib16 article-title: On the potential of handover parameter optimization for self-organizing networks. publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2013.2247778 – volume: vol. 67 start-page: 5260 year: 2018 ident: 10.1016/j.aej.2024.01.014_bib38 article-title: Optimization of handover parameters for LTE/LTE-A in-building systems publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2017.2711582 – volume: vol. 12 start-page: 1 year: 2020 ident: 10.1016/j.aej.2024.01.014_bib42 article-title: Optimizing handover parameters by Q-learning for heterogeneous radio-optical networks publication-title: IEEE Photonics J. doi: 10.1109/JPHOT.2019.2953863 – volume: vol. 18 start-page: 3541 year: 2021 ident: 10.1016/j.aej.2024.01.014_bib43 article-title: A service-centric Q-learning algorithm for mobility robustness optimization in LTE publication-title: IEEE Trans. Netw. Serv. Manag. doi: 10.1109/TNSM.2021.3073244 – ident: 10.1016/j.aej.2024.01.014_bib8 – volume: vol. 6 start-page: 17178 year: 2018 ident: 10.1016/j.aej.2024.01.014_bib29 article-title: Adaptive hysteresis margin based on fuzzy logic for handover in mobile networks with dense small cells publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2811047 – volume: vol. 8 start-page: 294 year: 2019 ident: 10.1016/j.aej.2024.01.014_bib28 article-title: Auto tuning self-optimization algorithm for mobility management in LTE-A and 5G HetNets publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2961186 – volume: vol. 69 start-page: 25 year: 2023 ident: 10.1016/j.aej.2024.01.014_bib10 article-title: A UAV migration-based decision-making scheme for on-demand service in 6G network publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2023.01.034 – year: 2016 ident: 10.1016/j.aej.2024.01.014_bib30 article-title: Novel handover optimization with a coordinated contiguous carrier aggregation deployment scenario in LTE-advanced systems publication-title: Mob. Inf. Syst. – volume: vol. 8 start-page: 172534 year: 2020 ident: 10.1016/j.aej.2024.01.014_bib1 article-title: Key challenges, drivers and solutions for mobility management in 5G networks: a survey publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3023802 – ident: 10.1016/j.aej.2024.01.014_bib79 – volume: vol. 10 start-page: 37689 year: 2022 ident: 10.1016/j.aej.2024.01.014_bib89 article-title: Machine learning-based load balancing algorithms in future heterogeneous networks: a survey publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3161511 – ident: 10.1016/j.aej.2024.01.014_bib5 – ident: 10.1016/j.aej.2024.01.014_bib13 doi: 10.1109/VTCSpring.2015.7145646 – volume: vol. 67 start-page: 5260 year: 2018 ident: 10.1016/j.aej.2024.01.014_bib12 article-title: Optimization of handover parameters for LTE/LTE-A in-building systems publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2017.2711582 – volume: vol. 75 start-page: 481 year: 2020 ident: 10.1016/j.aej.2024.01.014_bib92 article-title: A survey on femtocell handover management in dense heterogeneous 5G networks publication-title: Telecommun. Syst. doi: 10.1007/s11235-020-00718-1 – volume: vol. 69 start-page: 785 year: 2023 ident: 10.1016/j.aej.2024.01.014_bib50 article-title: A systematic analysis and review on producer mobility management in named data networks: research background and challenges publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2023.02.022 – ident: 10.1016/j.aej.2024.01.014_bib7 – volume: vol. 9 start-page: 45770 year: 2021 ident: 10.1016/j.aej.2024.01.014_bib94 article-title: A survey of machine learning applications to handover management in 5G and beyond publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3067503 – volume: vol. 10 start-page: 1354 year: 2020 ident: 10.1016/j.aej.2024.01.014_bib32 article-title: Velocity-aware handover self-optimization management for next generation networks publication-title: Appl. Sci. doi: 10.3390/app10041354 – volume: vol. 97 start-page: 1929 year: 2017 ident: 10.1016/j.aej.2024.01.014_bib11 article-title: Analysis of handover performance in LTE femtocells network publication-title: Wirel. Pers. Commun. doi: 10.1007/s11277-017-4222-3 – ident: 10.1016/j.aej.2024.01.014_bib22 doi: 10.1109/VETECF.2010.5594477 – volume: vol. 9 start-page: 1227 year: 2021 ident: 10.1016/j.aej.2024.01.014_bib86 article-title: Application of feature extraction and artificial intelligence techniques for increasing the accuracy of X-ray radiation based two phase flow meter publication-title: Mathematics doi: 10.3390/math9111227 – volume: vol. 61 start-page: 8051 year: 2022 ident: 10.1016/j.aej.2024.01.014_bib52 article-title: Time series forecasting model of future spectrum demands for mobile broadband networks in Malaysia, Turkey, and Oman publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2022.01.036 – volume: vol. 42 year: 2023 ident: 10.1016/j.aej.2024.01.014_bib72 article-title: Handover and load balancing self-optimization models in 5G mobile networks publication-title: Eng. Sci. Technol. Int. J. – volume: vol. 2023 year: 2023 ident: 10.1016/j.aej.2024.01.014_bib54 article-title: Measurements and analyses of 4G/5G mobile broadband networks: an overview and a case study publication-title: Wirel. Commun. Mob. Comput. doi: 10.1155/2023/6205689 – ident: 10.1016/j.aej.2024.01.014_bib4 – year: 2009 ident: 10.1016/j.aej.2024.01.014_bib24 article-title: Time-adaptive vertical handoff triggering methods for heterogeneous systems publication-title: Presente Int. Workshop Adv. Parallel Process. Technol. – volume: vol. 9 start-page: 12803 year: 2021 ident: 10.1016/j.aej.2024.01.014_bib63 article-title: Handover management of drones in future mobile networks: 6G technologies publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3051097 – volume: vol. 22 start-page: 6424 year: 2022 ident: 10.1016/j.aej.2024.01.014_bib60 article-title: Handover management for drones in future mobile networks—a survey publication-title: Sensors doi: 10.3390/s22176424 – year: 2020 ident: 10.1016/j.aej.2024.01.014_bib58 article-title: Mobility management in 5g networks: a survey on key challenges drivers and solutions publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3023802 – year: 2022 ident: 10.1016/j.aej.2024.01.014_bib61 article-title: Handover management over dual connectivity in 5G technology with future ultra-dense mobile heterogeneous networks: a review publication-title: Eng. Sci. Technol. Int. J. – ident: 10.1016/j.aej.2024.01.014_bib19 doi: 10.1109/PIMRC.2011.6139784 – volume: vol. 14 start-page: 851 year: 2010 ident: 10.1016/j.aej.2024.01.014_bib59 article-title: An optimal handover decision for throughput enhancement publication-title: IEEE Commun. Lett. doi: 10.1109/LCOMM.2010.09.092356 – volume: vol. 8 start-page: 183505 year: 2020 ident: 10.1016/j.aej.2024.01.014_bib90 article-title: Mobility management in emerging ultra-dense cellular networks: a survey, outlook, and future research directions publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3027258 – start-page: 257 year: 1997 ident: 10.1016/j.aej.2024.01.014_bib85 article-title: Artificial intelligence in 3-D feature extraction – year: 2022 ident: 10.1016/j.aej.2024.01.014_bib48 article-title: Self-adapting handover parameters Optimization for SDN-enabled UDN publication-title: IEEE Trans. Wirel. Commun. – volume: vol. 24 start-page: 481 year: 2018 ident: 10.1016/j.aej.2024.01.014_bib44 article-title: Optimization of user behavior based handover using fuzzy Q-learning for LTE networks publication-title: Wirel. Netw. doi: 10.1007/s11276-016-1348-2 – volume: vol. 9 start-page: 77830 year: 2021 ident: 10.1016/j.aej.2024.01.014_bib39 article-title: Machine learning–based mobility robustness optimization under dynamic cellular networks publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3083554 – volume: vol. 13 start-page: 85 year: 2016 ident: 10.1016/j.aej.2024.01.014_bib40 article-title: Cognitive Cellular Networks: a Q-learning framework for self-organizing networks publication-title: IEEE Trans. Netw. Serv. Manag. doi: 10.1109/TNSM.2016.2522080 – ident: 10.1016/j.aej.2024.01.014_bib20 doi: 10.1109/PIMRC.2011.6139958 – ident: 10.1016/j.aej.2024.01.014_bib100 – volume: vol. 8 start-page: 195883 year: 2020 ident: 10.1016/j.aej.2024.01.014_bib91 article-title: A comprehensive survey on mobility management in 5g heterogeneous networks: Architectures, challenges and solutions publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3030762 – volume: vol. 2013 start-page: 1 year: 2013 ident: 10.1016/j.aej.2024.01.014_bib17 article-title: Mobility robustness optimization in self-organizing LTE femtocell networks publication-title: EURASIP J. Wirel. Commun. Netw. doi: 10.1186/1687-1499-2013-27 – ident: 10.1016/j.aej.2024.01.014_bib45 doi: 10.1109/GLOCOMW.2013.6824965 – year: 2022 ident: 10.1016/j.aej.2024.01.014_bib76 article-title: Artificial Intelligence and Machine Learning as key enablers for V2X communications: a comprehensive survey publication-title: Veh. Commun. – volume: vol. 22 start-page: 6199 year: 2022 ident: 10.1016/j.aej.2024.01.014_bib53 article-title: Robust handover optimization technique with fuzzy logic controller for beyond 5G mobile networks publication-title: Sensors doi: 10.3390/s22166199 – volume: vol. 12 start-page: 426 year: 2022 ident: 10.1016/j.aej.2024.01.014_bib77 article-title: An overview of reinforcement learning algorithms for handover management in 5G ultra-dense small cell networks publication-title: Appl. Sci. doi: 10.3390/app12010426 – volume: vol. 25 start-page: 5001 year: 2019 ident: 10.1016/j.aej.2024.01.014_bib37 article-title: Data-driven handover optimization in small cell networks publication-title: Wirel. Netw. doi: 10.1007/s11276-019-02111-6 – volume: vol. 50 start-page: 50 year: 2022 ident: 10.1016/j.aej.2024.01.014_bib74 article-title: Complexity of flow time minimization in a crossdock truck scheduling problem with asymmetric handover relations publication-title: Oper. Res. Lett. doi: 10.1016/j.orl.2021.12.004 – volume: vol. 8 start-page: 18 year: 2021 ident: 10.1016/j.aej.2024.01.014_bib83 article-title: Enabling data-driven condition monitoring of power electronic systems with artificial intelligence: Concepts, tools, and developments publication-title: IEEE Power Electron. Mag. doi: 10.1109/MPEL.2020.3047718 – volume: vol. 76 start-page: 112 year: 2015 ident: 10.1016/j.aej.2024.01.014_bib47 article-title: Load balancing and handover joint optimization in LTE networks using fuzzy logic and reinforcement learning publication-title: Comput. Netw. doi: 10.1016/j.comnet.2014.10.027 – ident: 10.1016/j.aej.2024.01.014_bib96 – volume: vol. 11 start-page: 313 year: 2022 ident: 10.1016/j.aej.2024.01.014_bib84 article-title: Recent studies utilizing artificial intelligence techniques for solving data collection, aggregation and dissemination challenges in wireless sensor networks: a review publication-title: Electronics doi: 10.3390/electronics11030313 – start-page: 1 year: 2020 ident: 10.1016/j.aej.2024.01.014_bib65 article-title: Handover mechanisms in internet of vehicles (IoV): survey, trends, challenges, and issues – volume: vol. 34 start-page: 272 year: 2020 ident: 10.1016/j.aej.2024.01.014_bib88 article-title: Artificial-intelligence-enabled intelligent 6G networks publication-title: IEEE Netw. doi: 10.1109/MNET.011.2000195 – volume: vol. 60 start-page: 1677 year: 2021 ident: 10.1016/j.aej.2024.01.014_bib71 article-title: Performance analysis of centralized dynamic spectrum access via channel reservation mechanism in cognitive radio networks publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2020.11.018 – volume: vol. 44 year: 2023 ident: 10.1016/j.aej.2024.01.014_bib82 article-title: A survey of applications of artificial intelligence and machine learning in future mobile networks-enabled systems publication-title: Eng. Sci. Technol. Int. J. – ident: 10.1016/j.aej.2024.01.014_bib23 – ident: 10.1016/j.aej.2024.01.014_bib66 – volume: vol. 4 start-page: 231 year: 2015 ident: 10.1016/j.aej.2024.01.014_bib14 article-title: Hysteresis margin and load balancing for handover in heterogeneous network publication-title: Int. J. Future Comput. Commun. doi: 10.7763/IJFCC.2015.V4.391 – volume: vol. 8 start-page: 294 year: 2020 ident: 10.1016/j.aej.2024.01.014_bib98 article-title: Auto tuning self-optimization algorithm for mobility management in LTE-A and 5G HetNets publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2961186 – volume: vol. 161 start-page: 50 year: 2020 ident: 10.1016/j.aej.2024.01.014_bib93 article-title: Are mobility management solutions ready for 5G and beyond? publication-title: Comput. Commun. doi: 10.1016/j.comcom.2020.07.016 – ident: 10.1016/j.aej.2024.01.014_bib35 doi: 10.1109/GLOBECOM42002.2020.9322618 – ident: 10.1016/j.aej.2024.01.014_bib64 doi: 10.1007/978-981-15-1002-1_28 – volume: vol. 136 year: 2023 ident: 10.1016/j.aej.2024.01.014_bib81 article-title: Effect of measurement error on the multivariate CUSUM control chart for compositional data publication-title: CMES-Comput. Model. Eng. Sci. – volume: vol. 66 start-page: 927 year: 2023 ident: 10.1016/j.aej.2024.01.014_bib51 article-title: Measurement analysis and performance evaluation of mobile broadband cellular networks in a populated city publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2022.10.052 – volume: vol. 61 start-page: 5983 year: 2022 ident: 10.1016/j.aej.2024.01.014_bib70 article-title: A highly efficient approach for performance enhancement of multiple antenna elements based spectrum sensing techniques using side lobe level reduction publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2021.11.028 – volume: vol. 10 start-page: 45522 year: 2022 ident: 10.1016/j.aej.2024.01.014_bib55 article-title: Mobility robustness optimization in future mobile heterogeneous networks: a survey publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3168717 – volume: vol. 108 start-page: 1179 year: 2019 ident: 10.1016/j.aej.2024.01.014_bib31 article-title: New weight function for adapting handover margin level over contiguous carrier aggregation deployment scenarios in LTE-advanced system publication-title: Wirel. Pers. Commun. doi: 10.1007/s11277-019-06463-2 – volume: vol. 22 start-page: 6013 year: 2022 ident: 10.1016/j.aej.2024.01.014_bib57 article-title: Mobility management of unmanned aerial vehicles in ultra–dense heterogeneous networks publication-title: Sensors doi: 10.3390/s22166013 – start-page: 223 year: 2021 ident: 10.1016/j.aej.2024.01.014_bib67 article-title: 5G slicing and handover scenarios: compulsoriness and machine learning – volume: vol. 180 year: 2023 ident: 10.1016/j.aej.2024.01.014_bib80 article-title: Analyzing abnormal pattern of hotelling T2 control chart for compositional data using artificial neural networks publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2023.109254 – ident: 10.1016/j.aej.2024.01.014_bib6 – volume: vol. 2011 start-page: 1 year: 2011 ident: 10.1016/j.aej.2024.01.014_bib18 article-title: An enhanced weighted performance-based handover parameter optimization algorithm for LTE networks. publication-title: EURASIP J. Wirel. Commun. Netw. doi: 10.1186/1687-1499-2011-98 – volume: vol. 22 start-page: 1200 year: 2022 ident: 10.1016/j.aej.2024.01.014_bib73 article-title: Proactive handover decision for UAVs with deep reinforcement learning publication-title: Sensors doi: 10.3390/s22031200 – year: 2020 ident: 10.1016/j.aej.2024.01.014_bib49 article-title: A comprehensive survey on mobility management in 5G heterogeneous networks: architectures, challenges and solutions publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3030762 – volume: vol. 52 start-page: 501 year: 2010 ident: 10.1016/j.aej.2024.01.014_bib26 article-title: A handover prediction model and its application to link layer triggers for fast handover publication-title: Wirel. Pers. Commun. doi: 10.1007/s11277-008-9631-x – volume: vol. 11 start-page: 1366 year: 2022 ident: 10.1016/j.aej.2024.01.014_bib95 article-title: Mobility management issues and solutions in 5G-and-beyond networks: a comprehensive review publication-title: Electronics doi: 10.3390/electronics11091366 – ident: 10.1016/j.aej.2024.01.014_bib41 doi: 10.1109/MWSCAS.2018.8623826 – volume: vol. 2016 start-page: 1 year: 2016 ident: 10.1016/j.aej.2024.01.014_bib36 article-title: Data-driven handover optimization in next generation mobile communication networks publication-title: Mob. Inf. Syst. – volume: vol. 65 start-page: 627 year: 2023 ident: 10.1016/j.aej.2024.01.014_bib69 article-title: An analysis of low complexity of 5G-MIMO communication system based CR using hybrid filter detection publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2022.10.050 – ident: 10.1016/j.aej.2024.01.014_bib3 – volume: vol. 71 start-page: 1421 year: 2013 ident: 10.1016/j.aej.2024.01.014_bib27 article-title: Fuzzy logic based self-adaptive handover algorithm for mobile WiMAX publication-title: Wirel. Pers. Commun. doi: 10.1007/s11277-012-0883-0 – volume: vol. 8 start-page: 214392 year: 2020 ident: 10.1016/j.aej.2024.01.014_bib99 article-title: Individualistic dynamic handover parameter self-optimization algorithm for 5G networks based on automatic weight function publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3037048 |
| SSID | ssj0000579496 |
| Score | 2.3581448 |
| Snippet | Ensuring reliable and stable communication links between User Equipment (UE) and serving cellular networks during UE movement is one of the significant... |
| SourceID | doaj crossref elsevier |
| SourceType | Open Website Enrichment Source Index Database Publisher |
| StartPage | 125 |
| SubjectTerms | Adaptive handover parameters Handover control parameters Handover optimization algorithm Heterogenous networks LTE-advanced system Mobility robustness optimization Self-optimization |
| Title | Artificial intelligence linear regression model for mobility robustness optimization algorithm in 5G cellular networks |
| URI | https://dx.doi.org/10.1016/j.aej.2024.01.014 https://doaj.org/article/4f4224e2f87440d2b27709203b4c356d |
| Volume | 89 |
| WOSCitedRecordID | wos001171800300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals issn: 1110-0168 databaseCode: DOA dateStart: 20100101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.doaj.org/ omitProxy: false ssIdentifier: ssj0000579496 providerName: Directory of Open Access Journals |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BTtwwELWqFYf2gAqlYtuCfOBUKapjO3F8hArooUIcqMQtcuzxsqsli7IBib-vx86icAAuSDlEiWNH44nnTfLyhpAjIbUHJYuMa8sz6YzOTA4s88Joy4ywKokk_VUXF9X1tb4clfpCTliSB06G-yW9DFEGuEedduZ4w5VimjPRSCuK0uHqy5QeJVNJ1Tv4WSzOFZ5lZF6V1eaTZiR3GViE3JDLKNmZy2dBKWr3j2LTKN6cfSbbA1Ckx-kGd8gHaHfJp5F84BfygCeTAgSdj6Q1KUJH09EOZonl2tJY8IYGgBr2Ih32kXar5n7d40pHV2HduB1-yKRmOVt18_7mNvRJi3OKr_aRq0rbxBhf75F_Z6dXv_9kQx2FzIZw3WdaOV74yoO3TsaMI0yH9zlAwUB6BxK8znlZWW0ayB0rAQCbgqucUiC-kkm7amGfUNSzr5RxpQAELgFcCpDWF4o3JW-kmBK2MWRtB5FxrHWxrDdsskUdbF-j7WuWh01Oyc-nS-6SwsZrjU9wdp4aojh2PBBcph5cpn7LZaZEbua2HnBGwg-hq_nLY397j7G_k4_YZeJ9_yCTvruHA7JlH_r5ujuMTvwfROj1fQ |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+intelligence+linear+regression+model+for+mobility+robustness+optimization+algorithm+in+5G+cellular+networks&rft.jtitle=Alexandria+engineering+journal&rft.au=Sawsan+Ali+Saad&rft.au=Ibraheem+Shayea&rft.au=Nada+M.O.+Sid+Ahmed&rft.date=2024-02-01&rft.pub=Elsevier&rft.issn=1110-0168&rft.volume=89&rft.spage=125&rft.epage=148&rft_id=info:doi/10.1016%2Fj.aej.2024.01.014&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_4f4224e2f87440d2b27709203b4c356d |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1110-0168&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1110-0168&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1110-0168&client=summon |