AttriMIL: Revisiting attention-based multiple instance learning for whole-slide pathological image classification from a perspective of instance attributes
Multiple instance learning (MIL) is a powerful approach for whole-slide pathological image (WSI) analysis, particularly suited for processing gigapixel-resolution images with slide-level labels. Recent attention-based MIL architectures have significantly advanced weakly supervised WSI classification...
Uložené v:
| Vydané v: | Medical image analysis Ročník 103; s. 103631 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Netherlands
Elsevier B.V
01.07.2025
|
| Predmet: | |
| ISSN: | 1361-8415, 1361-8423, 1361-8423 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Multiple instance learning (MIL) is a powerful approach for whole-slide pathological image (WSI) analysis, particularly suited for processing gigapixel-resolution images with slide-level labels. Recent attention-based MIL architectures have significantly advanced weakly supervised WSI classification, facilitating both clinical diagnosis and localization of disease-positive regions. However, these methods often face challenges in differentiating between instances, leading to tissue misidentification and a potential degradation in classification performance. To address these limitations, we propose AttriMIL, an attribute-aware multiple instance learning framework. By dissecting the computational flow of attention-based MIL models, we introduce a multi-branch attribute scoring mechanism that quantifies the pathological attributes of individual instances. Leveraging these quantified attributes, we further establish region-wise and slide-wise attribute constraints to dynamically model instance correlations both within and across slides during training. These constraints encourage the network to capture intrinsic spatial patterns and semantic similarities between image patches, thereby enhancing its ability to distinguish subtle tissue variations and sensitivity to challenging instances. To fully exploit the two constraints, we further develop a pathology adaptive learning technique to optimize pre-trained feature extractors, enabling the model to efficiently gather task-specific features. Extensive experiments on five public datasets demonstrate that AttriMIL consistently outperforms state-of-the-art methods across various dimensions, including bag classification accuracy, generalization ability, and disease-positive region localization. The implementation code is available at https://github.com/MedCAI/AttriMIL.
[Display omitted]
•We present AttriMIL with multi-branch attribute scoring.•Region-wise attribute constraint uses spatial patterns to boost sensitivity.•Slide-wise attribute constraint models instance correlations across WSIs.•Pathology adaptive learning exploits the two constraints for refined features.•Experiments show AttriMIL’s superiority, achieving state-of-the-art performance. |
|---|---|
| AbstractList | Multiple instance learning (MIL) is a powerful approach for whole-slide pathological image (WSI) analysis, particularly suited for processing gigapixel-resolution images with slide-level labels. Recent attention-based MIL architectures have significantly advanced weakly supervised WSI classification, facilitating both clinical diagnosis and localization of disease-positive regions. However, these methods often face challenges in differentiating between instances, leading to tissue misidentification and a potential degradation in classification performance. To address these limitations, we propose AttriMIL, an attribute-aware multiple instance learning framework. By dissecting the computational flow of attention-based MIL models, we introduce a multi-branch attribute scoring mechanism that quantifies the pathological attributes of individual instances. Leveraging these quantified attributes, we further establish region-wise and slide-wise attribute constraints to dynamically model instance correlations both within and across slides during training. These constraints encourage the network to capture intrinsic spatial patterns and semantic similarities between image patches, thereby enhancing its ability to distinguish subtle tissue variations and sensitivity to challenging instances. To fully exploit the two constraints, we further develop a pathology adaptive learning technique to optimize pre-trained feature extractors, enabling the model to efficiently gather task-specific features. Extensive experiments on five public datasets demonstrate that AttriMIL consistently outperforms state-of-the-art methods across various dimensions, including bag classification accuracy, generalization ability, and disease-positive region localization. The implementation code is available at https://github.com/MedCAI/AttriMIL.
[Display omitted]
•We present AttriMIL with multi-branch attribute scoring.•Region-wise attribute constraint uses spatial patterns to boost sensitivity.•Slide-wise attribute constraint models instance correlations across WSIs.•Pathology adaptive learning exploits the two constraints for refined features.•Experiments show AttriMIL’s superiority, achieving state-of-the-art performance. Multiple instance learning (MIL) is a powerful approach for whole-slide pathological image (WSI) analysis, particularly suited for processing gigapixel-resolution images with slide-level labels. Recent attention-based MIL architectures have significantly advanced weakly supervised WSI classification, facilitating both clinical diagnosis and localization of disease-positive regions. However, these methods often face challenges in differentiating between instances, leading to tissue misidentification and a potential degradation in classification performance. To address these limitations, we propose AttriMIL, an attribute-aware multiple instance learning framework. By dissecting the computational flow of attention-based MIL models, we introduce a multi-branch attribute scoring mechanism that quantifies the pathological attributes of individual instances. Leveraging these quantified attributes, we further establish region-wise and slide-wise attribute constraints to dynamically model instance correlations both within and across slides during training. These constraints encourage the network to capture intrinsic spatial patterns and semantic similarities between image patches, thereby enhancing its ability to distinguish subtle tissue variations and sensitivity to challenging instances. To fully exploit the two constraints, we further develop a pathology adaptive learning technique to optimize pre-trained feature extractors, enabling the model to efficiently gather task-specific features. Extensive experiments on five public datasets demonstrate that AttriMIL consistently outperforms state-of-the-art methods across various dimensions, including bag classification accuracy, generalization ability, and disease-positive region localization. The implementation code is available at https://github.com/MedCAI/AttriMIL. Multiple instance learning (MIL) is a powerful approach for whole-slide pathological image (WSI) analysis, particularly suited for processing gigapixel-resolution images with slide-level labels. Recent attention-based MIL architectures have significantly advanced weakly supervised WSI classification, facilitating both clinical diagnosis and localization of disease-positive regions. However, these methods often face challenges in differentiating between instances, leading to tissue misidentification and a potential degradation in classification performance. To address these limitations, we propose AttriMIL, an attribute-aware multiple instance learning framework. By dissecting the computational flow of attention-based MIL models, we introduce a multi-branch attribute scoring mechanism that quantifies the pathological attributes of individual instances. Leveraging these quantified attributes, we further establish region-wise and slide-wise attribute constraints to dynamically model instance correlations both within and across slides during training. These constraints encourage the network to capture intrinsic spatial patterns and semantic similarities between image patches, thereby enhancing its ability to distinguish subtle tissue variations and sensitivity to challenging instances. To fully exploit the two constraints, we further develop a pathology adaptive learning technique to optimize pre-trained feature extractors, enabling the model to efficiently gather task-specific features. Extensive experiments on five public datasets demonstrate that AttriMIL consistently outperforms state-of-the-art methods across various dimensions, including bag classification accuracy, generalization ability, and disease-positive region localization. The implementation code is available at https://github.com/MedCAI/AttriMIL.Multiple instance learning (MIL) is a powerful approach for whole-slide pathological image (WSI) analysis, particularly suited for processing gigapixel-resolution images with slide-level labels. Recent attention-based MIL architectures have significantly advanced weakly supervised WSI classification, facilitating both clinical diagnosis and localization of disease-positive regions. However, these methods often face challenges in differentiating between instances, leading to tissue misidentification and a potential degradation in classification performance. To address these limitations, we propose AttriMIL, an attribute-aware multiple instance learning framework. By dissecting the computational flow of attention-based MIL models, we introduce a multi-branch attribute scoring mechanism that quantifies the pathological attributes of individual instances. Leveraging these quantified attributes, we further establish region-wise and slide-wise attribute constraints to dynamically model instance correlations both within and across slides during training. These constraints encourage the network to capture intrinsic spatial patterns and semantic similarities between image patches, thereby enhancing its ability to distinguish subtle tissue variations and sensitivity to challenging instances. To fully exploit the two constraints, we further develop a pathology adaptive learning technique to optimize pre-trained feature extractors, enabling the model to efficiently gather task-specific features. Extensive experiments on five public datasets demonstrate that AttriMIL consistently outperforms state-of-the-art methods across various dimensions, including bag classification accuracy, generalization ability, and disease-positive region localization. The implementation code is available at https://github.com/MedCAI/AttriMIL. |
| ArticleNumber | 103631 |
| Author | Lu, Jinpeng Cai, Linghan Huang, Shenjin Zhang, Yongbing Zhang, Ye |
| Author_xml | – sequence: 1 givenname: Linghan orcidid: 0000-0002-7931-7697 surname: Cai fullname: Cai, Linghan email: cailh@stu.hit.edu.cn organization: School of Computer Science and Technology, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China – sequence: 2 givenname: Shenjin surname: Huang fullname: Huang, Shenjin organization: Faculty of Computing, Harbin Institute of Technology, Harbin, 150001, China – sequence: 3 givenname: Ye orcidid: 0009-0003-7254-5026 surname: Zhang fullname: Zhang, Ye organization: School of Computer Science and Technology, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China – sequence: 4 givenname: Jinpeng surname: Lu fullname: Lu, Jinpeng organization: School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China – sequence: 5 givenname: Yongbing orcidid: 0000-0003-3320-2904 surname: Zhang fullname: Zhang, Yongbing email: ybzhang08@hit.edu.cn organization: School of Computer Science and Technology, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40381256$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kUtr3DAUhUVJaB7tLygULbvxVA-_ptBFCE0amBAI7VrI8tX0DrLlSvKE_pb-2cqZpIUuspJ0-c5B95wzcjT6EQh5x9mKM15_3K0G6FGvBBNVnsha8lfklMuaF20p5NHfO69OyFmMO8ZYU5bsNTkpmWy5qOpT8vsipYC3N5tP9B72GDHhuKU6JRgT-rHodISeDrNLODmgOMakRwPUgQ7jglof6MMP76CIDnugk0755bdotKM46C1Q43SMaPNksaQ2-IFqOkGIE5iEe6De_nPWy4e6OUF8Q46tdhHePp3n5PvVl2-XX4vN3fXN5cWmMCWrU7FuDHDZNl3DGmtAdK2U2og1b0XJKtH1AK1ljYTWlDXveGOF5LUpecek1kLLc_Lh4DsF_3OGmNSA0YBzegQ_RyUFq-palA3L6PsndO5y-moKecXwSz0HmoH1ATDBxxjAKoPpce8UNDrFmVrKUzv1WJ5aylOH8rJW_qd9tn9Z9fmgghzRHiGoaBBykj2GHK_qPb6o_wP9ibcP |
| CitedBy_id | crossref_primary_10_1002_jemt_70069 |
| Cites_doi | 10.1109/TCSVT.2025.3528625 10.1016/j.media.2023.102748 10.1109/CVPR52733.2024.01078 10.1109/CVPR.2016.266 10.1016/j.media.2024.103197 10.1038/s41551-020-00682-w 10.1016/j.media.2022.102559 10.1109/CVPR52733.2024.01076 10.1016/j.media.2023.102763 10.1164/ajrccm.151.6.7767535 10.1109/CVPR52688.2022.01824 10.1016/j.patcog.2017.10.009 10.1109/TMI.2018.2867350 10.1109/CVPR52729.2023.00720 10.1109/CVPR.2018.00678 10.1016/j.cell.2023.01.035 10.1609/aaai.v37i1.25160 10.1109/ICCVW60793.2023.00263 10.1109/TCSVT.2024.3400876 10.1109/CVPRW63382.2024.00683 10.1016/j.cmpb.2024.108161 10.3389/fonc.2021.759007 10.2307/2531595 10.1609/aaai.v36i2.20051 10.1146/annurev-pathol-011811-120902 10.1001/jama.2017.14585 10.1109/TMI.2023.3264781 10.1109/TMI.2023.3313252 10.1016/j.jpi.2023.100357 10.1109/CVPR52733.2024.01067 10.1109/ICCV51070.2023.00377 10.1109/CVPR52688.2022.01567 10.1109/CVPR.2016.90 10.1016/j.media.2024.103109 10.1016/j.media.2025.103456 10.1016/j.media.2024.103294 10.1109/CVPR46437.2021.01409 10.1109/TMI.2022.3157983 10.1109/TMI.2022.3176598 10.1016/j.compmedimag.2024.102337 10.1016/S0004-3702(97)00043-X 10.1038/s41591-019-0508-1 10.1038/s41591-024-02857-3 10.1016/j.media.2020.101813 |
| ContentType | Journal Article |
| Copyright | 2025 Copyright © 2025. Published by Elsevier B.V. |
| Copyright_xml | – notice: 2025 – notice: Copyright © 2025. Published by Elsevier B.V. |
| DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1016/j.media.2025.103631 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering |
| EISSN | 1361-8423 |
| ExternalDocumentID | 40381256 10_1016_j_media_2025_103631 S1361841525001781 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 29M 4.4 457 4G. 53G 5GY 5VS 6I. 7-5 71M 8P~ AAEDT AAEDW AAFTH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABBQC ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACIWK ACLOT ACNNM ACPRK ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO ADTZH ADVLN AEBSH AECPX AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFRAH AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV C45 CAG COF CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HX~ HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SDF SDG SDP SEL SES SEW SPC SPCBC SSH SST SSV SSZ T5K TEORI UHS ~G- ~HD 9DU AAYXX CITATION AGCQF AGRNS CGR CUY CVF ECM EIF NPM RIG 7X8 |
| ID | FETCH-LOGICAL-c406t-97ce1387b707fce2b833ac291824052bdee8f073e8c461b17f2316c41b03aa2a3 |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001495110600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1361-8415 1361-8423 |
| IngestDate | Thu Oct 02 23:08:11 EDT 2025 Sat May 31 02:14:10 EDT 2025 Sat Nov 29 07:06:06 EST 2025 Tue Nov 18 21:21:38 EST 2025 Sat Nov 15 16:52:37 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Pathology attribute constraint Pathological image analysis Attribute scoring mechanism Multiple instance learning Pathology adaptive learning |
| Language | English |
| License | This is an open access article under the CC BY license. Copyright © 2025. Published by Elsevier B.V. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c406t-97ce1387b707fce2b833ac291824052bdee8f073e8c461b17f2316c41b03aa2a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-3320-2904 0000-0002-7931-7697 0009-0003-7254-5026 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.media.2025.103631 |
| PMID | 40381256 |
| PQID | 3205662470 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_3205662470 pubmed_primary_40381256 crossref_citationtrail_10_1016_j_media_2025_103631 crossref_primary_10_1016_j_media_2025_103631 elsevier_sciencedirect_doi_10_1016_j_media_2025_103631 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-07-01 |
| PublicationDateYYYYMMDD | 2025-07-01 |
| PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | Medical image analysis |
| PublicationTitleAlternate | Med Image Anal |
| PublicationYear | 2025 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Sun, Q., Jiang, D., Li, J., Yan, R., He, Y., Guan, T., Cheng, Z., 2024. NcIEMIL: Rethinking Decoupled Multiple Instance Learning Framework for Histopathological Slide Classification. In: Medical Imaging with Deep Learning. Marquette, Copin, Wallet, Neviere, Saulnier, Mathieu, Durocher, Ramon, Tonnel (b44) 1995; 151 Ramon, J., 2000. Multi instance neural networks. In: ML-2000 Workshop Attribute-Value and Relational Learning. Bandi, Geessink, Manson, Van Dijk, Balkenhol, Hermsen, Bejnordi, Lee, Paeng, Zhong (b2) 2018; 38 Barbano, Perlo, Tartaglione, Fiandrotti, Bertero, Cassoni, Grangetto (b3) 2021 Hou, L., Samaras, D., Kurc, T.M., Gao, Y., Davis, J.E., Saltz, J.H., 2016. Patch-based convolutional neural network for whole slide tissue image classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 2424–2433. Chen, Lu, Shaban, Chen, Chen, Williamson, Mahmood (b10) 2021 Grill, Strub, Altché, Tallec, Richemond, Buchatskaya, Doersch, Avila Pires, Guo, Gheshlaghi Azar (b22) 2020; 33 Yu, Wu, Ming, Deng, Li, Ou, He, Wang, Zhang, Wang (b73) 2023; 85 Chen, R.J., Chen, C., Li, Y., Chen, T.Y., Trister, A.D., Krishnan, R.G., Mahmood, F., 2022. Scaling vision transformers to gigapixel images via hierarchical self-supervised learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 16144–16155. Ilse, Tomczak, Welling (b29) 2018 Ioffe (b30) 2015 He, X., Li, C., Zhang, P., Yang, J., Wang, X.E., 2023. Parameter-efficient model adaptation for vision transformers. In: Proceedings of the AAAI Conference on Artificial Intelligence. 37, (1), pp. 817–825. Xu, Wang, Shi, Qin, Zhang, Liu, Madabhushi, Gao, Cong, Lu (b68) 2025 Ulyanov, Vedaldi, Lempitsky (b61) 2016 Jin, Luo, Lin, Hou, Chen (b31) 2024 Sultani, W., Chen, C., Shah, M., 2018. Real-world anomaly detection in surveillance videos. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 6479–6488. Paszke, Gross, Massa, Lerer, Bradbury, Chanan, Killeen, Lin, Gimelshein, Antiga (b46) 2019; 32 Tan, Le (b56) 2021 Swanson, Wu, Zhang, Alizadeh, Zou (b55) 2023; 186 Tsamardinos, Aliferis (b60) 2003 Fourkioti, O., De Vries, M., Bakal, C., 2024. CAMIL: Context-Aware Multiple Instance Learning for Cancer Detection and Subtyping in Whole Slide Images. In: The Twelfth International Conference on Learning Representations. URL Lu, Williamson, Chen, Chen, Barbieri, Mahmood (b42) 2021; 5 He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 770–778. Campanella, Hanna, Geneslaw, Miraflor, Werneck Krauss Silva, Busam, Brogi, Reuter, Klimstra, Fuchs (b5) 2019; 25 Cheng, Huang, Cai, Xu, Wang, Zhang (b11) 2025 Nasiri-Sarvi, A., Trinh, V.Q.-H., Rivaz, H., Hosseini, M.S., 2024. Vim4Path: Self-Supervised Vision Mamba for Histopathology Images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 6894–6903. Shi, Li, Gong, Fu (b50) 2024; 97 Fu, Yang, So, Lam, Bing, Collier (b19) 2023; 37 Kohavi, John (b33) 1997; 97 Shao, Bian, Chen, Wang, Zhang, Ji (b49) 2021; 34 Yang, Wang, Chen (b71) 2024 . Ghaznavi, Evans, Madabhushi, Feldman (b21) 2013; 8 Wang, Yang, Zhang, Wang, Zhang, Yang, Huang, Han (b64) 2022; 81 Dosovitskiy (b16) 2020 Li, H., Zhu, C., Zhang, Y., Sun, Y., Shui, Z., Kuang, W., Zheng, S., Yang, L., 2023. Task-specific fine-tuning via variational information bottleneck for weakly-supervised pathology whole slide image classification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 7454–7463. Zheng, Gindra, Green, Burks, Betke, Beane, Kolachalama (b78) 2022; 41 Gadermayr, Tschuchnig (b20) 2024 Lee, J.C., Kwak, J.T., 2023. Order-ViT: Order Learning Vision Transformer for Cancer Classification in Pathology Images. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 2493–2502. Srinidhi, Ciga, Martel (b52) 2021; 67 Bazargani, Fazli, Gleave, Goldenberg, Bashashati, Salcudean (b4) 2024; 96 Hendrycks, Gimpel (b25) 2016 Zhang, Li, Sun, Zheng, Zhu, Yang (b74) 2024 Tourniaire, Ilie, Hofman, Ayache, Delingette (b59) 2023; 85 Ehteshami Bejnordi, Veta, Johannes van Diest, van Ginneken, Karssemeijer, Litjens, van der Laak, the CAMELYON16 Consortium (b17) 2017; 318 Deng, Dong, Socher, Li, Li, Fei-Fei (b14) 2009 Lin, T., Xu, H., Yang, C., Xu, Y., 2022. Interventional multi-instance learning with deconfounded instance-level prediction. In: Proceedings of the AAAI Conference on Artificial Intelligence. Carbonneau, Cheplygina, Granger, Gagnon (b6) 2018; 77 Li, Zhang, Chen, Shui, Zhu, Yang (b38) 2024 Xiang, Song, Zhang, Liu, Chen, Zhang, Huang, O’Donnell, Cai (b66) 2022; 41 Tang, W., Zhou, F., Huang, S., Zhu, X., Zhang, Y., Liu, B., 2024. Feature Re-Embedding: Towards Foundation Model-Level Performance in Computational Pathology. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 11343–11352. Wang, Zhang, Su, Zhu (b65) 2024 Qu, Ma, Luo, Guo, Wang, Song (b47) 2024 DeLong, DeLong, Clarke-Pearson (b12) 1988 Hosseini, Bejnordi, Trinh, Chan, Hasan, Li, Yang, Kim, Zhang, Wu (b26) 2024 Bahadir, Omar, Rosenthal, Marchionni, Liechty, Pisapia, Sabuncu (b1) 2024 Li, J., Chen, Y., Chu, H., Sun, Q., Guan, T., Han, A., He, Y., 2024a. Dynamic Graph Representation with Knowledge-aware Attention for Histopathology Whole Slide Image Analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 11323–11332. Deng, Liu, Cui, Yao, Yue, Xiong, Yu, Wu, Yin, Wang (b15) 2024 Deng, Cui, Remedios, Bao, Womick, Chiron, Li, Roland, Lau, Liu (b13) 2022 Yang, Yan, Ming, Wang, Zhang, Tian (b72) 2021 Zhao, Deng, Li, Zhou, Gao, Wang, Li (b77) 2024; 94 Zhang, H., Meng, Y., Zhao, Y., Qiao, Y., Yang, X., Coupland, S.E., Zheng, Y., 2022a. DTFD-MIL: Double-tier feature distillation multiple instance learning for histopathology whole slide image classification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 18802–18812. Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (b62) 2017; 30 Li, B., Li, Y., Eliceiri, K.W., 2021b. Dual-stream multiple instance learning network for whole slide image classification with self-supervised contrastive learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 14318–14328. Chen, Ding, Lu, Williamson, Jaume, Song, Chen, Zhang, Shao, Shaban (b8) 2024; 30 Li, Chen, Huang, Yang, Hu, Duan, Metaxas, Li, Zhang (b36) 2021 Yang, Liu, Ji (b70) 2024; 249 Van der Maaten, Hinton (b43) 2008; 9 Wang, Liu, Bocchieri, Li (b63) 2021; 34 Tang, W., Huang, S., Zhang, X., Zhou, F., Zhang, Y., Liu, B., 2023. Multiple instance learning framework with masked hard instance mining for whole slide image classification. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 4078–4087. Zheng, Li, Shi, Xie, Huai, Cao, Jiang (b79) 2023; 42 Chen, Kornblith, Norouzi, Hinton (b9) 2020 Shi, Tang, Gao, Li, Wang, Gong, Li, Fu (b51) 2023; 42 Zhang, Zhu, Yang, Hosseini, Genovese, Chen, Rowsell, Damaskinos, Varma, Plataniotis (b76) 2022 Xu, Usuyama, Bagga, Zhang, Rao, Naumann, Wong, Gero, González, Gu (b67) 2024 Lin, Zhu, Cheng, Chen (b41) 2024 Xu, Zhu, Tang, Wang, Zhang, Li, Jiang, Shi, Liu, Jin (b69) 2021; 11 Houlsby, Giurgiu, Jastrzebski, Morrone, De Laroussilhe, Gesmundo, Attariyan, Gelly (b28) 2019 Kapse, S., Pati, P., Das, S., Zhang, J., Chen, C., Vakalopoulou, M., Saltz, J., Samaras, D., Gupta, R.R., Prasanna, P., 2024. SI-MIL: Taming Deep MIL for Self-Interpretability in Gigapixel Histopathology. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 11226–11237. Zhao (10.1016/j.media.2025.103631_b77) 2024; 94 Xu (10.1016/j.media.2025.103631_b67) 2024 Grill (10.1016/j.media.2025.103631_b22) 2020; 33 Ilse (10.1016/j.media.2025.103631_b29) 2018 Bazargani (10.1016/j.media.2025.103631_b4) 2024; 96 Dosovitskiy (10.1016/j.media.2025.103631_b16) 2020 Li (10.1016/j.media.2025.103631_b36) 2021 10.1016/j.media.2025.103631_b40 Srinidhi (10.1016/j.media.2025.103631_b52) 2021; 67 Deng (10.1016/j.media.2025.103631_b13) 2022 10.1016/j.media.2025.103631_b45 10.1016/j.media.2025.103631_b48 Xu (10.1016/j.media.2025.103631_b69) 2021; 11 Houlsby (10.1016/j.media.2025.103631_b28) 2019 Zhang (10.1016/j.media.2025.103631_b76) 2022 Bandi (10.1016/j.media.2025.103631_b2) 2018; 38 Fu (10.1016/j.media.2025.103631_b19) 2023; 37 Swanson (10.1016/j.media.2025.103631_b55) 2023; 186 Shi (10.1016/j.media.2025.103631_b50) 2024; 97 Barbano (10.1016/j.media.2025.103631_b3) 2021 10.1016/j.media.2025.103631_b75 10.1016/j.media.2025.103631_b32 10.1016/j.media.2025.103631_b34 Ioffe (10.1016/j.media.2025.103631_b30) 2015 10.1016/j.media.2025.103631_b35 Chen (10.1016/j.media.2025.103631_b10) 2021 Shi (10.1016/j.media.2025.103631_b51) 2023; 42 10.1016/j.media.2025.103631_b37 10.1016/j.media.2025.103631_b39 Wang (10.1016/j.media.2025.103631_b64) 2022; 81 Yang (10.1016/j.media.2025.103631_b71) 2024 Jin (10.1016/j.media.2025.103631_b31) 2024 Deng (10.1016/j.media.2025.103631_b15) 2024 Ghaznavi (10.1016/j.media.2025.103631_b21) 2013; 8 Cheng (10.1016/j.media.2025.103631_b11) 2025 Ehteshami Bejnordi (10.1016/j.media.2025.103631_b17) 2017; 318 Tan (10.1016/j.media.2025.103631_b56) 2021 Zheng (10.1016/j.media.2025.103631_b78) 2022; 41 Li (10.1016/j.media.2025.103631_b38) 2024 Hosseini (10.1016/j.media.2025.103631_b26) 2024 Hendrycks (10.1016/j.media.2025.103631_b25) 2016 Lu (10.1016/j.media.2025.103631_b42) 2021; 5 Wang (10.1016/j.media.2025.103631_b63) 2021; 34 Yu (10.1016/j.media.2025.103631_b73) 2023; 85 Deng (10.1016/j.media.2025.103631_b14) 2009 Zhang (10.1016/j.media.2025.103631_b74) 2024 Lin (10.1016/j.media.2025.103631_b41) 2024 Chen (10.1016/j.media.2025.103631_b8) 2024; 30 Yang (10.1016/j.media.2025.103631_b70) 2024; 249 Yang (10.1016/j.media.2025.103631_b72) 2021 Paszke (10.1016/j.media.2025.103631_b46) 2019; 32 Tourniaire (10.1016/j.media.2025.103631_b59) 2023; 85 Wang (10.1016/j.media.2025.103631_b65) 2024 10.1016/j.media.2025.103631_b23 Vaswani (10.1016/j.media.2025.103631_b62) 2017; 30 10.1016/j.media.2025.103631_b24 Xu (10.1016/j.media.2025.103631_b68) 2025 10.1016/j.media.2025.103631_b27 Campanella (10.1016/j.media.2025.103631_b5) 2019; 25 DeLong (10.1016/j.media.2025.103631_b12) 1988 Carbonneau (10.1016/j.media.2025.103631_b6) 2018; 77 Kohavi (10.1016/j.media.2025.103631_b33) 1997; 97 Chen (10.1016/j.media.2025.103631_b9) 2020 Bahadir (10.1016/j.media.2025.103631_b1) 2024 10.1016/j.media.2025.103631_b7 Van der Maaten (10.1016/j.media.2025.103631_b43) 2008; 9 Qu (10.1016/j.media.2025.103631_b47) 2024 Tsamardinos (10.1016/j.media.2025.103631_b60) 2003 Marquette (10.1016/j.media.2025.103631_b44) 1995; 151 10.1016/j.media.2025.103631_b53 10.1016/j.media.2025.103631_b54 Shao (10.1016/j.media.2025.103631_b49) 2021; 34 Zheng (10.1016/j.media.2025.103631_b79) 2023; 42 10.1016/j.media.2025.103631_b57 10.1016/j.media.2025.103631_b58 Xiang (10.1016/j.media.2025.103631_b66) 2022; 41 10.1016/j.media.2025.103631_b18 Ulyanov (10.1016/j.media.2025.103631_b61) 2016 Gadermayr (10.1016/j.media.2025.103631_b20) 2024 |
| References_xml | – volume: 33 start-page: 21271 year: 2020 end-page: 21284 ident: b22 article-title: Bootstrap your own latent-a new approach to self-supervised learning publication-title: Adv. Neural Inf. Process. Syst. – reference: Tang, W., Huang, S., Zhang, X., Zhou, F., Zhang, Y., Liu, B., 2023. Multiple instance learning framework with masked hard instance mining for whole slide image classification. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 4078–4087. – volume: 41 start-page: 3003 year: 2022 end-page: 3015 ident: b78 article-title: A graph-transformer for whole slide image classification publication-title: IEEE Trans. Med. Imaging – volume: 77 start-page: 329 year: 2018 end-page: 353 ident: b6 article-title: Multiple instance learning: A survey of problem characteristics and applications publication-title: Pattern Recognit. – reference: Hou, L., Samaras, D., Kurc, T.M., Gao, Y., Davis, J.E., Saltz, J.H., 2016. Patch-based convolutional neural network for whole slide tissue image classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 2424–2433. – reference: Sultani, W., Chen, C., Shah, M., 2018. Real-world anomaly detection in surveillance videos. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 6479–6488. – reference: He, X., Li, C., Zhang, P., Yang, J., Wang, X.E., 2023. Parameter-efficient model adaptation for vision transformers. In: Proceedings of the AAAI Conference on Artificial Intelligence. 37, (1), pp. 817–825. – year: 2024 ident: b38 article-title: Rethinking transformer for long contextual histopathology whole slide image analysis – volume: 186 start-page: 1772 year: 2023 end-page: 1791 ident: b55 article-title: From patterns to patients: Advances in clinical machine learning for cancer diagnosis, prognosis, and treatment publication-title: Cell – year: 2016 ident: b61 article-title: Instance normalization: The missing ingredient for fast stylization – year: 2025 ident: b68 article-title: When multiple instance learning meets foundation models: advancing histological whole slide image analysis publication-title: Med. Image Anal. – volume: 85 year: 2023 ident: b73 article-title: Prototypical multiple instance learning for predicting lymph node metastasis of breast cancer from whole-slide pathological images publication-title: Med. Image Anal. – reference: Kapse, S., Pati, P., Das, S., Zhang, J., Chen, C., Vakalopoulou, M., Saltz, J., Samaras, D., Gupta, R.R., Prasanna, P., 2024. SI-MIL: Taming Deep MIL for Self-Interpretability in Gigapixel Histopathology. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 11226–11237. – reference: Ramon, J., 2000. Multi instance neural networks. In: ML-2000 Workshop Attribute-Value and Relational Learning. – volume: 318 start-page: 2199 year: 2017 end-page: 2210 ident: b17 article-title: Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer publication-title: JAMA – volume: 34 start-page: 29074 year: 2021 end-page: 29087 ident: b63 article-title: Can multi-label classification networks know what they don’t know? publication-title: Adv. Neural Inf. Process. Syst. – reference: Li, B., Li, Y., Eliceiri, K.W., 2021b. Dual-stream multiple instance learning network for whole slide image classification with self-supervised contrastive learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 14318–14328. – reference: Zhang, H., Meng, Y., Zhao, Y., Qiao, Y., Yang, X., Coupland, S.E., Zheng, Y., 2022a. DTFD-MIL: Double-tier feature distillation multiple instance learning for histopathology whole slide image classification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 18802–18812. – year: 2024 ident: b26 article-title: Computational pathology: a survey review and the way forward publication-title: J. Pathol. Informatics – volume: 30 start-page: 850 year: 2024 end-page: 862 ident: b8 article-title: Towards a general-purpose foundation model for computational pathology publication-title: Nature Med. – reference: Lee, J.C., Kwak, J.T., 2023. Order-ViT: Order Learning Vision Transformer for Cancer Classification in Pathology Images. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 2493–2502. – year: 2024 ident: b47 article-title: Rethinking multiple instance learning for whole slide image classification: A good instance classifier is all you need publication-title: IEEE Trans. Circuits Syst. Video Technol. – start-page: 1597 year: 2020 end-page: 1607 ident: b9 article-title: A simple framework for contrastive learning of visual representations publication-title: International Conference on Machine Learning – start-page: 339 year: 2021 end-page: 349 ident: b10 article-title: Whole slide images are 2d point clouds: Context-aware survival prediction using patch-based graph convolutional networks publication-title: Medical Image Computing and Computer Assisted Intervention–MICCAI 2021: 24th International Conference, Strasbourg, France, September 27–October 1, 2021, Proceedings, Part VIII 24 – reference: Sun, Q., Jiang, D., Li, J., Yan, R., He, Y., Guan, T., Cheng, Z., 2024. NcIEMIL: Rethinking Decoupled Multiple Instance Learning Framework for Histopathological Slide Classification. In: Medical Imaging with Deep Learning. – volume: 8 start-page: 331 year: 2013 end-page: 359 ident: b21 article-title: Digital imaging in pathology: whole-slide imaging and beyond publication-title: Annu. Rev. Pathol.: Mech. Dis. – volume: 81 year: 2022 ident: b64 article-title: Transformer-based unsupervised contrastive learning for histopathological image classification publication-title: Med. Image Anal. – start-page: 309 year: 2021 end-page: 318 ident: b36 article-title: Hybrid supervision learning for pathology whole slide image classification publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – start-page: 24 year: 2022 end-page: 33 ident: b13 article-title: Cross-scale attention guided multi-instance learning for crohn’s disease diagnosis with pathological images publication-title: International Workshop on Multiscale Multimodal Medical Imaging – reference: Li, H., Zhu, C., Zhang, Y., Sun, Y., Shui, Z., Kuang, W., Zheng, S., Yang, L., 2023. Task-specific fine-tuning via variational information bottleneck for weakly-supervised pathology whole slide image classification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 7454–7463. – volume: 42 start-page: 3871 year: 2023 end-page: 3883 ident: b51 article-title: MG-trans: Multi-scale graph transformer with information bottleneck for whole slide image classification publication-title: IEEE Trans. Med. Imaging – start-page: 837 year: 1988 end-page: 845 ident: b12 article-title: Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach publication-title: Biometrics – start-page: 76 year: 2021 end-page: 80 ident: b3 article-title: Unitopatho, a labeled histopathological dataset for colorectal polyps classification and adenoma dysplasia grading publication-title: 2021 IEEE International Conference on Image Processing – reference: Tang, W., Zhou, F., Huang, S., Zhu, X., Zhang, Y., Liu, B., 2024. Feature Re-Embedding: Towards Foundation Model-Level Performance in Computational Pathology. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 11343–11352. – volume: 94 year: 2024 ident: b77 article-title: LESS: Label-efficient multi-scale learning for cytological whole slide image screening publication-title: Med. Image Anal. – reference: Chen, R.J., Chen, C., Li, Y., Chen, T.Y., Trister, A.D., Krishnan, R.G., Mahmood, F., 2022. Scaling vision transformers to gigapixel images via hierarchical self-supervised learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 16144–16155. – volume: 25 start-page: 1301 year: 2019 end-page: 1309 ident: b5 article-title: Clinical-grade computational pathology using weakly supervised deep learning on whole slide images publication-title: Nature Med. – year: 2025 ident: b11 article-title: Focus your attention: Multiple instance learning with attention modification for whole slide pathological image classification publication-title: IEEE Trans. Circuits Syst. Video Technol. – reference: Li, J., Chen, Y., Chu, H., Sun, Q., Guan, T., Han, A., He, Y., 2024a. Dynamic Graph Representation with Knowledge-aware Attention for Histopathology Whole Slide Image Analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 11323–11332. – year: 2016 ident: b25 article-title: Gaussian error linear units (gelus) – year: 2024 ident: b41 article-title: Prompt-guided adaptive model transformation for whole slide image classification – reference: Nasiri-Sarvi, A., Trinh, V.Q.-H., Rivaz, H., Hosseini, M.S., 2024. Vim4Path: Self-Supervised Vision Mamba for Histopathology Images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 6894–6903. – volume: 37 start-page: 12799 year: 2023 end-page: 12807 ident: b19 article-title: On the effectiveness of parameter-efficient fine-tuning publication-title: Proceedings of the AAAI Conference on Artificial Intelligence – volume: 30 year: 2017 ident: b62 article-title: Attention is all you need publication-title: Adv. Neural Inf. Process. Syst. – year: 2024 ident: b71 article-title: Mambamil: Enhancing long sequence modeling with sequence reordering in computational pathology publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 151 start-page: 1878 year: 1995 end-page: 1888 ident: b44 article-title: Diagnostic tests for pneumonia in ventilated patients: prospective evaluation of diagnostic accuracy using histology as a diagnostic gold standard publication-title: Am. J. Respir. Crit. Care Med. – year: 2015 ident: b30 article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift – start-page: 1 year: 2024 end-page: 8 ident: b67 article-title: A whole-slide foundation model for digital pathology from real-world data publication-title: Nature – year: 2024 ident: b20 article-title: Multiple instance learning for digital pathology: A review of the state-of-the-art, limitations & future potential publication-title: Comput. Med. Imaging Graph. – year: 2024 ident: b31 article-title: HMIL: Hierarchical multi-instance learning for fine-grained whole slide image classification publication-title: IEEE Trans. Med. Imaging – start-page: 2127 year: 2018 end-page: 2136 ident: b29 article-title: Attention-based deep multiple instance learning publication-title: International Conference on Machine Learning – volume: 96 year: 2024 ident: b4 article-title: Multi-scale relational graph convolutional network for multiple instance learning in histopathology images publication-title: Med. Image Anal. – reference: He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 770–778. – volume: 249 year: 2024 ident: b70 article-title: ProDiv: Prototype-driven consistent pseudo-bag division for whole-slide image classification publication-title: Comput. Methods Programs Biomed. – volume: 67 year: 2021 ident: b52 article-title: Deep neural network models for computational histopathology: A survey publication-title: Med. Image Anal. – start-page: 300 year: 2003 end-page: 307 ident: b60 article-title: Towards principled feature selection: Relevancy, filters and wrappers publication-title: International Workshop on Artificial Intelligence and Statistics – volume: 42 start-page: 2726 year: 2023 end-page: 2739 ident: b79 article-title: Kernel attention transformer for histopathology whole slide image analysis and assistant cancer diagnosis publication-title: IEEE Trans. Med. Imaging – start-page: 2790 year: 2019 end-page: 2799 ident: b28 article-title: Parameter-efficient transfer learning for NLP publication-title: International Conference on Machine Learning – volume: 97 start-page: 273 year: 1997 end-page: 324 ident: b33 article-title: Wrappers for feature subset selection publication-title: Artificial Intelligence – start-page: 1276 year: 2022 end-page: 1280 ident: b76 article-title: Histokt: Cross knowledge transfer in computational pathology publication-title: ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing – volume: 32 year: 2019 ident: b46 article-title: Pytorch: An imperative style, high-performance deep learning library publication-title: Adv. Neural Inf. Process. Syst. – volume: 85 year: 2023 ident: b59 article-title: MS-CLAM: Mixed supervision for the classification and localization of tumors in whole slide images publication-title: Med. Image Anal. – reference: Lin, T., Xu, H., Yang, C., Xu, Y., 2022. Interventional multi-instance learning with deconfounded instance-level prediction. In: Proceedings of the AAAI Conference on Artificial Intelligence. – volume: 11 year: 2021 ident: b69 article-title: Predicting axillary lymph node metastasis in early breast cancer using deep learning on primary tumor biopsy slides publication-title: Front. Oncol. – start-page: 11830 year: 2021 end-page: 11841 ident: b72 article-title: Rethinking rotated object detection with gaussian wasserstein distance loss publication-title: International Conference on Machine Learning – year: 2020 ident: b16 article-title: An image is worth 16×16 words: Transformers for image recognition at scale – start-page: 11736 year: 2024 end-page: 11746 ident: b15 article-title: PrPSeg: Universal proposition learning for panoramic renal pathology segmentation publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – volume: 34 start-page: 2136 year: 2021 end-page: 2147 ident: b49 article-title: Transmil: Transformer based correlated multiple instance learning for whole slide image classification publication-title: Adv. Neural Inf. Process. Syst. – reference: Fourkioti, O., De Vries, M., Bakal, C., 2024. CAMIL: Context-Aware Multiple Instance Learning for Cancer Detection and Subtyping in Whole Slide Images. In: The Twelfth International Conference on Learning Representations. URL – start-page: 248 year: 2009 end-page: 255 ident: b14 article-title: Imagenet: A large-scale hierarchical image database publication-title: 2009 IEEE Conference on Computer Vision and Pattern Recognition – volume: 41 start-page: 2180 year: 2022 end-page: 2190 ident: b66 article-title: Dsnet: A dual-stream framework for weakly-supervised gigapixel pathology image analysis publication-title: IEEE Trans. Med. Imaging – reference: . – volume: 38 start-page: 550 year: 2018 end-page: 560 ident: b2 article-title: From detection of individual metastases to classification of lymph node status at the patient level: the camelyon17 challenge publication-title: IEEE Trans. Med. Imaging – start-page: 1 year: 2024 end-page: 16 ident: b1 article-title: Artificial intelligence applications in histopathology publication-title: Nat. Rev. Electr. Eng. – volume: 5 start-page: 555 year: 2021 end-page: 570 ident: b42 article-title: Data-efficient and weakly supervised computational pathology on whole-slide images publication-title: Nat. Biomed. Eng. – volume: 9 year: 2008 ident: b43 article-title: Visualizing data using t-SNE publication-title: J. Mach. Learn. Res. – year: 2024 ident: b65 article-title: A comprehensive survey of continual learning: Theory, method and application publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – year: 2024 ident: b74 article-title: Attention-challenging multiple instance learning for whole slide image classification publication-title: European Conference on Computer Vision – volume: 97 year: 2024 ident: b50 article-title: E2-MIL: An explainable and evidential multiple instance learning framework for whole slide image classification publication-title: Med. Image Anal. – start-page: 10096 year: 2021 end-page: 10106 ident: b56 article-title: Efficientnetv2: Smaller models and faster training publication-title: International Conference on Machine Learning – year: 2025 ident: 10.1016/j.media.2025.103631_b11 article-title: Focus your attention: Multiple instance learning with attention modification for whole slide pathological image classification publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2025.3528625 – volume: 85 year: 2023 ident: 10.1016/j.media.2025.103631_b73 article-title: Prototypical multiple instance learning for predicting lymph node metastasis of breast cancer from whole-slide pathological images publication-title: Med. Image Anal. doi: 10.1016/j.media.2023.102748 – volume: 33 start-page: 21271 year: 2020 ident: 10.1016/j.media.2025.103631_b22 article-title: Bootstrap your own latent-a new approach to self-supervised learning publication-title: Adv. Neural Inf. Process. Syst. – ident: 10.1016/j.media.2025.103631_b58 doi: 10.1109/CVPR52733.2024.01078 – year: 2024 ident: 10.1016/j.media.2025.103631_b74 article-title: Attention-challenging multiple instance learning for whole slide image classification – ident: 10.1016/j.media.2025.103631_b27 doi: 10.1109/CVPR.2016.266 – volume: 34 start-page: 2136 year: 2021 ident: 10.1016/j.media.2025.103631_b49 article-title: Transmil: Transformer based correlated multiple instance learning for whole slide image classification publication-title: Adv. Neural Inf. Process. Syst. – volume: 30 year: 2017 ident: 10.1016/j.media.2025.103631_b62 article-title: Attention is all you need publication-title: Adv. Neural Inf. Process. Syst. – volume: 96 year: 2024 ident: 10.1016/j.media.2025.103631_b4 article-title: Multi-scale relational graph convolutional network for multiple instance learning in histopathology images publication-title: Med. Image Anal. doi: 10.1016/j.media.2024.103197 – start-page: 10096 year: 2021 ident: 10.1016/j.media.2025.103631_b56 article-title: Efficientnetv2: Smaller models and faster training – start-page: 1 year: 2024 ident: 10.1016/j.media.2025.103631_b67 article-title: A whole-slide foundation model for digital pathology from real-world data publication-title: Nature – start-page: 2790 year: 2019 ident: 10.1016/j.media.2025.103631_b28 article-title: Parameter-efficient transfer learning for NLP – volume: 5 start-page: 555 issue: 6 year: 2021 ident: 10.1016/j.media.2025.103631_b42 article-title: Data-efficient and weakly supervised computational pathology on whole-slide images publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-020-00682-w – volume: 81 year: 2022 ident: 10.1016/j.media.2025.103631_b64 article-title: Transformer-based unsupervised contrastive learning for histopathological image classification publication-title: Med. Image Anal. doi: 10.1016/j.media.2022.102559 – start-page: 300 year: 2003 ident: 10.1016/j.media.2025.103631_b60 article-title: Towards principled feature selection: Relevancy, filters and wrappers – year: 2016 ident: 10.1016/j.media.2025.103631_b61 – ident: 10.1016/j.media.2025.103631_b18 – ident: 10.1016/j.media.2025.103631_b35 doi: 10.1109/CVPR52733.2024.01076 – volume: 85 year: 2023 ident: 10.1016/j.media.2025.103631_b59 article-title: MS-CLAM: Mixed supervision for the classification and localization of tumors in whole slide images publication-title: Med. Image Anal. doi: 10.1016/j.media.2023.102763 – volume: 151 start-page: 1878 issue: 6 year: 1995 ident: 10.1016/j.media.2025.103631_b44 article-title: Diagnostic tests for pneumonia in ventilated patients: prospective evaluation of diagnostic accuracy using histology as a diagnostic gold standard publication-title: Am. J. Respir. Crit. Care Med. doi: 10.1164/ajrccm.151.6.7767535 – ident: 10.1016/j.media.2025.103631_b75 doi: 10.1109/CVPR52688.2022.01824 – volume: 77 start-page: 329 year: 2018 ident: 10.1016/j.media.2025.103631_b6 article-title: Multiple instance learning: A survey of problem characteristics and applications publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2017.10.009 – start-page: 339 year: 2021 ident: 10.1016/j.media.2025.103631_b10 article-title: Whole slide images are 2d point clouds: Context-aware survival prediction using patch-based graph convolutional networks – volume: 38 start-page: 550 issue: 2 year: 2018 ident: 10.1016/j.media.2025.103631_b2 article-title: From detection of individual metastases to classification of lymph node status at the patient level: the camelyon17 challenge publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2018.2867350 – ident: 10.1016/j.media.2025.103631_b39 doi: 10.1109/CVPR52729.2023.00720 – ident: 10.1016/j.media.2025.103631_b53 doi: 10.1109/CVPR.2018.00678 – volume: 186 start-page: 1772 issue: 8 year: 2023 ident: 10.1016/j.media.2025.103631_b55 article-title: From patterns to patients: Advances in clinical machine learning for cancer diagnosis, prognosis, and treatment publication-title: Cell doi: 10.1016/j.cell.2023.01.035 – ident: 10.1016/j.media.2025.103631_b23 doi: 10.1609/aaai.v37i1.25160 – ident: 10.1016/j.media.2025.103631_b34 doi: 10.1109/ICCVW60793.2023.00263 – start-page: 24 year: 2022 ident: 10.1016/j.media.2025.103631_b13 article-title: Cross-scale attention guided multi-instance learning for crohn’s disease diagnosis with pathological images – start-page: 2127 year: 2018 ident: 10.1016/j.media.2025.103631_b29 article-title: Attention-based deep multiple instance learning – ident: 10.1016/j.media.2025.103631_b48 – start-page: 11830 year: 2021 ident: 10.1016/j.media.2025.103631_b72 article-title: Rethinking rotated object detection with gaussian wasserstein distance loss – year: 2024 ident: 10.1016/j.media.2025.103631_b47 article-title: Rethinking multiple instance learning for whole slide image classification: A good instance classifier is all you need publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2024.3400876 – ident: 10.1016/j.media.2025.103631_b45 doi: 10.1109/CVPRW63382.2024.00683 – volume: 249 year: 2024 ident: 10.1016/j.media.2025.103631_b70 article-title: ProDiv: Prototype-driven consistent pseudo-bag division for whole-slide image classification publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2024.108161 – year: 2020 ident: 10.1016/j.media.2025.103631_b16 – volume: 11 year: 2021 ident: 10.1016/j.media.2025.103631_b69 article-title: Predicting axillary lymph node metastasis in early breast cancer using deep learning on primary tumor biopsy slides publication-title: Front. Oncol. doi: 10.3389/fonc.2021.759007 – start-page: 76 year: 2021 ident: 10.1016/j.media.2025.103631_b3 article-title: Unitopatho, a labeled histopathological dataset for colorectal polyps classification and adenoma dysplasia grading – start-page: 837 year: 1988 ident: 10.1016/j.media.2025.103631_b12 article-title: Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach publication-title: Biometrics doi: 10.2307/2531595 – volume: 9 issue: 11 year: 2008 ident: 10.1016/j.media.2025.103631_b43 article-title: Visualizing data using t-SNE publication-title: J. Mach. Learn. Res. – start-page: 248 year: 2009 ident: 10.1016/j.media.2025.103631_b14 article-title: Imagenet: A large-scale hierarchical image database – ident: 10.1016/j.media.2025.103631_b40 doi: 10.1609/aaai.v36i2.20051 – volume: 8 start-page: 331 year: 2013 ident: 10.1016/j.media.2025.103631_b21 article-title: Digital imaging in pathology: whole-slide imaging and beyond publication-title: Annu. Rev. Pathol.: Mech. Dis. doi: 10.1146/annurev-pathol-011811-120902 – year: 2024 ident: 10.1016/j.media.2025.103631_b65 article-title: A comprehensive survey of continual learning: Theory, method and application publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 318 start-page: 2199 issue: 22 year: 2017 ident: 10.1016/j.media.2025.103631_b17 article-title: Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer publication-title: JAMA doi: 10.1001/jama.2017.14585 – year: 2024 ident: 10.1016/j.media.2025.103631_b38 – volume: 42 start-page: 2726 issue: 9 year: 2023 ident: 10.1016/j.media.2025.103631_b79 article-title: Kernel attention transformer for histopathology whole slide image analysis and assistant cancer diagnosis publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2023.3264781 – volume: 42 start-page: 3871 issue: 12 year: 2023 ident: 10.1016/j.media.2025.103631_b51 article-title: MG-trans: Multi-scale graph transformer with information bottleneck for whole slide image classification publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2023.3313252 – start-page: 1276 year: 2022 ident: 10.1016/j.media.2025.103631_b76 article-title: Histokt: Cross knowledge transfer in computational pathology – year: 2024 ident: 10.1016/j.media.2025.103631_b26 article-title: Computational pathology: a survey review and the way forward publication-title: J. Pathol. Informatics doi: 10.1016/j.jpi.2023.100357 – ident: 10.1016/j.media.2025.103631_b32 doi: 10.1109/CVPR52733.2024.01067 – ident: 10.1016/j.media.2025.103631_b57 doi: 10.1109/ICCV51070.2023.00377 – ident: 10.1016/j.media.2025.103631_b7 doi: 10.1109/CVPR52688.2022.01567 – volume: 37 start-page: 12799 year: 2023 ident: 10.1016/j.media.2025.103631_b19 article-title: On the effectiveness of parameter-efficient fine-tuning – ident: 10.1016/j.media.2025.103631_b24 doi: 10.1109/CVPR.2016.90 – ident: 10.1016/j.media.2025.103631_b54 – start-page: 1597 year: 2020 ident: 10.1016/j.media.2025.103631_b9 article-title: A simple framework for contrastive learning of visual representations – year: 2016 ident: 10.1016/j.media.2025.103631_b25 – year: 2024 ident: 10.1016/j.media.2025.103631_b31 article-title: HMIL: Hierarchical multi-instance learning for fine-grained whole slide image classification publication-title: IEEE Trans. Med. Imaging – volume: 94 year: 2024 ident: 10.1016/j.media.2025.103631_b77 article-title: LESS: Label-efficient multi-scale learning for cytological whole slide image screening publication-title: Med. Image Anal. doi: 10.1016/j.media.2024.103109 – year: 2015 ident: 10.1016/j.media.2025.103631_b30 – year: 2025 ident: 10.1016/j.media.2025.103631_b68 article-title: When multiple instance learning meets foundation models: advancing histological whole slide image analysis publication-title: Med. Image Anal. doi: 10.1016/j.media.2025.103456 – volume: 97 year: 2024 ident: 10.1016/j.media.2025.103631_b50 article-title: E2-MIL: An explainable and evidential multiple instance learning framework for whole slide image classification publication-title: Med. Image Anal. doi: 10.1016/j.media.2024.103294 – volume: 34 start-page: 29074 year: 2021 ident: 10.1016/j.media.2025.103631_b63 article-title: Can multi-label classification networks know what they don’t know? publication-title: Adv. Neural Inf. Process. Syst. – ident: 10.1016/j.media.2025.103631_b37 doi: 10.1109/CVPR46437.2021.01409 – start-page: 1 year: 2024 ident: 10.1016/j.media.2025.103631_b1 article-title: Artificial intelligence applications in histopathology publication-title: Nat. Rev. Electr. Eng. – start-page: 309 year: 2021 ident: 10.1016/j.media.2025.103631_b36 article-title: Hybrid supervision learning for pathology whole slide image classification – volume: 32 year: 2019 ident: 10.1016/j.media.2025.103631_b46 article-title: Pytorch: An imperative style, high-performance deep learning library publication-title: Adv. Neural Inf. Process. Syst. – volume: 41 start-page: 2180 issue: 8 year: 2022 ident: 10.1016/j.media.2025.103631_b66 article-title: Dsnet: A dual-stream framework for weakly-supervised gigapixel pathology image analysis publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2022.3157983 – volume: 41 start-page: 3003 issue: 11 year: 2022 ident: 10.1016/j.media.2025.103631_b78 article-title: A graph-transformer for whole slide image classification publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2022.3176598 – year: 2024 ident: 10.1016/j.media.2025.103631_b71 article-title: Mambamil: Enhancing long sequence modeling with sequence reordering in computational pathology – year: 2024 ident: 10.1016/j.media.2025.103631_b20 article-title: Multiple instance learning for digital pathology: A review of the state-of-the-art, limitations & future potential publication-title: Comput. Med. Imaging Graph. doi: 10.1016/j.compmedimag.2024.102337 – volume: 97 start-page: 273 issue: 1–2 year: 1997 ident: 10.1016/j.media.2025.103631_b33 article-title: Wrappers for feature subset selection publication-title: Artificial Intelligence doi: 10.1016/S0004-3702(97)00043-X – volume: 25 start-page: 1301 issue: 8 year: 2019 ident: 10.1016/j.media.2025.103631_b5 article-title: Clinical-grade computational pathology using weakly supervised deep learning on whole slide images publication-title: Nature Med. doi: 10.1038/s41591-019-0508-1 – volume: 30 start-page: 850 issue: 3 year: 2024 ident: 10.1016/j.media.2025.103631_b8 article-title: Towards a general-purpose foundation model for computational pathology publication-title: Nature Med. doi: 10.1038/s41591-024-02857-3 – start-page: 11736 year: 2024 ident: 10.1016/j.media.2025.103631_b15 article-title: PrPSeg: Universal proposition learning for panoramic renal pathology segmentation – volume: 67 year: 2021 ident: 10.1016/j.media.2025.103631_b52 article-title: Deep neural network models for computational histopathology: A survey publication-title: Med. Image Anal. doi: 10.1016/j.media.2020.101813 – year: 2024 ident: 10.1016/j.media.2025.103631_b41 |
| SSID | ssj0007440 |
| Score | 2.4666317 |
| Snippet | Multiple instance learning (MIL) is a powerful approach for whole-slide pathological image (WSI) analysis, particularly suited for processing... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 103631 |
| SubjectTerms | Algorithms Attribute scoring mechanism Humans Image Interpretation, Computer-Assisted - methods Machine Learning Multiple instance learning Multiple-Instance Learning Algorithms Pathological image analysis Pathology adaptive learning Pathology attribute constraint |
| Title | AttriMIL: Revisiting attention-based multiple instance learning for whole-slide pathological image classification from a perspective of instance attributes |
| URI | https://dx.doi.org/10.1016/j.media.2025.103631 https://www.ncbi.nlm.nih.gov/pubmed/40381256 https://www.proquest.com/docview/3205662470 |
| Volume | 103 |
| WOSCitedRecordID | wos001495110600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1361-8423 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007440 issn: 1361-8415 databaseCode: AIEXJ dateStart: 20161201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6Dk3jAcG4lctkJB5JlTgXO7xVaGhD28TDkMpT5DgOS9WlVZeO_Rf-AD-T41sSNjrBAy9W5SQnlc6Xc7G_c4zQ2zCQhHHCPRKL1IsEKTxwQ8KLilLVUYaslEwfNkFPT9l0mn4eDH66WpirOa1rdn2dLv-rqmEOlK1KZ_9B3a1QmIDfoHQYQe0w_pXiJ02zqk6Ojg3VTdWOa2az6qOpmY2eclxFxySsdIAIn_fcrZIo5uF3dW6uB0FoIVXv1c5GVheK5SNU0K1YRparqIpUuOqB7Co3TSsKK5k35lwty1d0B0jZPSIjkdvuKN2mSGXXDL6ddwg-XLv17XNZz6p2vl33_toC9XitEVrVS2m9s13cIHFLhAXfZAxymAQei0xNcmux_bBncwO1Fx380R2YlYnZWFfhjNULxrfvBnUsLzQYIrVtSuIbrbm1s3eXttA2oXHKhmh7cnQw_dR6fdVo0XW10vzBW-_cRTtOyqYgaFOSo4Ods4fogc1S8MSg6xEayHoP3e_1rtxDOyeWlfEY_XCQe487wOEbgMMOcNjBAjvAYQAc7gEO9wGHNTzw74DDCnCY4x7g8KLsJHeAe4K-fDw4-3Do2UM_PAGxZeOlVMggZDSnPi2FJDkLQy5ICnkw5BYkL6RkJfglyUSUBHlAS8hQEhEFuR9yMDrhUzSsF7V8jnBc0gIERT5nMJQBDwRNiYxzIYhMi2SEiNNCJmxHfHUwyzxz1MdZprWYKS1mRosj9K59aGkawtx9e-LUm9mY1sSqGWD07gffODBkYPHVNh6v5WJ9mYUEkpaERNQfoWcGJe0_cQB7sfHKS7TbfWiv0LBZreVrdE9cNdXlah9t0Snbt9j-BcBG18U |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AttriMIL%3A+Revisiting+attention-based+multiple+instance+learning+for+whole-slide+pathological+image+classification+from+a+perspective+of+instance+attributes&rft.jtitle=Medical+image+analysis&rft.au=Cai%2C+Linghan&rft.au=Huang%2C+Shenjin&rft.au=Zhang%2C+Ye&rft.au=Lu%2C+Jinpeng&rft.date=2025-07-01&rft.eissn=1361-8423&rft.volume=103&rft.spage=103631&rft_id=info:doi/10.1016%2Fj.media.2025.103631&rft_id=info%3Apmid%2F40381256&rft.externalDocID=40381256 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon |