Artificial intelligence linear regression model for mobility robustness optimization algorithm in 5G cellular networks

Ensuring reliable and stable communication links between User Equipment (UE) and serving cellular networks during UE movement is one of the significant difficulties facing the deployment of the Fifth Generation (5G) and Sixth Generation (6G) of cellular networks. Therefore, the Handover Parameters S...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Alexandria engineering journal Ročník 89; s. 125 - 148
Hlavní autori: Saad, Sawsan Ali, Shayea, Ibraheem, Sid Ahmed, Nada M.O.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.02.2024
Elsevier
Predmet:
ISSN:1110-0168
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Ensuring reliable and stable communication links between User Equipment (UE) and serving cellular networks during UE movement is one of the significant difficulties facing the deployment of the Fifth Generation (5G) and Sixth Generation (6G) of cellular networks. Therefore, the Handover Parameters Self-Optimization (HPSO) function has been introduced in modern cellular networks to address mobility management issues. Its main purpose to automatically optimize Handover Control Parameters (HCPs) settings. But the probability of estimating suboptimal HCP settings remains an issue, leading to a critical impact on the network performance. This results in an increase in Handover Probability (HOP), Handover Ping-Pong Probability (HPPP), and Radio Link Failure (RLF). The challenge becomes even more critical with the advent of 5G and 6G in cellular networks, owing to various factors. These factors include the extensive deployment of small base stations and the massive growth of connected devices. Despite the development of several HPSO algorithms, the existing techniques fall short of providing optimal solutions. Furthermore, the issue of suboptimal parameters remains unaddressed. This paper introduces an Artificial Intelligence Multiple Linear Regression (AI-MLR) model as an algorithm for optimizing mobility robustness in 5G cellular networks. The objective of the AI-MLR model is to automatically optimize HCP settings based on network experiences, leveraging the Instantaneous Indication Measure (IIM) Function. The AI-MLR model dynamically and instantly estimates HCP settings for UE by utilizing the IIM function. This function evaluates UE experiences through instantaneous Signal-to-Interference-plus-Noise Ratio (SINR) levels from both the target and serving base stations. Initially, the UE captures instantaneous measurements of SINR levels, serving as input parameters for the IIM function. The function then produces an output that acts as an indicator for automating the optimization process of the HCP settings. The proposed algorithm undergoes a comprehensive investigation and validation against various benchmark methods found in the literature, encompassing different mobility speed scenarios over a 5 G cellular network. This study involved the development of a simulation model using Matlab software. Performance evaluation utilized a range of Key Performance Indicators (KPIs), including HOP, HPPP, and RLF. The simulation results demonstrate that the proposed solution achieves significant improvements in terms of HOP, HPPP, and RLF under diverse movement speed scenarios, compared to the algorithms examined in the literature.
AbstractList Ensuring reliable and stable communication links between User Equipment (UE) and serving cellular networks during UE movement is one of the significant difficulties facing the deployment of the Fifth Generation (5G) and Sixth Generation (6G) of cellular networks. Therefore, the Handover Parameters Self-Optimization (HPSO) function has been introduced in modern cellular networks to address mobility management issues. Its main purpose to automatically optimize Handover Control Parameters (HCPs) settings. But the probability of estimating suboptimal HCP settings remains an issue, leading to a critical impact on the network performance. This results in an increase in Handover Probability (HOP), Handover Ping-Pong Probability (HPPP), and Radio Link Failure (RLF). The challenge becomes even more critical with the advent of 5G and 6G in cellular networks, owing to various factors. These factors include the extensive deployment of small base stations and the massive growth of connected devices. Despite the development of several HPSO algorithms, the existing techniques fall short of providing optimal solutions. Furthermore, the issue of suboptimal parameters remains unaddressed. This paper introduces an Artificial Intelligence Multiple Linear Regression (AI-MLR) model as an algorithm for optimizing mobility robustness in 5G cellular networks. The objective of the AI-MLR model is to automatically optimize HCP settings based on network experiences, leveraging the Instantaneous Indication Measure (IIM) Function. The AI-MLR model dynamically and instantly estimates HCP settings for UE by utilizing the IIM function. This function evaluates UE experiences through instantaneous Signal-to-Interference-plus-Noise Ratio (SINR) levels from both the target and serving base stations. Initially, the UE captures instantaneous measurements of SINR levels, serving as input parameters for the IIM function. The function then produces an output that acts as an indicator for automating the optimization process of the HCP settings. The proposed algorithm undergoes a comprehensive investigation and validation against various benchmark methods found in the literature, encompassing different mobility speed scenarios over a 5 G cellular network. This study involved the development of a simulation model using Matlab software. Performance evaluation utilized a range of Key Performance Indicators (KPIs), including HOP, HPPP, and RLF. The simulation results demonstrate that the proposed solution achieves significant improvements in terms of HOP, HPPP, and RLF under diverse movement speed scenarios, compared to the algorithms examined in the literature.
Author Saad, Sawsan Ali
Sid Ahmed, Nada M.O.
Shayea, Ibraheem
Author_xml – sequence: 1
  givenname: Sawsan Ali
  surname: Saad
  fullname: Saad, Sawsan Ali
  organization: Department of Computer Engineering, University of Ha’il, Ha’il, 55211, Saudi Arabia
– sequence: 2
  givenname: Ibraheem
  surname: Shayea
  fullname: Shayea, Ibraheem
  email: shayea@itu.edu.tr, ibr.shayea@gmail.com
  organization: Electronics and Communication Engineering Department, Faculty of Electrical and Electronics Eng., Istanbul Technical University (ITU), 34469 Istanbul, Turkey
– sequence: 3
  givenname: Nada M.O.
  surname: Sid Ahmed
  fullname: Sid Ahmed, Nada M.O.
  organization: Department of Computer Engineering, University of Ha’il, Ha’il, 55211, Saudi Arabia
BookMark eNp9kctOQyEQhllo4vUB3PECrUA5t7hqGm-JiRtdEw4MdY700ABq9OnltMaFC8kkTGD-L-TjhByMYQRCLjibc8bry2GuYZgLJuSc8VLygBxzztmsXLZH5DylgZVVNZ3s6mPyvowZHRrUnuKYwXtcw2iAehxBRxphHSElDCPdBAueuhBL16PH_Elj6N9SHssADduMG_zSeRrVfh0i5pdNYdLqlprCffMFN0L-CPE1nZFDp32C85_9lDzfXD-t7mYPj7f3q-XDzEhW51nXWFG51oEzVi5YLYXm4BwHqBhIZ0GC67ioW9PpHrhlNQBMo2Bb2zSwOCX3e64NelDbiBsdP1XQqHYHIa6VLgKMByWdFEKCcG0jJbOiF03DOsEWvTSLqraFxfcsE0NKEdwvjzM1uVeDKu7V5F4xXkqWTPMnYzDvHOWo0f-bvNonoeh5R4gqGZx-xmIEk8v78Z_0N4TDpio
CitedBy_id crossref_primary_10_1007_s44443_025_00048_9
crossref_primary_10_1109_ACCESS_2024_3390559
crossref_primary_10_1007_s42979_025_03762_3
crossref_primary_10_1155_etep_9877968
crossref_primary_10_3390_s24072313
crossref_primary_10_1007_s10922_025_09903_6
crossref_primary_10_1016_j_adhoc_2025_103929
crossref_primary_10_1016_j_jestch_2024_101722
crossref_primary_10_3390_math12243985
crossref_primary_10_3390_technologies13080352
Cites_doi 10.1109/ICCoSITE57641.2023.10127687
10.1109/VETECS.2011.5956234
10.1109/RTUWO.2018.8587895
10.1016/j.procs.2015.05.078
10.1109/WCSP.2015.7341220
10.3390/fi14030087
10.3390/s22072692
10.1109/TVT.2013.2247778
10.1109/TVT.2017.2711582
10.1109/JPHOT.2019.2953863
10.1109/TNSM.2021.3073244
10.1109/ACCESS.2018.2811047
10.1109/ACCESS.2019.2961186
10.1016/j.aej.2023.01.034
10.1109/ACCESS.2020.3023802
10.1109/ACCESS.2022.3161511
10.1109/VTCSpring.2015.7145646
10.1007/s11235-020-00718-1
10.1016/j.aej.2023.02.022
10.1109/ACCESS.2021.3067503
10.3390/app10041354
10.1007/s11277-017-4222-3
10.1109/VETECF.2010.5594477
10.3390/math9111227
10.1016/j.aej.2022.01.036
10.1155/2023/6205689
10.1109/ACCESS.2021.3051097
10.3390/s22176424
10.1109/PIMRC.2011.6139784
10.1109/LCOMM.2010.09.092356
10.1109/ACCESS.2020.3027258
10.1007/s11276-016-1348-2
10.1109/ACCESS.2021.3083554
10.1109/TNSM.2016.2522080
10.1109/PIMRC.2011.6139958
10.1109/ACCESS.2020.3030762
10.1186/1687-1499-2013-27
10.1109/GLOCOMW.2013.6824965
10.3390/s22166199
10.3390/app12010426
10.1007/s11276-019-02111-6
10.1016/j.orl.2021.12.004
10.1109/MPEL.2020.3047718
10.1016/j.comnet.2014.10.027
10.3390/electronics11030313
10.1109/MNET.011.2000195
10.1016/j.aej.2020.11.018
10.7763/IJFCC.2015.V4.391
10.1016/j.comcom.2020.07.016
10.1109/GLOBECOM42002.2020.9322618
10.1007/978-981-15-1002-1_28
10.1016/j.aej.2022.10.052
10.1016/j.aej.2021.11.028
10.1109/ACCESS.2022.3168717
10.1007/s11277-019-06463-2
10.3390/s22166013
10.1016/j.cie.2023.109254
10.1186/1687-1499-2011-98
10.3390/s22031200
10.1007/s11277-008-9631-x
10.3390/electronics11091366
10.1109/MWSCAS.2018.8623826
10.1016/j.aej.2022.10.050
10.1007/s11277-012-0883-0
10.1109/ACCESS.2020.3037048
ContentType Journal Article
Copyright 2024 The Authors
Copyright_xml – notice: 2024 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.aej.2024.01.014
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 148
ExternalDocumentID oai_doaj_org_article_4f4224e2f87440d2b27709203b4c356d
10_1016_j_aej_2024_01_014
S1110016824000176
GroupedDBID --K
0R~
0SF
4.4
457
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
HZ~
IPNFZ
IXB
KQ8
M41
NCXOZ
O-L
O9-
OK1
P2P
RIG
ROL
SES
SSZ
XH2
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
CITATION
ID FETCH-LOGICAL-c406t-97d25f8fefcd430642a1eff1ee50e4fde4ef91268c9abe1d06eeecd43ed8d77e3
IEDL.DBID DOA
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001171800300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1110-0168
IngestDate Fri Oct 03 12:39:34 EDT 2025
Wed Oct 29 21:13:16 EDT 2025
Tue Nov 18 22:28:12 EST 2025
Sat Feb 17 16:07:52 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Mobility robustness optimization
Self-optimization
6G
Heterogenous networks
5G
LTE-advanced system
Handover optimization algorithm
Handover control parameters
Adaptive handover parameters
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-97d25f8fefcd430642a1eff1ee50e4fde4ef91268c9abe1d06eeecd43ed8d77e3
OpenAccessLink https://doaj.org/article/4f4224e2f87440d2b27709203b4c356d
PageCount 24
ParticipantIDs doaj_primary_oai_doaj_org_article_4f4224e2f87440d2b27709203b4c356d
crossref_primary_10_1016_j_aej_2024_01_014
crossref_citationtrail_10_1016_j_aej_2024_01_014
elsevier_sciencedirect_doi_10_1016_j_aej_2024_01_014
PublicationCentury 2000
PublicationDate February 2024
2024-02-00
2024-02-01
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: February 2024
PublicationDecade 2020
PublicationTitle Alexandria engineering journal
PublicationYear 2024
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Shayea, Ismail, Nordin, Ergen, Ahmad, Abdullah (bib31) 2019; vol. 108
Christopoulou, Barmpounakis, Koumaras, Kaloxylos (bib76) 2022
Lin, Casanova, Fatty (bib36) 2016; vol. 2016
Shayea, Ergen, Azizan, Ismail, Daradkeh (bib99) 2020; vol. 8
C.H. Chin, N. Choi, and S. Faccin, Residential/enterprise network connection management and handover scenarios ed: Google Patents; 2013.
Osamy, Khedr, Salim, AlAli, El-Sawy (bib84) 2022; vol. 11
3GPP, "Self-configuring and self-optimizing network (SON) use cases and solutions (Release 9), TR 36.902 V9.3.1," ed. France: 3GPP, 2011.
Gures, Shayea, Ergen, Azmi, El-Saleh (bib89) 2022; vol. 10
Alraih, Nordin, Abu-Samah, Shayea, Abdullah, Alhammadi (bib53) 2022; vol. 22
Silva, Becvar, Frances (bib29) 2018; vol. 6
Fouda, Nasr, Hussein (bib70) 2022; vol. 61
Zheng, Zhang, Chu, Wen (bib17) 2013; vol. 2013
Algriree, Sulaiman, Isa, Sahbudin, Hassan, Salman (bib69) 2023; vol. 65
Alhammadi, Roslee, Alias, Shayea, Alraih, Mohamed (bib98) 2020; vol. 8
3GPP, "Telecommunication Management; Self-Organizing Networks (SON) Policy Network Resource Model (NRM) Integration Reference Point (IRP); Requirements (Release 11), 3GPP TS 32.521 V11.1.0," ed. Valbonne - FRANCE: 3GPP, 2012.
Ahmad, Sundararajan, Khalifeh (bib92) 2020; vol. 75
Kosmopoulos, Skondras, Michalas, Michailidis, Vergados (bib62) 2022; vol. 14
Shayea, Ergen, Azmi, Çolak, Nordin, Daradkeh (bib1) 2020; vol. 8
Nguyen, Kwon (bib39) 2021; vol. 9
P. Sapkale, U. Kolekar, Handover decision algorithm for next generation, in: Proceedings of International Conference on Wireless Communication, 2020, pp. 269–277.
Hyun-Ho (bib59) 2010; vol. 14
Alshaibani, Shayea, Caglar, Din, Daradkeh (bib57) 2022; vol. 22
A. Klein, N.P. Kuruvatti, J. Schneider, H.D. Schotten, Fuzzy Q-learning for mobility robustness optimization in wireless networks, in 2013 IEEE Globecom Workshops (GC Wkshps), 2013, pp. 76–81.
3GPP, "Title," unpublished|.
Shayea, Dushi, Banafaa, Rashid, Ali, Sarijari (bib60) 2022; vol. 22
Munoz, Barco, d. l. B. I (bib16) 2013; vol. VOL. 62
Ben-Mubarak, Ali, Noordin, Ismail, Ng (bib27) 2013; vol. 71
3GPP, "LTE Evolved Universal Terrestrial Radio Access (E-UTRA) Radio Frequency (RF) system scenarios," TR 36.942 version 16.0. 0 Release 16 2020.
Jain, Lopez-Aguilera, Demirkol (bib93) 2020; vol. 161
Ray, Tang (bib14) 2015; vol. 4
Khan, Shayea, Ergen, Mohamad (bib61) 2022
Zaidi, Manalastas, Farooq, Imran (bib90) 2020; vol. 8
Yazici, Shayea, Din (bib82) 2023; vol. 44
Mwanje, Schmelz, Mitschele-Thiel (bib40) 2016; vol. 13
Zhao, Wang (bib83) 2021; vol. 8
Tashan, Shayea, Aldirmaz-Colak, Ergen, Azmi, Alhammadi (bib55) 2022; vol. 10
Banafaa, Shayea, Din, Azmi, Alashbi, Daradkeh (bib9) 2022
K. Kitagawa, T. Komine, T. Yamamoto, S. Konishi, A handover optimization algorithm with mobility robustness for LTE systems, in Personal Indoor and Mobile Radio Communications (PIMRC), 2011 IEEE 22nd International Symposium on, 2011, pp. 1647–1651.
Tanveer, Haider, Ali, Kim (bib77) 2022; vol. 12
A. Alhammadi, M. Roslee, M.Y. Alias, I. Shayea, S. Alraih, Dynamic handover control parameters for LTE-A/5G mobile communications, in 2018 Advances in Wireless and Optical Communications (RTUWO), 2018, pp. 39–44.
3GPP, "Telecommunication management; Self-Organizing Networks (SON) Policy Network Resource Model (NRM) Integration Reference Point (IRP); Information Service (IS) (Release 11), 3GPP TS 32.522 V11.7.0," ed. Valbonne - France: 3GPP, 2013.
Marí-Altozano, Mwanje, Ramírez, Toril, Sanneck, Gijón (bib43) 2021; vol. 18
3GPP, "Further Advancements for E-UTRA (LTE-Advanced) (Release 15), 3GPP TR 36.912 V15.0.0," ed. Valbonne - FRANCE: 3GPP, 2018.
3GPP, "Self-Organizing Networks (SON) Policy Network Resource Model (NRM) Integration Reference Point (IRP); Requirements (Release 15), 3GPP TS 28.627 V15.0.0," ed. Valbonne - FRANCE, 2018.
3GPP, "Self-Organizing Networks (SON) Policy, Network Resource Model (NRM), Integration Reference Point (IRP); Information Service (IS) (Release 15), 3GPP TS 28.628 V15.0.0," ed. Valbonne - FRANCE: 3GPP, 2018.
Tuyisenge, Ayaida, Tohme, Afilal (bib65) 2020
Kumari, Singh (bib37) 2019; vol. 25
Shao, Liu, Khreishah, Ayyash, Elgala, Little (bib42) 2020; vol. 12
Alhammadi, Roslee, Alias, Shayea, Alquhali (bib32) 2020; vol. 10
Gures, Shayea, Alhammadi, Ergen, Mohamad (bib91) 2020; vol. 8
Nie, Wu, Zhao, Gu, Zhang, Lu (bib15) 2015; vol. 52
Park, Lim (bib26) 2010; vol. 52
Jang, Raza, Kim, Choo (bib73) 2022; vol. 22
Shayea, Ismail, Nordin, Mohamad, Abd Rahman, Abdullah (bib30) 2016
J. Wu, J. Liu, Z. Huang, S. Zheng, Dynamic fuzzy Q-learning for handover parameters optimization in 5G multi-tier networks, in 2015 International Conference on Wireless Communications & Signal Processing (WCSP), 2015, pp. 1–5.
Hussain, Yusof, Asuncion, Hussain (bib75) 2021; vol. 22
Li, Li, Chen (bib10) 2023; vol. 69
Abrar, Arif, Zaini (bib50) 2023; vol. 69
Bălan, Irina, Sas, Jansen, Moerman, Spaey (bib18) 2011; vol. 2011
Siddiqui, Qamar, Tayyab, Hindia, Nguyen, Hassan (bib95) 2022; vol. 11
Shodamola, Masood, Manalastas, Imran (bib34) 2020; 2005
Shayea, Ergen, Azmi (bib58) 2020
Saad, Shayea, Alhammadi, Sheikh, El-Saleh (bib72) 2023; vol. 42
Basahel, Sattari, Taylan, Nazemi (bib86) 2021; vol. 9
A. Abdelmohsen, M. Abdelwahab, M. Adel, M.S. Darweesh, H. Mostafa, LTE handover parameters optimization using Q-learning technique, in 2018 IEEE 61st International Midwest Symposium on Circuits and Systems (MWSCAS), 2018, pp. 194–197.
Luntovskyy, Shubyn, Maksymyuk, Klymash (bib67) 2021
Z.H. Huang, Y.L. Hsu, P.K. Chang, M.J. Tsai, Efficient handover algorithm in 5G Networks using Deep Learning, in GLOBECOM 2020 - 2020 IEEE Global Communications Conference, 2020, pp. 1–6.
Yang, Alphones, Xiong, Niyato, Zhao, Wu (bib88) 2020; vol. 34
A.F. Ashour, M.M. Fouda, AI-based approaches for handover optimization in 5G new radio and 6G wireless networks, in: Proceedings of International Conference on Computer Science, Information Technology and Engineering (ICCoSITE), 2023, pp. 336–34.
Muñoz, Barco, de la Bandera (bib47) 2015; vol. 76
Alhammadi, Roslee, Alias, Shayea, Alraih, Mohamed (bib28) 2019; vol. 8
Amirrudin, Ariffin, Malik, Ghazali (bib11) 2017; vol. 97
L. Ewe, H. Bakker, Base station distributed handover optimization in LTE self-organizing networks, in Personal Indoor and Mobile Radio Communications (PIMRC), 2011 IEEE 22nd International Symposium on, 2011, pp. 243–247.
Huang, Wu, Yang, Sun, Zhang, Nallanathan (bib48) 2022
A. Awada, B. Wegmann, D. Rose, I. Viering, A. Klein, Towards self-organizing mobility robustness optimization in inter-RAT scenario, in Vehicular Technology Conference (VTC Spring), 2011 IEEE 73rd, 2011, pp. 1–5.
Zaidi, Dai, Imran, Tran (bib80) 2023; vol. 180
H. Tullberg and J. Ottersten, "Machine learning for handover," ed: Google Patents; 2022.
Mollel, Abubakar, Ozturk, Kaijage, Kisangiri, Hussain (bib94) 2021; vol. 9
3GPP, "Radio Frequency (RF) system scenarios (Release 15), TR 25.942 V15.0.0 ", ed. Valbonne - FRANCE: 3GPP, 2018.
Gures, Shayea, Alhammadi, Ergen, Mohamad (bib49) 2020
Angjo, Shayea, Ergen, Mohamad, Alhammadi, Daradkeh (bib63) 2021; vol. 9
Jahandar, Kouhalvandi, Shayea, Ergen, Azmi, Mohamad (bib56) 2022; vol. 22
El Azaly, Badran, Kheirallah, Farag (bib71) 2021; vol. 60
Hegazy, Nasr, Kamal (bib44) 2018; vol. 24
3GPP, "LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Base Station (BS) radio transmission and reception," 3GPP TS 36.104 version 16.9.0 Release 16, 2021.
Schröder, Lundqvist, Nunzi (bib25) 2008
El-Saleh, Al Jahdhami, Alhammadi, Shamsan, Shayea, Hassan (bib54) 2023; vol. 2023
L. Yejee, S. Bongjhin, L. Jaechan, D. Hong, Effects of time-to-trigger parameter on handover performance in SON-based LTE systems, presented at the Communications (APCC), 2010 16th Asia-Pacific Conference on, 2010.
G.H. Legg P., Johansson J., A Simulation Study of LTE Intra-Frequency Handover Performance, presented at the IEEE 72nd Vehicular Technology Conference Fall (VTC 2010-Fall); 2010.
B. Sas, K. Spaey, C. Blondia, A SON function for steering users in multi-layer LTE networks based on their mobility behaviour, presented at the 2015 IEEE 81st Vehicular Technology Conference (VTC Spring), 2015.
Song, Wen, Wang, Guo, Yu (bib24) 2009
Fabry, Agnetis, Berghman, Briand (bib74) 2022; vol. 50
Shayea, Alhammadi, El-Saleh, Hassan, Mohamad, Ergen (bib52) 2022; vol. 61
Imran, Sun, Zaidi, Abbas, Nazir (bib81) 2023; vol. 136
El-Saleh, Alhammadi, Shayea, Hassan, Honnurvali, Daradkeh (bib51) 2023; vol. 66
Tkachenko, Kuzior, Kwilinski (bib87) 2019; vol. 22
Trinder, Wang, Sowmya, Palhang (bib85) 1997
A.D. Radulescu, A. Gholmieh, T. Kadous, C.S. Patel, Coding of handover messages between nodes of different radio access technologies, ed: Google Patents, 2019.
Castro-Hernandez, Paranjape (bib38) 2018; vol. 67
Castro-Hernandez, Paranjape (bib12) 2018; vol. 67
Schröder (10.1016/j.aej.2024.01.014_bib25) 2008
Castro-Hernandez (10.1016/j.aej.2024.01.014_bib12) 2018; vol. 67
Alshaibani (10.1016/j.aej.2024.01.014_bib57) 2022; vol. 22
El Azaly (10.1016/j.aej.2024.01.014_bib71) 2021; vol. 60
Tuyisenge (10.1016/j.aej.2024.01.014_bib65) 2020
10.1016/j.aej.2024.01.014_bib100
10.1016/j.aej.2024.01.014_bib22
10.1016/j.aej.2024.01.014_bib23
Yazici (10.1016/j.aej.2024.01.014_bib82) 2023; vol. 44
Banafaa (10.1016/j.aej.2024.01.014_bib9) 2022
10.1016/j.aej.2024.01.014_bib20
10.1016/j.aej.2024.01.014_bib21
Jahandar (10.1016/j.aej.2024.01.014_bib56) 2022; vol. 22
10.1016/j.aej.2024.01.014_bib2
Tkachenko (10.1016/j.aej.2024.01.014_bib87) 2019; vol. 22
10.1016/j.aej.2024.01.014_bib3
Amirrudin (10.1016/j.aej.2024.01.014_bib11) 2017; vol. 97
Fabry (10.1016/j.aej.2024.01.014_bib74) 2022; vol. 50
10.1016/j.aej.2024.01.014_bib6
10.1016/j.aej.2024.01.014_bib7
10.1016/j.aej.2024.01.014_bib4
10.1016/j.aej.2024.01.014_bib5
10.1016/j.aej.2024.01.014_bib35
Jain (10.1016/j.aej.2024.01.014_bib93) 2020; vol. 161
10.1016/j.aej.2024.01.014_bib8
10.1016/j.aej.2024.01.014_bib33
Khan (10.1016/j.aej.2024.01.014_bib61) 2022
Zhao (10.1016/j.aej.2024.01.014_bib83) 2021; vol. 8
Shayea (10.1016/j.aej.2024.01.014_bib58) 2020
Alhammadi (10.1016/j.aej.2024.01.014_bib28) 2019; vol. 8
Hegazy (10.1016/j.aej.2024.01.014_bib44) 2018; vol. 24
Luntovskyy (10.1016/j.aej.2024.01.014_bib67) 2021
Shayea (10.1016/j.aej.2024.01.014_bib31) 2019; vol. 108
Marí-Altozano (10.1016/j.aej.2024.01.014_bib43) 2021; vol. 18
Alraih (10.1016/j.aej.2024.01.014_bib53) 2022; vol. 22
Fouda (10.1016/j.aej.2024.01.014_bib70) 2022; vol. 61
Siddiqui (10.1016/j.aej.2024.01.014_bib95) 2022; vol. 11
Lin (10.1016/j.aej.2024.01.014_bib36) 2016; vol. 2016
Alhammadi (10.1016/j.aej.2024.01.014_bib98) 2020; vol. 8
Huang (10.1016/j.aej.2024.01.014_bib48) 2022
Basahel (10.1016/j.aej.2024.01.014_bib86) 2021; vol. 9
Algriree (10.1016/j.aej.2024.01.014_bib69) 2023; vol. 65
Hyun-Ho (10.1016/j.aej.2024.01.014_bib59) 2010; vol. 14
Nguyen (10.1016/j.aej.2024.01.014_bib39) 2021; vol. 9
Christopoulou (10.1016/j.aej.2024.01.014_bib76) 2022
Shayea (10.1016/j.aej.2024.01.014_bib1) 2020; vol. 8
Ahmad (10.1016/j.aej.2024.01.014_bib92) 2020; vol. 75
Kumari (10.1016/j.aej.2024.01.014_bib37) 2019; vol. 25
Saad (10.1016/j.aej.2024.01.014_bib72) 2023; vol. 42
Munoz (10.1016/j.aej.2024.01.014_bib16) 2013; vol. VOL. 62
Gures (10.1016/j.aej.2024.01.014_bib49) 2020
Yang (10.1016/j.aej.2024.01.014_bib88) 2020; vol. 34
Shayea (10.1016/j.aej.2024.01.014_bib60) 2022; vol. 22
Zaidi (10.1016/j.aej.2024.01.014_bib80) 2023; vol. 180
10.1016/j.aej.2024.01.014_bib19
Shayea (10.1016/j.aej.2024.01.014_bib30) 2016
Mollel (10.1016/j.aej.2024.01.014_bib94) 2021; vol. 9
Mwanje (10.1016/j.aej.2024.01.014_bib40) 2016; vol. 13
10.1016/j.aej.2024.01.014_bib13
Park (10.1016/j.aej.2024.01.014_bib26) 2010; vol. 52
Kosmopoulos (10.1016/j.aej.2024.01.014_bib62) 2022; vol. 14
10.1016/j.aej.2024.01.014_bib97
10.1016/j.aej.2024.01.014_bib96
Muñoz (10.1016/j.aej.2024.01.014_bib47) 2015; vol. 76
Castro-Hernandez (10.1016/j.aej.2024.01.014_bib38) 2018; vol. 67
Angjo (10.1016/j.aej.2024.01.014_bib63) 2021; vol. 9
Zaidi (10.1016/j.aej.2024.01.014_bib90) 2020; vol. 8
Shao (10.1016/j.aej.2024.01.014_bib42) 2020; vol. 12
10.1016/j.aej.2024.01.014_bib68
El-Saleh (10.1016/j.aej.2024.01.014_bib54) 2023; vol. 2023
10.1016/j.aej.2024.01.014_bib66
Tanveer (10.1016/j.aej.2024.01.014_bib77) 2022; vol. 12
Gures (10.1016/j.aej.2024.01.014_bib91) 2020; vol. 8
Shayea (10.1016/j.aej.2024.01.014_bib99) 2020; vol. 8
Tashan (10.1016/j.aej.2024.01.014_bib55) 2022; vol. 10
10.1016/j.aej.2024.01.014_bib64
Trinder (10.1016/j.aej.2024.01.014_bib85) 1997
Shayea (10.1016/j.aej.2024.01.014_bib52) 2022; vol. 61
Bălan (10.1016/j.aej.2024.01.014_bib18) 2011; vol. 2011
Osamy (10.1016/j.aej.2024.01.014_bib84) 2022; vol. 11
10.1016/j.aej.2024.01.014_bib79
Shodamola (10.1016/j.aej.2024.01.014_bib34) 2020; 2005
10.1016/j.aej.2024.01.014_bib78
Zheng (10.1016/j.aej.2024.01.014_bib17) 2013; vol. 2013
10.1016/j.aej.2024.01.014_bib46
Nie (10.1016/j.aej.2024.01.014_bib15) 2015; vol. 52
10.1016/j.aej.2024.01.014_bib45
Alhammadi (10.1016/j.aej.2024.01.014_bib32) 2020; vol. 10
Ray (10.1016/j.aej.2024.01.014_bib14) 2015; vol. 4
Li (10.1016/j.aej.2024.01.014_bib10) 2023; vol. 69
Hussain (10.1016/j.aej.2024.01.014_bib75) 2021; vol. 22
Gures (10.1016/j.aej.2024.01.014_bib89) 2022; vol. 10
El-Saleh (10.1016/j.aej.2024.01.014_bib51) 2023; vol. 66
10.1016/j.aej.2024.01.014_bib41
Song (10.1016/j.aej.2024.01.014_bib24) 2009
Ben-Mubarak (10.1016/j.aej.2024.01.014_bib27) 2013; vol. 71
Silva (10.1016/j.aej.2024.01.014_bib29) 2018; vol. 6
Jang (10.1016/j.aej.2024.01.014_bib73) 2022; vol. 22
Imran (10.1016/j.aej.2024.01.014_bib81) 2023; vol. 136
Abrar (10.1016/j.aej.2024.01.014_bib50) 2023; vol. 69
References_xml – reference: A.F. Ashour, M.M. Fouda, AI-based approaches for handover optimization in 5G new radio and 6G wireless networks, in: Proceedings of International Conference on Computer Science, Information Technology and Engineering (ICCoSITE), 2023, pp. 336–34.
– reference: G.H. Legg P., Johansson J., A Simulation Study of LTE Intra-Frequency Handover Performance, presented at the IEEE 72nd Vehicular Technology Conference Fall (VTC 2010-Fall); 2010.
– volume: vol. 61
  start-page: 5983
  year: 2022
  end-page: 5999
  ident: bib70
  article-title: A highly efficient approach for performance enhancement of multiple antenna elements based spectrum sensing techniques using side lobe level reduction
  publication-title: Alex. Eng. J.
– volume: vol. 24
  start-page: 481
  year: 2018
  end-page: 495
  ident: bib44
  article-title: Optimization of user behavior based handover using fuzzy Q-learning for LTE networks
  publication-title: Wirel. Netw.
– reference: B. Sas, K. Spaey, C. Blondia, A SON function for steering users in multi-layer LTE networks based on their mobility behaviour, presented at the 2015 IEEE 81st Vehicular Technology Conference (VTC Spring), 2015.
– volume: vol. 12
  start-page: 426
  year: 2022
  ident: bib77
  article-title: An overview of reinforcement learning algorithms for handover management in 5G ultra-dense small cell networks
  publication-title: Appl. Sci.
– year: 2020
  ident: bib58
  article-title: Mobility management in 5g networks: a survey on key challenges drivers and solutions
  publication-title: IEEE Access
– volume: vol. 13
  start-page: 85
  year: 2016
  end-page: 98
  ident: bib40
  article-title: Cognitive Cellular Networks: a Q-learning framework for self-organizing networks
  publication-title: IEEE Trans. Netw. Serv. Manag.
– volume: vol. 6
  start-page: 17178
  year: 2018
  end-page: 17189
  ident: bib29
  article-title: Adaptive hysteresis margin based on fuzzy logic for handover in mobile networks with dense small cells
  publication-title: IEEE Access
– start-page: 223
  year: 2021
  end-page: 255
  ident: bib67
  article-title: 5G slicing and handover scenarios: compulsoriness and machine learning
  publication-title: Current Trends in Communication and Information Technologies
– volume: vol. 76
  start-page: 112
  year: 2015
  end-page: 125
  ident: bib47
  article-title: Load balancing and handover joint optimization in LTE networks using fuzzy logic and reinforcement learning
  publication-title: Comput. Netw.
– start-page: 257
  year: 1997
  end-page: 266
  ident: bib85
  article-title: Artificial intelligence in 3-D feature extraction
  publication-title: Automatic Extraction of Man-Made Objects from Aerialand Space Images (II)
– volume: vol. 50
  start-page: 50
  year: 2022
  end-page: 56
  ident: bib74
  article-title: Complexity of flow time minimization in a crossdock truck scheduling problem with asymmetric handover relations
  publication-title: Oper. Res. Lett.
– volume: vol. 71
  start-page: 1421
  year: 2013
  end-page: 1442
  ident: bib27
  article-title: Fuzzy logic based self-adaptive handover algorithm for mobile WiMAX
  publication-title: Wirel. Pers. Commun.
– volume: vol. 9
  start-page: 45770
  year: 2021
  end-page: 45802
  ident: bib94
  article-title: A survey of machine learning applications to handover management in 5G and beyond
  publication-title: IEEE Access
– volume: vol. 44
  year: 2023
  ident: bib82
  article-title: A survey of applications of artificial intelligence and machine learning in future mobile networks-enabled systems
  publication-title: Eng. Sci. Technol. Int. J.
– reference: 3GPP, "Self-Organizing Networks (SON) Policy Network Resource Model (NRM) Integration Reference Point (IRP); Requirements (Release 15), 3GPP TS 28.627 V15.0.0," ed. Valbonne - FRANCE, 2018.
– reference: L. Ewe, H. Bakker, Base station distributed handover optimization in LTE self-organizing networks, in Personal Indoor and Mobile Radio Communications (PIMRC), 2011 IEEE 22nd International Symposium on, 2011, pp. 243–247.
– year: 2009
  ident: bib24
  article-title: Time-adaptive vertical handoff triggering methods for heterogeneous systems
  publication-title: Presente Int. Workshop Adv. Parallel Process. Technol.
– year: 2022
  ident: bib48
  article-title: Self-adapting handover parameters Optimization for SDN-enabled UDN
  publication-title: IEEE Trans. Wirel. Commun.
– volume: vol. 10
  start-page: 37689
  year: 2022
  end-page: 37717
  ident: bib89
  article-title: Machine learning-based load balancing algorithms in future heterogeneous networks: a survey
  publication-title: IEEE Access
– volume: vol. 18
  start-page: 3541
  year: 2021
  end-page: 3555
  ident: bib43
  article-title: A service-centric Q-learning algorithm for mobility robustness optimization in LTE
  publication-title: IEEE Trans. Netw. Serv. Manag.
– volume: vol. 4
  start-page: 231
  year: 2015
  ident: bib14
  article-title: Hysteresis margin and load balancing for handover in heterogeneous network
  publication-title: Int. J. Future Comput. Commun.
– volume: vol. 22
  start-page: 2692
  year: 2022
  ident: bib56
  article-title: Mobility-aware offloading decision for multi-access edge computing in 5G networks
  publication-title: Sensors
– reference: J. Wu, J. Liu, Z. Huang, S. Zheng, Dynamic fuzzy Q-learning for handover parameters optimization in 5G multi-tier networks, in 2015 International Conference on Wireless Communications & Signal Processing (WCSP), 2015, pp. 1–5.
– volume: vol. 97
  start-page: 1929
  year: 2017
  end-page: 1946
  ident: bib11
  article-title: Analysis of handover performance in LTE femtocells network
  publication-title: Wirel. Pers. Commun.
– volume: vol. VOL. 62
  start-page: 1895
  year: 2013
  end-page: 1905
  ident: bib16
  article-title: On the potential of handover parameter optimization for self-organizing networks.
  publication-title: IEEE Trans. Veh. Technol.
– reference: C.H. Chin, N. Choi, and S. Faccin, Residential/enterprise network connection management and handover scenarios ed: Google Patents; 2013.
– start-page: 1
  year: 2020
  end-page: 64
  ident: bib65
  article-title: Handover mechanisms in internet of vehicles (IoV): survey, trends, challenges, and issues
  publication-title: Global Advancements in Connected and Intelligent Mobility: Emerging Research and Opportunities
– volume: vol. 2013
  start-page: 1
  year: 2013
  end-page: 10
  ident: bib17
  article-title: Mobility robustness optimization in self-organizing LTE femtocell networks
  publication-title: EURASIP J. Wirel. Commun. Netw.
– volume: vol. 161
  start-page: 50
  year: 2020
  end-page: 75
  ident: bib93
  article-title: Are mobility management solutions ready for 5G and beyond?
  publication-title: Comput. Commun.
– year: 2022
  ident: bib61
  article-title: Handover management over dual connectivity in 5G technology with future ultra-dense mobile heterogeneous networks: a review
  publication-title: Eng. Sci. Technol. Int. J.
– volume: vol. 8
  start-page: 294
  year: 2019
  end-page: 304
  ident: bib28
  article-title: Auto tuning self-optimization algorithm for mobility management in LTE-A and 5G HetNets
  publication-title: IEEE Access
– year: 2022
  ident: bib76
  article-title: Artificial Intelligence and Machine Learning as key enablers for V2X communications: a comprehensive survey
  publication-title: Veh. Commun.
– volume: vol. 22
  start-page: 1124
  year: 2021
  end-page: 1134
  ident: bib75
  article-title: Artificial intelligence based handover decision and network selection in heterogeneous internet of vehicles
  publication-title: Indones. J. Electr. Eng. Comput. Sci.
– volume: vol. 22
  start-page: 6199
  year: 2022
  ident: bib53
  article-title: Robust handover optimization technique with fuzzy logic controller for beyond 5G mobile networks
  publication-title: Sensors
– volume: vol. 22
  start-page: 1200
  year: 2022
  ident: bib73
  article-title: Proactive handover decision for UAVs with deep reinforcement learning
  publication-title: Sensors
– volume: vol. 69
  start-page: 785
  year: 2023
  end-page: 808
  ident: bib50
  article-title: A systematic analysis and review on producer mobility management in named data networks: research background and challenges
  publication-title: Alex. Eng. J.
– volume: vol. 8
  start-page: 183505
  year: 2020
  end-page: 183533
  ident: bib90
  article-title: Mobility management in emerging ultra-dense cellular networks: a survey, outlook, and future research directions
  publication-title: IEEE Access
– volume: vol. 66
  start-page: 927
  year: 2023
  end-page: 946
  ident: bib51
  article-title: Measurement analysis and performance evaluation of mobile broadband cellular networks in a populated city
  publication-title: Alex. Eng. J.
– reference: 3GPP, "Self-configuring and self-optimizing network (SON) use cases and solutions (Release 9), TR 36.902 V9.3.1," ed. France: 3GPP, 2011.
– reference: 3GPP, "Telecommunication Management; Self-Organizing Networks (SON) Policy Network Resource Model (NRM) Integration Reference Point (IRP); Requirements (Release 11), 3GPP TS 32.521 V11.1.0," ed. Valbonne - FRANCE: 3GPP, 2012.
– year: 2016
  ident: bib30
  article-title: Novel handover optimization with a coordinated contiguous carrier aggregation deployment scenario in LTE-advanced systems
  publication-title: Mob. Inf. Syst.
– volume: vol. 8
  start-page: 195883
  year: 2020
  end-page: 195913
  ident: bib91
  article-title: A comprehensive survey on mobility management in 5g heterogeneous networks: Architectures, challenges and solutions
  publication-title: IEEE Access
– reference: A.D. Radulescu, A. Gholmieh, T. Kadous, C.S. Patel, Coding of handover messages between nodes of different radio access technologies, ed: Google Patents, 2019.
– reference: 3GPP, "LTE Evolved Universal Terrestrial Radio Access (E-UTRA) Radio Frequency (RF) system scenarios," TR 36.942 version 16.0. 0 Release 16 2020.
– volume: vol. 11
  start-page: 313
  year: 2022
  ident: bib84
  article-title: Recent studies utilizing artificial intelligence techniques for solving data collection, aggregation and dissemination challenges in wireless sensor networks: a review
  publication-title: Electronics
– volume: vol. 8
  start-page: 172534
  year: 2020
  end-page: 172552
  ident: bib1
  article-title: Key challenges, drivers and solutions for mobility management in 5G networks: a survey
  publication-title: IEEE Access
– reference: P. Sapkale, U. Kolekar, Handover decision algorithm for next generation, in: Proceedings of International Conference on Wireless Communication, 2020, pp. 269–277.
– volume: vol. 61
  start-page: 8051
  year: 2022
  end-page: 8067
  ident: bib52
  article-title: Time series forecasting model of future spectrum demands for mobile broadband networks in Malaysia, Turkey, and Oman
  publication-title: Alex. Eng. J.
– reference: 3GPP, "Telecommunication management; Self-Organizing Networks (SON) Policy Network Resource Model (NRM) Integration Reference Point (IRP); Information Service (IS) (Release 11), 3GPP TS 32.522 V11.7.0," ed. Valbonne - France: 3GPP, 2013.
– reference: 3GPP, "Self-Organizing Networks (SON) Policy, Network Resource Model (NRM), Integration Reference Point (IRP); Information Service (IS) (Release 15), 3GPP TS 28.628 V15.0.0," ed. Valbonne - FRANCE: 3GPP, 2018.
– reference: Z.H. Huang, Y.L. Hsu, P.K. Chang, M.J. Tsai, Efficient handover algorithm in 5G Networks using Deep Learning, in GLOBECOM 2020 - 2020 IEEE Global Communications Conference, 2020, pp. 1–6.
– volume: vol. 22
  start-page: 1
  year: 2019
  end-page: 10
  ident: bib87
  article-title: Introduction of artificial intelligence tools into the training methods of entrepreneurship activities
  publication-title: J. Entrep. Educ.
– volume: vol. 34
  start-page: 272
  year: 2020
  end-page: 280
  ident: bib88
  article-title: Artificial-intelligence-enabled intelligent 6G networks
  publication-title: IEEE Netw.
– volume: vol. 67
  start-page: 5260
  year: 2018
  end-page: 5273
  ident: bib12
  article-title: Optimization of handover parameters for LTE/LTE-A in-building systems
  publication-title: IEEE Trans. Veh. Technol.
– reference: A. Awada, B. Wegmann, D. Rose, I. Viering, A. Klein, Towards self-organizing mobility robustness optimization in inter-RAT scenario, in Vehicular Technology Conference (VTC Spring), 2011 IEEE 73rd, 2011, pp. 1–5.
– volume: vol. 42
  year: 2023
  ident: bib72
  article-title: Handover and load balancing self-optimization models in 5G mobile networks
  publication-title: Eng. Sci. Technol. Int. J.
– reference: L. Yejee, S. Bongjhin, L. Jaechan, D. Hong, Effects of time-to-trigger parameter on handover performance in SON-based LTE systems, presented at the Communications (APCC), 2010 16th Asia-Pacific Conference on, 2010.
– volume: 2005
  year: 2020
  ident: bib34
  article-title: A machine learning based framework for KPI maximization in emerging networks using mobility parameters
– volume: vol. 9
  start-page: 12803
  year: 2021
  end-page: 12823
  ident: bib63
  article-title: Handover management of drones in future mobile networks: 6G technologies
  publication-title: IEEE Access
– reference: 3GPP, "Title," unpublished|.
– volume: vol. 25
  start-page: 5001
  year: 2019
  end-page: 5009
  ident: bib37
  article-title: Data-driven handover optimization in small cell networks
  publication-title: Wirel. Netw.
– volume: vol. 136
  year: 2023
  ident: bib81
  article-title: Effect of measurement error on the multivariate CUSUM control chart for compositional data
  publication-title: CMES-Comput. Model. Eng. Sci.
– year: 2022
  ident: bib9
  article-title: 6G mobile communication technology: requirements, targets, applications, challenges, advantages, and opportunities
  publication-title: Alex. Eng. J.
– volume: vol. 10
  start-page: 45522
  year: 2022
  end-page: 45541
  ident: bib55
  article-title: Mobility robustness optimization in future mobile heterogeneous networks: a survey
  publication-title: IEEE Access
– reference: 3GPP, "Radio Frequency (RF) system scenarios (Release 15), TR 25.942 V15.0.0 ", ed. Valbonne - FRANCE: 3GPP, 2018.
– volume: vol. 12
  start-page: 1
  year: 2020
  end-page: 15
  ident: bib42
  article-title: Optimizing handover parameters by Q-learning for heterogeneous radio-optical networks
  publication-title: IEEE Photonics J.
– volume: vol. 2023
  year: 2023
  ident: bib54
  article-title: Measurements and analyses of 4G/5G mobile broadband networks: an overview and a case study
  publication-title: Wirel. Commun. Mob. Comput.
– volume: vol. 108
  start-page: 1179
  year: 2019
  end-page: 1199
  ident: bib31
  article-title: New weight function for adapting handover margin level over contiguous carrier aggregation deployment scenarios in LTE-advanced system
  publication-title: Wirel. Pers. Commun.
– volume: vol. 180
  year: 2023
  ident: bib80
  article-title: Analyzing abnormal pattern of hotelling T2 control chart for compositional data using artificial neural networks
  publication-title: Comput. Ind. Eng.
– volume: vol. 22
  start-page: 6424
  year: 2022
  ident: bib60
  article-title: Handover management for drones in future mobile networks—a survey
  publication-title: Sensors
– volume: vol. 8
  start-page: 294
  year: 2020
  end-page: 304
  ident: bib98
  article-title: Auto tuning self-optimization algorithm for mobility management in LTE-A and 5G HetNets
  publication-title: IEEE Access
– volume: vol. 9
  start-page: 77830
  year: 2021
  end-page: 77844
  ident: bib39
  article-title: Machine learning–based mobility robustness optimization under dynamic cellular networks
  publication-title: IEEE Access
– year: 2020
  ident: bib49
  article-title: A comprehensive survey on mobility management in 5G heterogeneous networks: architectures, challenges and solutions
  publication-title: IEEE Access
– reference: A. Abdelmohsen, M. Abdelwahab, M. Adel, M.S. Darweesh, H. Mostafa, LTE handover parameters optimization using Q-learning technique, in 2018 IEEE 61st International Midwest Symposium on Circuits and Systems (MWSCAS), 2018, pp. 194–197.
– volume: vol. 8
  start-page: 214392
  year: 2020
  end-page: 214412
  ident: bib99
  article-title: Individualistic dynamic handover parameter self-optimization algorithm for 5G networks based on automatic weight function
  publication-title: IEEE Access
– reference: H. Tullberg and J. Ottersten, "Machine learning for handover," ed: Google Patents; 2022.
– volume: vol. 9
  start-page: 1227
  year: 2021
  ident: bib86
  article-title: Application of feature extraction and artificial intelligence techniques for increasing the accuracy of X-ray radiation based two phase flow meter
  publication-title: Mathematics
– volume: vol. 14
  start-page: 87
  year: 2022
  ident: bib62
  article-title: Handover management in 5G vehicular networks
  publication-title: Future Internet
– reference: K. Kitagawa, T. Komine, T. Yamamoto, S. Konishi, A handover optimization algorithm with mobility robustness for LTE systems, in Personal Indoor and Mobile Radio Communications (PIMRC), 2011 IEEE 22nd International Symposium on, 2011, pp. 1647–1651.
– volume: vol. 11
  start-page: 1366
  year: 2022
  ident: bib95
  article-title: Mobility management issues and solutions in 5G-and-beyond networks: a comprehensive review
  publication-title: Electronics
– volume: vol. 67
  start-page: 5260
  year: 2018
  end-page: 5273
  ident: bib38
  article-title: Optimization of handover parameters for LTE/LTE-A in-building systems
  publication-title: IEEE Trans. Veh. Technol.
– volume: vol. 10
  start-page: 1354
  year: 2020
  ident: bib32
  article-title: Velocity-aware handover self-optimization management for next generation networks
  publication-title: Appl. Sci.
– volume: vol. 60
  start-page: 1677
  year: 2021
  end-page: 1688
  ident: bib71
  article-title: Performance analysis of centralized dynamic spectrum access via channel reservation mechanism in cognitive radio networks
  publication-title: Alex. Eng. J.
– volume: vol. 22
  start-page: 6013
  year: 2022
  ident: bib57
  article-title: Mobility management of unmanned aerial vehicles in ultra–dense heterogeneous networks
  publication-title: Sensors
– reference: 3GPP, "Further Advancements for E-UTRA (LTE-Advanced) (Release 15), 3GPP TR 36.912 V15.0.0," ed. Valbonne - FRANCE: 3GPP, 2018.
– year: 2008
  ident: bib25
  article-title: Distributed self-optimization of handover for the long term evolution
  publication-title: Presente Int. Workshop Self-Organ. Syst.
– reference: A. Alhammadi, M. Roslee, M.Y. Alias, I. Shayea, S. Alraih, Dynamic handover control parameters for LTE-A/5G mobile communications, in 2018 Advances in Wireless and Optical Communications (RTUWO), 2018, pp. 39–44.
– volume: vol. 69
  start-page: 25
  year: 2023
  end-page: 33
  ident: bib10
  article-title: A UAV migration-based decision-making scheme for on-demand service in 6G network
  publication-title: Alex. Eng. J.
– volume: vol. 75
  start-page: 481
  year: 2020
  end-page: 507
  ident: bib92
  article-title: A survey on femtocell handover management in dense heterogeneous 5G networks
  publication-title: Telecommun. Syst.
– reference: 3GPP, "LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Base Station (BS) radio transmission and reception," 3GPP TS 36.104 version 16.9.0 Release 16, 2021.
– volume: vol. 2016
  start-page: 1
  year: 2016
  end-page: 11
  ident: bib36
  article-title: Data-driven handover optimization in next generation mobile communication networks
  publication-title: Mob. Inf. Syst.
– volume: vol. 2011
  start-page: 1
  year: 2011
  end-page: 11
  ident: bib18
  article-title: An enhanced weighted performance-based handover parameter optimization algorithm for LTE networks.
  publication-title: EURASIP J. Wirel. Commun. Netw.
– reference: A. Klein, N.P. Kuruvatti, J. Schneider, H.D. Schotten, Fuzzy Q-learning for mobility robustness optimization in wireless networks, in 2013 IEEE Globecom Workshops (GC Wkshps), 2013, pp. 76–81.
– volume: vol. 52
  start-page: 501
  year: 2010
  end-page: 516
  ident: bib26
  article-title: A handover prediction model and its application to link layer triggers for fast handover
  publication-title: Wirel. Pers. Commun.
– volume: vol. 65
  start-page: 627
  year: 2023
  end-page: 648
  ident: bib69
  article-title: An analysis of low complexity of 5G-MIMO communication system based CR using hybrid filter detection
  publication-title: Alex. Eng. J.
– volume: vol. 14
  start-page: 851
  year: 2010
  end-page: 853
  ident: bib59
  article-title: An optimal handover decision for throughput enhancement
  publication-title: IEEE Commun. Lett.
– volume: vol. 52
  start-page: 270
  year: 2015
  end-page: 277
  ident: bib15
  article-title: An enhanced mobility state estimation based handover optimization algorithm in LTE-A self-organizing network
  publication-title: Procedia Comput. Sci.
– volume: vol. 8
  start-page: 18
  year: 2021
  end-page: 27
  ident: bib83
  article-title: Enabling data-driven condition monitoring of power electronic systems with artificial intelligence: Concepts, tools, and developments
  publication-title: IEEE Power Electron. Mag.
– ident: 10.1016/j.aej.2024.01.014_bib78
  doi: 10.1109/ICCoSITE57641.2023.10127687
– volume: vol. 22
  start-page: 1
  year: 2019
  ident: 10.1016/j.aej.2024.01.014_bib87
  article-title: Introduction of artificial intelligence tools into the training methods of entrepreneurship activities
  publication-title: J. Entrep. Educ.
– ident: 10.1016/j.aej.2024.01.014_bib68
– year: 2008
  ident: 10.1016/j.aej.2024.01.014_bib25
  article-title: Distributed self-optimization of handover for the long term evolution
  publication-title: Presente Int. Workshop Self-Organ. Syst.
– volume: vol. 22
  start-page: 1124
  year: 2021
  ident: 10.1016/j.aej.2024.01.014_bib75
  article-title: Artificial intelligence based handover decision and network selection in heterogeneous internet of vehicles
  publication-title: Indones. J. Electr. Eng. Comput. Sci.
– ident: 10.1016/j.aej.2024.01.014_bib21
  doi: 10.1109/VETECS.2011.5956234
– ident: 10.1016/j.aej.2024.01.014_bib33
  doi: 10.1109/RTUWO.2018.8587895
– volume: vol. 52
  start-page: 270
  year: 2015
  ident: 10.1016/j.aej.2024.01.014_bib15
  article-title: An enhanced mobility state estimation based handover optimization algorithm in LTE-A self-organizing network
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2015.05.078
– ident: 10.1016/j.aej.2024.01.014_bib46
  doi: 10.1109/WCSP.2015.7341220
– volume: vol. 14
  start-page: 87
  year: 2022
  ident: 10.1016/j.aej.2024.01.014_bib62
  article-title: Handover management in 5G vehicular networks
  publication-title: Future Internet
  doi: 10.3390/fi14030087
– volume: 2005
  start-page: 01474
  year: 2020
  ident: 10.1016/j.aej.2024.01.014_bib34
  article-title: A machine learning based framework for KPI maximization in emerging networks using mobility parameters
  publication-title: arXiv Prepr. arXiv
– year: 2022
  ident: 10.1016/j.aej.2024.01.014_bib9
  article-title: 6G mobile communication technology: requirements, targets, applications, challenges, advantages, and opportunities
  publication-title: Alex. Eng. J.
– ident: 10.1016/j.aej.2024.01.014_bib97
– volume: vol. 22
  start-page: 2692
  year: 2022
  ident: 10.1016/j.aej.2024.01.014_bib56
  article-title: Mobility-aware offloading decision for multi-access edge computing in 5G networks
  publication-title: Sensors
  doi: 10.3390/s22072692
– ident: 10.1016/j.aej.2024.01.014_bib2
– volume: vol. VOL. 62
  start-page: 1895
  year: 2013
  ident: 10.1016/j.aej.2024.01.014_bib16
  article-title: On the potential of handover parameter optimization for self-organizing networks.
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2013.2247778
– volume: vol. 67
  start-page: 5260
  year: 2018
  ident: 10.1016/j.aej.2024.01.014_bib38
  article-title: Optimization of handover parameters for LTE/LTE-A in-building systems
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2017.2711582
– volume: vol. 12
  start-page: 1
  year: 2020
  ident: 10.1016/j.aej.2024.01.014_bib42
  article-title: Optimizing handover parameters by Q-learning for heterogeneous radio-optical networks
  publication-title: IEEE Photonics J.
  doi: 10.1109/JPHOT.2019.2953863
– volume: vol. 18
  start-page: 3541
  year: 2021
  ident: 10.1016/j.aej.2024.01.014_bib43
  article-title: A service-centric Q-learning algorithm for mobility robustness optimization in LTE
  publication-title: IEEE Trans. Netw. Serv. Manag.
  doi: 10.1109/TNSM.2021.3073244
– ident: 10.1016/j.aej.2024.01.014_bib8
– volume: vol. 6
  start-page: 17178
  year: 2018
  ident: 10.1016/j.aej.2024.01.014_bib29
  article-title: Adaptive hysteresis margin based on fuzzy logic for handover in mobile networks with dense small cells
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2811047
– volume: vol. 8
  start-page: 294
  year: 2019
  ident: 10.1016/j.aej.2024.01.014_bib28
  article-title: Auto tuning self-optimization algorithm for mobility management in LTE-A and 5G HetNets
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2961186
– volume: vol. 69
  start-page: 25
  year: 2023
  ident: 10.1016/j.aej.2024.01.014_bib10
  article-title: A UAV migration-based decision-making scheme for on-demand service in 6G network
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2023.01.034
– year: 2016
  ident: 10.1016/j.aej.2024.01.014_bib30
  article-title: Novel handover optimization with a coordinated contiguous carrier aggregation deployment scenario in LTE-advanced systems
  publication-title: Mob. Inf. Syst.
– volume: vol. 8
  start-page: 172534
  year: 2020
  ident: 10.1016/j.aej.2024.01.014_bib1
  article-title: Key challenges, drivers and solutions for mobility management in 5G networks: a survey
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3023802
– ident: 10.1016/j.aej.2024.01.014_bib79
– volume: vol. 10
  start-page: 37689
  year: 2022
  ident: 10.1016/j.aej.2024.01.014_bib89
  article-title: Machine learning-based load balancing algorithms in future heterogeneous networks: a survey
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3161511
– ident: 10.1016/j.aej.2024.01.014_bib5
– ident: 10.1016/j.aej.2024.01.014_bib13
  doi: 10.1109/VTCSpring.2015.7145646
– volume: vol. 67
  start-page: 5260
  year: 2018
  ident: 10.1016/j.aej.2024.01.014_bib12
  article-title: Optimization of handover parameters for LTE/LTE-A in-building systems
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2017.2711582
– volume: vol. 75
  start-page: 481
  year: 2020
  ident: 10.1016/j.aej.2024.01.014_bib92
  article-title: A survey on femtocell handover management in dense heterogeneous 5G networks
  publication-title: Telecommun. Syst.
  doi: 10.1007/s11235-020-00718-1
– volume: vol. 69
  start-page: 785
  year: 2023
  ident: 10.1016/j.aej.2024.01.014_bib50
  article-title: A systematic analysis and review on producer mobility management in named data networks: research background and challenges
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2023.02.022
– ident: 10.1016/j.aej.2024.01.014_bib7
– volume: vol. 9
  start-page: 45770
  year: 2021
  ident: 10.1016/j.aej.2024.01.014_bib94
  article-title: A survey of machine learning applications to handover management in 5G and beyond
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3067503
– volume: vol. 10
  start-page: 1354
  year: 2020
  ident: 10.1016/j.aej.2024.01.014_bib32
  article-title: Velocity-aware handover self-optimization management for next generation networks
  publication-title: Appl. Sci.
  doi: 10.3390/app10041354
– volume: vol. 97
  start-page: 1929
  year: 2017
  ident: 10.1016/j.aej.2024.01.014_bib11
  article-title: Analysis of handover performance in LTE femtocells network
  publication-title: Wirel. Pers. Commun.
  doi: 10.1007/s11277-017-4222-3
– ident: 10.1016/j.aej.2024.01.014_bib22
  doi: 10.1109/VETECF.2010.5594477
– volume: vol. 9
  start-page: 1227
  year: 2021
  ident: 10.1016/j.aej.2024.01.014_bib86
  article-title: Application of feature extraction and artificial intelligence techniques for increasing the accuracy of X-ray radiation based two phase flow meter
  publication-title: Mathematics
  doi: 10.3390/math9111227
– volume: vol. 61
  start-page: 8051
  year: 2022
  ident: 10.1016/j.aej.2024.01.014_bib52
  article-title: Time series forecasting model of future spectrum demands for mobile broadband networks in Malaysia, Turkey, and Oman
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2022.01.036
– volume: vol. 42
  year: 2023
  ident: 10.1016/j.aej.2024.01.014_bib72
  article-title: Handover and load balancing self-optimization models in 5G mobile networks
  publication-title: Eng. Sci. Technol. Int. J.
– volume: vol. 2023
  year: 2023
  ident: 10.1016/j.aej.2024.01.014_bib54
  article-title: Measurements and analyses of 4G/5G mobile broadband networks: an overview and a case study
  publication-title: Wirel. Commun. Mob. Comput.
  doi: 10.1155/2023/6205689
– ident: 10.1016/j.aej.2024.01.014_bib4
– year: 2009
  ident: 10.1016/j.aej.2024.01.014_bib24
  article-title: Time-adaptive vertical handoff triggering methods for heterogeneous systems
  publication-title: Presente Int. Workshop Adv. Parallel Process. Technol.
– volume: vol. 9
  start-page: 12803
  year: 2021
  ident: 10.1016/j.aej.2024.01.014_bib63
  article-title: Handover management of drones in future mobile networks: 6G technologies
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3051097
– volume: vol. 22
  start-page: 6424
  year: 2022
  ident: 10.1016/j.aej.2024.01.014_bib60
  article-title: Handover management for drones in future mobile networks—a survey
  publication-title: Sensors
  doi: 10.3390/s22176424
– year: 2020
  ident: 10.1016/j.aej.2024.01.014_bib58
  article-title: Mobility management in 5g networks: a survey on key challenges drivers and solutions
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3023802
– year: 2022
  ident: 10.1016/j.aej.2024.01.014_bib61
  article-title: Handover management over dual connectivity in 5G technology with future ultra-dense mobile heterogeneous networks: a review
  publication-title: Eng. Sci. Technol. Int. J.
– ident: 10.1016/j.aej.2024.01.014_bib19
  doi: 10.1109/PIMRC.2011.6139784
– volume: vol. 14
  start-page: 851
  year: 2010
  ident: 10.1016/j.aej.2024.01.014_bib59
  article-title: An optimal handover decision for throughput enhancement
  publication-title: IEEE Commun. Lett.
  doi: 10.1109/LCOMM.2010.09.092356
– volume: vol. 8
  start-page: 183505
  year: 2020
  ident: 10.1016/j.aej.2024.01.014_bib90
  article-title: Mobility management in emerging ultra-dense cellular networks: a survey, outlook, and future research directions
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3027258
– start-page: 257
  year: 1997
  ident: 10.1016/j.aej.2024.01.014_bib85
  article-title: Artificial intelligence in 3-D feature extraction
– year: 2022
  ident: 10.1016/j.aej.2024.01.014_bib48
  article-title: Self-adapting handover parameters Optimization for SDN-enabled UDN
  publication-title: IEEE Trans. Wirel. Commun.
– volume: vol. 24
  start-page: 481
  year: 2018
  ident: 10.1016/j.aej.2024.01.014_bib44
  article-title: Optimization of user behavior based handover using fuzzy Q-learning for LTE networks
  publication-title: Wirel. Netw.
  doi: 10.1007/s11276-016-1348-2
– volume: vol. 9
  start-page: 77830
  year: 2021
  ident: 10.1016/j.aej.2024.01.014_bib39
  article-title: Machine learning–based mobility robustness optimization under dynamic cellular networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3083554
– volume: vol. 13
  start-page: 85
  year: 2016
  ident: 10.1016/j.aej.2024.01.014_bib40
  article-title: Cognitive Cellular Networks: a Q-learning framework for self-organizing networks
  publication-title: IEEE Trans. Netw. Serv. Manag.
  doi: 10.1109/TNSM.2016.2522080
– ident: 10.1016/j.aej.2024.01.014_bib20
  doi: 10.1109/PIMRC.2011.6139958
– ident: 10.1016/j.aej.2024.01.014_bib100
– volume: vol. 8
  start-page: 195883
  year: 2020
  ident: 10.1016/j.aej.2024.01.014_bib91
  article-title: A comprehensive survey on mobility management in 5g heterogeneous networks: Architectures, challenges and solutions
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3030762
– volume: vol. 2013
  start-page: 1
  year: 2013
  ident: 10.1016/j.aej.2024.01.014_bib17
  article-title: Mobility robustness optimization in self-organizing LTE femtocell networks
  publication-title: EURASIP J. Wirel. Commun. Netw.
  doi: 10.1186/1687-1499-2013-27
– ident: 10.1016/j.aej.2024.01.014_bib45
  doi: 10.1109/GLOCOMW.2013.6824965
– year: 2022
  ident: 10.1016/j.aej.2024.01.014_bib76
  article-title: Artificial Intelligence and Machine Learning as key enablers for V2X communications: a comprehensive survey
  publication-title: Veh. Commun.
– volume: vol. 22
  start-page: 6199
  year: 2022
  ident: 10.1016/j.aej.2024.01.014_bib53
  article-title: Robust handover optimization technique with fuzzy logic controller for beyond 5G mobile networks
  publication-title: Sensors
  doi: 10.3390/s22166199
– volume: vol. 12
  start-page: 426
  year: 2022
  ident: 10.1016/j.aej.2024.01.014_bib77
  article-title: An overview of reinforcement learning algorithms for handover management in 5G ultra-dense small cell networks
  publication-title: Appl. Sci.
  doi: 10.3390/app12010426
– volume: vol. 25
  start-page: 5001
  year: 2019
  ident: 10.1016/j.aej.2024.01.014_bib37
  article-title: Data-driven handover optimization in small cell networks
  publication-title: Wirel. Netw.
  doi: 10.1007/s11276-019-02111-6
– volume: vol. 50
  start-page: 50
  year: 2022
  ident: 10.1016/j.aej.2024.01.014_bib74
  article-title: Complexity of flow time minimization in a crossdock truck scheduling problem with asymmetric handover relations
  publication-title: Oper. Res. Lett.
  doi: 10.1016/j.orl.2021.12.004
– volume: vol. 8
  start-page: 18
  year: 2021
  ident: 10.1016/j.aej.2024.01.014_bib83
  article-title: Enabling data-driven condition monitoring of power electronic systems with artificial intelligence: Concepts, tools, and developments
  publication-title: IEEE Power Electron. Mag.
  doi: 10.1109/MPEL.2020.3047718
– volume: vol. 76
  start-page: 112
  year: 2015
  ident: 10.1016/j.aej.2024.01.014_bib47
  article-title: Load balancing and handover joint optimization in LTE networks using fuzzy logic and reinforcement learning
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2014.10.027
– ident: 10.1016/j.aej.2024.01.014_bib96
– volume: vol. 11
  start-page: 313
  year: 2022
  ident: 10.1016/j.aej.2024.01.014_bib84
  article-title: Recent studies utilizing artificial intelligence techniques for solving data collection, aggregation and dissemination challenges in wireless sensor networks: a review
  publication-title: Electronics
  doi: 10.3390/electronics11030313
– start-page: 1
  year: 2020
  ident: 10.1016/j.aej.2024.01.014_bib65
  article-title: Handover mechanisms in internet of vehicles (IoV): survey, trends, challenges, and issues
– volume: vol. 34
  start-page: 272
  year: 2020
  ident: 10.1016/j.aej.2024.01.014_bib88
  article-title: Artificial-intelligence-enabled intelligent 6G networks
  publication-title: IEEE Netw.
  doi: 10.1109/MNET.011.2000195
– volume: vol. 60
  start-page: 1677
  year: 2021
  ident: 10.1016/j.aej.2024.01.014_bib71
  article-title: Performance analysis of centralized dynamic spectrum access via channel reservation mechanism in cognitive radio networks
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2020.11.018
– volume: vol. 44
  year: 2023
  ident: 10.1016/j.aej.2024.01.014_bib82
  article-title: A survey of applications of artificial intelligence and machine learning in future mobile networks-enabled systems
  publication-title: Eng. Sci. Technol. Int. J.
– ident: 10.1016/j.aej.2024.01.014_bib23
– ident: 10.1016/j.aej.2024.01.014_bib66
– volume: vol. 4
  start-page: 231
  year: 2015
  ident: 10.1016/j.aej.2024.01.014_bib14
  article-title: Hysteresis margin and load balancing for handover in heterogeneous network
  publication-title: Int. J. Future Comput. Commun.
  doi: 10.7763/IJFCC.2015.V4.391
– volume: vol. 8
  start-page: 294
  year: 2020
  ident: 10.1016/j.aej.2024.01.014_bib98
  article-title: Auto tuning self-optimization algorithm for mobility management in LTE-A and 5G HetNets
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2961186
– volume: vol. 161
  start-page: 50
  year: 2020
  ident: 10.1016/j.aej.2024.01.014_bib93
  article-title: Are mobility management solutions ready for 5G and beyond?
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2020.07.016
– ident: 10.1016/j.aej.2024.01.014_bib35
  doi: 10.1109/GLOBECOM42002.2020.9322618
– ident: 10.1016/j.aej.2024.01.014_bib64
  doi: 10.1007/978-981-15-1002-1_28
– volume: vol. 136
  year: 2023
  ident: 10.1016/j.aej.2024.01.014_bib81
  article-title: Effect of measurement error on the multivariate CUSUM control chart for compositional data
  publication-title: CMES-Comput. Model. Eng. Sci.
– volume: vol. 66
  start-page: 927
  year: 2023
  ident: 10.1016/j.aej.2024.01.014_bib51
  article-title: Measurement analysis and performance evaluation of mobile broadband cellular networks in a populated city
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2022.10.052
– volume: vol. 61
  start-page: 5983
  year: 2022
  ident: 10.1016/j.aej.2024.01.014_bib70
  article-title: A highly efficient approach for performance enhancement of multiple antenna elements based spectrum sensing techniques using side lobe level reduction
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2021.11.028
– volume: vol. 10
  start-page: 45522
  year: 2022
  ident: 10.1016/j.aej.2024.01.014_bib55
  article-title: Mobility robustness optimization in future mobile heterogeneous networks: a survey
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3168717
– volume: vol. 108
  start-page: 1179
  year: 2019
  ident: 10.1016/j.aej.2024.01.014_bib31
  article-title: New weight function for adapting handover margin level over contiguous carrier aggregation deployment scenarios in LTE-advanced system
  publication-title: Wirel. Pers. Commun.
  doi: 10.1007/s11277-019-06463-2
– volume: vol. 22
  start-page: 6013
  year: 2022
  ident: 10.1016/j.aej.2024.01.014_bib57
  article-title: Mobility management of unmanned aerial vehicles in ultra–dense heterogeneous networks
  publication-title: Sensors
  doi: 10.3390/s22166013
– start-page: 223
  year: 2021
  ident: 10.1016/j.aej.2024.01.014_bib67
  article-title: 5G slicing and handover scenarios: compulsoriness and machine learning
– volume: vol. 180
  year: 2023
  ident: 10.1016/j.aej.2024.01.014_bib80
  article-title: Analyzing abnormal pattern of hotelling T2 control chart for compositional data using artificial neural networks
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2023.109254
– ident: 10.1016/j.aej.2024.01.014_bib6
– volume: vol. 2011
  start-page: 1
  year: 2011
  ident: 10.1016/j.aej.2024.01.014_bib18
  article-title: An enhanced weighted performance-based handover parameter optimization algorithm for LTE networks.
  publication-title: EURASIP J. Wirel. Commun. Netw.
  doi: 10.1186/1687-1499-2011-98
– volume: vol. 22
  start-page: 1200
  year: 2022
  ident: 10.1016/j.aej.2024.01.014_bib73
  article-title: Proactive handover decision for UAVs with deep reinforcement learning
  publication-title: Sensors
  doi: 10.3390/s22031200
– year: 2020
  ident: 10.1016/j.aej.2024.01.014_bib49
  article-title: A comprehensive survey on mobility management in 5G heterogeneous networks: architectures, challenges and solutions
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3030762
– volume: vol. 52
  start-page: 501
  year: 2010
  ident: 10.1016/j.aej.2024.01.014_bib26
  article-title: A handover prediction model and its application to link layer triggers for fast handover
  publication-title: Wirel. Pers. Commun.
  doi: 10.1007/s11277-008-9631-x
– volume: vol. 11
  start-page: 1366
  year: 2022
  ident: 10.1016/j.aej.2024.01.014_bib95
  article-title: Mobility management issues and solutions in 5G-and-beyond networks: a comprehensive review
  publication-title: Electronics
  doi: 10.3390/electronics11091366
– ident: 10.1016/j.aej.2024.01.014_bib41
  doi: 10.1109/MWSCAS.2018.8623826
– volume: vol. 2016
  start-page: 1
  year: 2016
  ident: 10.1016/j.aej.2024.01.014_bib36
  article-title: Data-driven handover optimization in next generation mobile communication networks
  publication-title: Mob. Inf. Syst.
– volume: vol. 65
  start-page: 627
  year: 2023
  ident: 10.1016/j.aej.2024.01.014_bib69
  article-title: An analysis of low complexity of 5G-MIMO communication system based CR using hybrid filter detection
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2022.10.050
– ident: 10.1016/j.aej.2024.01.014_bib3
– volume: vol. 71
  start-page: 1421
  year: 2013
  ident: 10.1016/j.aej.2024.01.014_bib27
  article-title: Fuzzy logic based self-adaptive handover algorithm for mobile WiMAX
  publication-title: Wirel. Pers. Commun.
  doi: 10.1007/s11277-012-0883-0
– volume: vol. 8
  start-page: 214392
  year: 2020
  ident: 10.1016/j.aej.2024.01.014_bib99
  article-title: Individualistic dynamic handover parameter self-optimization algorithm for 5G networks based on automatic weight function
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3037048
SSID ssj0000579496
Score 2.3581448
Snippet Ensuring reliable and stable communication links between User Equipment (UE) and serving cellular networks during UE movement is one of the significant...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 125
SubjectTerms Adaptive handover parameters
Handover control parameters
Handover optimization algorithm
Heterogenous networks
LTE-advanced system
Mobility robustness optimization
Self-optimization
Title Artificial intelligence linear regression model for mobility robustness optimization algorithm in 5G cellular networks
URI https://dx.doi.org/10.1016/j.aej.2024.01.014
https://doaj.org/article/4f4224e2f87440d2b27709203b4c356d
Volume 89
WOSCitedRecordID wos001171800300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  issn: 1110-0168
  databaseCode: DOA
  dateStart: 20100101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: false
  ssIdentifier: ssj0000579496
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BTtwwELWqFYf2gAqlYtuCfOBUKapjO3F8hArooUIcqMQtcuzxsqsli7IBib-vx86icAAuSDlEiWNH44nnTfLyhpAjIbUHJYuMa8sz6YzOTA4s88Joy4ywKokk_VUXF9X1tb4clfpCTliSB06G-yW9DFEGuEedduZ4w5VimjPRSCuK0uHqy5QeJVNJ1Tv4WSzOFZ5lZF6V1eaTZiR3GViE3JDLKNmZy2dBKWr3j2LTKN6cfSbbA1Ckx-kGd8gHaHfJp5F84BfygCeTAgSdj6Q1KUJH09EOZonl2tJY8IYGgBr2Ih32kXar5n7d40pHV2HduB1-yKRmOVt18_7mNvRJi3OKr_aRq0rbxBhf75F_Z6dXv_9kQx2FzIZw3WdaOV74yoO3TsaMI0yH9zlAwUB6BxK8znlZWW0ayB0rAQCbgqucUiC-kkm7amGfUNSzr5RxpQAELgFcCpDWF4o3JW-kmBK2MWRtB5FxrHWxrDdsskUdbF-j7WuWh01Oyc-nS-6SwsZrjU9wdp4aojh2PBBcph5cpn7LZaZEbua2HnBGwg-hq_nLY397j7G_k4_YZeJ9_yCTvruHA7JlH_r5ujuMTvwfROj1fQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+intelligence+linear+regression+model+for+mobility+robustness+optimization+algorithm+in+5G+cellular+networks&rft.jtitle=Alexandria+engineering+journal&rft.au=Sawsan+Ali+Saad&rft.au=Ibraheem+Shayea&rft.au=Nada+M.O.+Sid+Ahmed&rft.date=2024-02-01&rft.pub=Elsevier&rft.issn=1110-0168&rft.volume=89&rft.spage=125&rft.epage=148&rft_id=info:doi/10.1016%2Fj.aej.2024.01.014&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_4f4224e2f87440d2b27709203b4c356d
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1110-0168&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1110-0168&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1110-0168&client=summon