Machine-learning-based spatio-temporal super resolution reconstruction of turbulent flows
We present a new data reconstruction method with supervised machine learning techniques inspired by super resolution and inbetweening to recover high-resolution turbulent flows from grossly coarse flow data in space and time. For the present machine-learning-based data reconstruction, we use the dow...
Uložené v:
| Vydané v: | Journal of fluid mechanics Ročník 909 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Cambridge, UK
Cambridge University Press
25.02.2021
|
| Predmet: | |
| ISSN: | 0022-1120, 1469-7645 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | We present a new data reconstruction method with supervised machine learning techniques inspired by super resolution and inbetweening to recover high-resolution turbulent flows from grossly coarse flow data in space and time. For the present machine-learning-based data reconstruction, we use the downsampled skip-connection/multiscale model based on a convolutional neural network, incorporating the multiscale nature of fluid flows into its network structure. As an initial example, the model is applied to the two-dimensional cylinder wake at $Re_D = 100$. The reconstructed flow fields by the present method show great agreement with the reference data obtained by direct numerical simulation. Next, we apply the current model to a two-dimensional decaying homogeneous isotropic turbulence. The machine-learned model is able to track the decaying evolution from spatial and temporal coarse input data. The proposed concept is further applied to a complex turbulent channel flow over a three-dimensional domain at $Re_{\tau }=180$. The present model reconstructs high-resolved turbulent flows from very coarse input data in space, and also reproduces the temporal evolution for appropriately chosen time interval. The dependence on the number of training snapshots and duration between the first and last frames based on a temporal two-point correlation coefficient are also assessed to reveal the capability and robustness of spatio-temporal super resolution reconstruction. These results suggest that the present method can perform a range of flow reconstructions in support of computational and experimental efforts. |
|---|---|
| AbstractList | We present a new data reconstruction method with supervised machine learning techniques inspired by super resolution and inbetweening to recover high-resolution turbulent flows from grossly coarse flow data in space and time. For the present machine-learning-based data reconstruction, we use the downsampled skip-connection/multiscale model based on a convolutional neural network, incorporating the multiscale nature of fluid flows into its network structure. As an initial example, the model is applied to the two-dimensional cylinder wake at
$Re_D = 100$
. The reconstructed flow fields by the present method show great agreement with the reference data obtained by direct numerical simulation. Next, we apply the current model to a two-dimensional decaying homogeneous isotropic turbulence. The machine-learned model is able to track the decaying evolution from spatial and temporal coarse input data. The proposed concept is further applied to a complex turbulent channel flow over a three-dimensional domain at
$Re_{\tau }=180$
. The present model reconstructs high-resolved turbulent flows from very coarse input data in space, and also reproduces the temporal evolution for appropriately chosen time interval. The dependence on the number of training snapshots and duration between the first and last frames based on a temporal two-point correlation coefficient are also assessed to reveal the capability and robustness of spatio-temporal super resolution reconstruction. These results suggest that the present method can perform a range of flow reconstructions in support of computational and experimental efforts. We present a new data reconstruction method with supervised machine learning techniques inspired by super resolution and inbetweening to recover high-resolution turbulent flows from grossly coarse flow data in space and time. For the present machine-learning-based data reconstruction, we use the downsampled skip-connection/multiscale model based on a convolutional neural network, incorporating the multiscale nature of fluid flows into its network structure. As an initial example, the model is applied to the two-dimensional cylinder wake at \(Re_D = 100\). The reconstructed flow fields by the present method show great agreement with the reference data obtained by direct numerical simulation. Next, we apply the current model to a two-dimensional decaying homogeneous isotropic turbulence. The machine-learned model is able to track the decaying evolution from spatial and temporal coarse input data. The proposed concept is further applied to a complex turbulent channel flow over a three-dimensional domain at \(Re_{\tau }=180\). The present model reconstructs high-resolved turbulent flows from very coarse input data in space, and also reproduces the temporal evolution for appropriately chosen time interval. The dependence on the number of training snapshots and duration between the first and last frames based on a temporal two-point correlation coefficient are also assessed to reveal the capability and robustness of spatio-temporal super resolution reconstruction. These results suggest that the present method can perform a range of flow reconstructions in support of computational and experimental efforts. |
| ArticleNumber | A9 |
| Author | Taira, Kunihiko Fukagata, Koji Fukami, Kai |
| Author_xml | – sequence: 1 givenname: Kai orcidid: 0000-0002-1381-7322 surname: Fukami fullname: Fukami, Kai email: kfukami1@g.ucla.edu organization: 1Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA 90095, USA – sequence: 2 givenname: Koji orcidid: 0000-0003-4805-238X surname: Fukagata fullname: Fukagata, Koji organization: 2Department of Mechanical Engineering, Keio University, Yokohama 223-8522, Japan – sequence: 3 givenname: Kunihiko orcidid: 0000-0002-3762-8075 surname: Taira fullname: Taira, Kunihiko organization: 1Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA 90095, USA |
| BookMark | eNp1UMtKxDAUDTKCM6M7P6Dg1tSbNH0tZfAFI2504SqkaTJ2aJOapIh_b8YZEERX5z7OuY-zQDNjjULonEBKgJRXWz2kFCikNauO0JywosZlwfIZmgNQigmhcIIW3m8BSAZ1OUevj0K-dUbhXglnOrPBjfCqTfwoQmdxUMNonegTP43KJU5520-xYWIorfHBTfI7tToJk2umXpmQ6N5--FN0rEXv1dkBl-jl9uZ5dY_XT3cPq-s1lgyKgGsigUhRQK2LNhNt2VRSEWBlpbQSlS7yWKpprgpW6ogZq0jTZIwwBrmoRbZEF_u5o7Pvk_KBb-3kTFzJKSsJoxWlLLLoniWd9d4pzWUXdi-a4ETXcwJ8ZyGPFvKdhTxaGEWXv0Sj6wbhPv-jpwe6GBrXtRv1c8qfgi8034Wg |
| CitedBy_id | crossref_primary_10_1016_j_compfluid_2024_106249 crossref_primary_10_1080_19942060_2024_2407005 crossref_primary_10_1007_s00162_021_00586_8 crossref_primary_10_1017_jfm_2021_812 crossref_primary_10_1017_jfm_2022_1088 crossref_primary_10_1007_s42405_023_00598_0 crossref_primary_10_1140_epje_s10189_023_00286_7 crossref_primary_10_1016_j_engappai_2025_110463 crossref_primary_10_1016_j_buildenv_2021_108315 crossref_primary_10_3847_1538_4357_ad1c55 crossref_primary_10_1016_j_ast_2025_110861 crossref_primary_10_1016_j_jcp_2023_112438 crossref_primary_10_1109_ACCESS_2025_3542173 crossref_primary_10_3390_s23010081 crossref_primary_10_1016_j_ijheatmasstransfer_2024_126208 crossref_primary_10_1017_jfm_2024_81 crossref_primary_10_1007_s13351_025_4902_y crossref_primary_10_1016_j_physrep_2021_09_003 crossref_primary_10_1017_jfm_2024_178 crossref_primary_10_1017_jfm_2024_211 crossref_primary_10_2514_1_J063263 crossref_primary_10_1016_j_combustflame_2025_114469 crossref_primary_10_1016_j_jhydrol_2025_132852 crossref_primary_10_1016_j_oceaneng_2023_113693 crossref_primary_10_1007_s00348_025_04020_1 crossref_primary_10_1016_j_buildenv_2023_110613 crossref_primary_10_2514_1_J064590 crossref_primary_10_1016_j_ast_2022_107328 crossref_primary_10_1016_j_cja_2025_103624 crossref_primary_10_1109_TPWRS_2024_3427637 crossref_primary_10_1088_1361_6501_ac93a4 crossref_primary_10_1088_2632_2153_ad7e7a crossref_primary_10_1007_s12273_025_1304_0 crossref_primary_10_1145_3637491 crossref_primary_10_3390_fluids9080173 crossref_primary_10_1007_s00162_023_00663_0 crossref_primary_10_1016_j_buildenv_2022_108966 crossref_primary_10_1016_j_paerosci_2022_100823 crossref_primary_10_3390_jmse12091597 crossref_primary_10_1063_5_0074724 crossref_primary_10_1002_fld_5093 crossref_primary_10_1016_j_jocs_2022_101906 crossref_primary_10_1016_j_paerosci_2025_101130 crossref_primary_10_1109_ACCESS_2021_3131391 crossref_primary_10_3390_fluids7120367 crossref_primary_10_1016_j_compfluid_2025_106592 crossref_primary_10_1080_19942060_2024_2399672 crossref_primary_10_1038_s43588_024_00643_2 crossref_primary_10_1016_j_physrep_2021_07_001 crossref_primary_10_1063_5_0132326 crossref_primary_10_1109_TVCG_2022_3214420 crossref_primary_10_1016_j_oceaneng_2025_122223 crossref_primary_10_1016_j_oceaneng_2024_118326 crossref_primary_10_1038_s41467_024_54712_1 crossref_primary_10_1209_0295_5075_acc88c crossref_primary_10_1016_j_cma_2022_114800 crossref_primary_10_3390_fluids6090332 crossref_primary_10_1016_j_jcp_2024_113224 crossref_primary_10_1088_1742_6596_2694_1_012009 crossref_primary_10_1109_ACCESS_2024_3512873 crossref_primary_10_1017_jfm_2024_432 crossref_primary_10_1145_3478513_3480492 crossref_primary_10_1186_s42774_023_00148_y crossref_primary_10_1088_2632_2153_ad9883 crossref_primary_10_3390_math12101417 crossref_primary_10_1063_5_0265946 crossref_primary_10_1016_j_ast_2025_110371 crossref_primary_10_1016_j_oceaneng_2024_118578 crossref_primary_10_1016_j_physd_2022_133454 crossref_primary_10_3390_w14142211 crossref_primary_10_1007_s00162_023_00643_4 crossref_primary_10_1017_jfm_2021_697 crossref_primary_10_1016_j_cpc_2025_109582 crossref_primary_10_1007_s00348_023_03736_2 crossref_primary_10_1016_j_eswa_2024_123137 crossref_primary_10_1103_PhysRevFluids_6_050504 crossref_primary_10_1007_s11071_025_11773_1 crossref_primary_10_1016_j_cma_2024_117023 crossref_primary_10_1016_j_scs_2022_104252 crossref_primary_10_1016_j_buildenv_2025_113667 crossref_primary_10_1017_jfm_2020_1028 crossref_primary_10_1016_j_cma_2025_118072 crossref_primary_10_1016_j_proci_2024_105638 crossref_primary_10_1016_j_buildenv_2021_108597 crossref_primary_10_1007_s10044_024_01409_2 crossref_primary_10_1063_5_0215223 crossref_primary_10_1007_s00162_021_00580_0 crossref_primary_10_1038_s41598_023_29525_9 crossref_primary_10_1017_jfm_2023_972 crossref_primary_10_1017_jfm_2023_573 crossref_primary_10_1051_meca_2024023 crossref_primary_10_1016_j_cep_2023_109540 crossref_primary_10_1016_j_ast_2023_108198 crossref_primary_10_1017_jfm_2025_91 crossref_primary_10_1038_s42256_021_00402_2 crossref_primary_10_1117_1_JEI_33_6_063010 crossref_primary_10_1016_j_jweia_2023_105574 crossref_primary_10_1063_5_0058346 crossref_primary_10_3390_math12071028 crossref_primary_10_1007_s10409_023_22491_x crossref_primary_10_1007_s42979_024_02602_0 crossref_primary_10_1016_j_energy_2024_132828 crossref_primary_10_1007_s00466_023_02434_4 crossref_primary_10_1063_5_0283021 crossref_primary_10_1007_s00521_021_06633_z crossref_primary_10_1016_j_ijheatfluidflow_2022_108997 crossref_primary_10_1016_j_rineng_2024_103597 crossref_primary_10_1063_5_0066077 crossref_primary_10_1016_j_energy_2023_129405 crossref_primary_10_1002_nme_7310 crossref_primary_10_1038_s41598_022_07515_7 crossref_primary_10_1016_j_compfluid_2022_105611 crossref_primary_10_1063_5_0274979 crossref_primary_10_1103_PhysRevFluids_8_064612 crossref_primary_10_1017_jfm_2025_10211 crossref_primary_10_1088_1742_6596_2767_5_052005 crossref_primary_10_1177_14680874251330354 crossref_primary_10_1016_j_cma_2025_118332 crossref_primary_10_1007_s11831_025_10378_6 crossref_primary_10_1016_j_ijheatfluidflow_2025_110032 crossref_primary_10_1017_jfm_2024_521 crossref_primary_10_1016_j_engappai_2023_105978 crossref_primary_10_1016_j_jweia_2024_105885 crossref_primary_10_1177_13506501221144697 crossref_primary_10_1038_s42256_023_00685_7 crossref_primary_10_3390_app13126891 crossref_primary_10_1063_5_0265738 crossref_primary_10_1016_j_engappai_2023_107483 crossref_primary_10_3390_computation12010004 crossref_primary_10_1007_s11004_025_10202_8 crossref_primary_10_1103_2lqd_g9mt crossref_primary_10_1063_5_0215681 crossref_primary_10_1017_jfm_2023_154 crossref_primary_10_1007_s42979_021_00867_3 crossref_primary_10_1017_jfm_2021_1041 crossref_primary_10_1063_5_0225657 crossref_primary_10_1016_j_renene_2025_124336 crossref_primary_10_1007_s10439_022_02967_4 crossref_primary_10_1063_5_0097496 crossref_primary_10_1007_s12650_024_00959_1 crossref_primary_10_2514_1_J065581 crossref_primary_10_1007_s00348_021_03213_8 crossref_primary_10_1103_PhysRevFluids_10_034901 crossref_primary_10_1016_j_ces_2025_121825 crossref_primary_10_1007_s11242_023_01961_1 crossref_primary_10_1007_s00348_023_03639_2 crossref_primary_10_3390_fire7080293 crossref_primary_10_1080_19942060_2024_2394177 crossref_primary_10_1063_5_0221568 crossref_primary_10_5194_essd_15_4519_2023 crossref_primary_10_1016_j_jcp_2023_111972 |
| Cites_doi | 10.1007/s00162-020-00542-y 10.1016/0893-6080(91)90074-F 10.1016/j.cma.2007.08.014 10.1063/1.5140772 10.1063/1.5127031 10.1103/PhysRevFluids.4.054603 10.1063/5.0060760 10.1162/neco.1997.9.8.1735 10.1103/PhysRevE.97.042322 10.1007/s00162-020-00518-y 10.1016/0893-6080(91)90009-T 10.1146/annurev-fluid-010719-060214 10.1007/978-3-319-61753-4_1 10.1109/5.726791 10.1038/323533a0 10.1103/PhysRevFluids.5.054604 10.1017/jfm.2016.235 10.1017/jfm.2016.615 10.1016/j.jcp.2007.03.005 10.1017/jfm.2018.770 10.1007/BF02551274 10.1146/annurev-fluid-010518-040547 10.1017/jfm.2019.238 10.1063/5.0020721 10.1103/PhysRevFluids.4.100501 10.1126/science.1127647 10.1017/jfm.2019.822 10.1103/PhysRevFluids.5.104401 10.1126/science.aaw4741 10.1007/s00162-020-00528-w 10.1017/jfm.2016.803 10.1063/1.2205307 10.1016/S0893-6080(98)00010-0 10.1017/jfm.2019.700 10.1017/S0022112087000892 10.1103/PhysRevFluids.4.064603 |
| ContentType | Journal Article |
| Copyright | The Author(s), 2020. Published by Cambridge University Press 2020 This article is published under (https://creativecommons.org/licenses/by/3.0/) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s), 2020. Published by Cambridge University Press – notice: 2020 This article is published under (https://creativecommons.org/licenses/by/3.0/) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | IKXGN AAYXX CITATION 3V. 7TB 7U5 7UA 7XB 88I 8FD 8FE 8FG 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 GNUQQ GUQSH H8D H96 HCIFZ KR7 L.G L6V L7M M2O M2P M7S MBDVC P5Z P62 PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U S0W |
| DOI | 10.1017/jfm.2020.948 |
| DatabaseName | Cambridge University Press Wholly Gold Open Access Journals CrossRef ProQuest Central (Corporate) Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Water Resources Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Technology collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student ProQuest Research Library Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Advanced Technologies Database with Aerospace Research Library Science Database Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic DELNET Engineering & Technology Collection |
| DatabaseTitle | CrossRef Research Library Prep ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection Aerospace Database ProQuest Engineering Collection ProQuest Central Korea ProQuest Research Library Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) |
| DatabaseTitleList | CrossRef Research Library Prep |
| Database_xml | – sequence: 1 dbid: IKXGN name: Cambridge University Press Wholly Gold Open Access Journals url: http://journals.cambridge.org/action/login sourceTypes: Publisher – sequence: 2 dbid: BENPR name: ProQuest Central - New (Subscription) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering Physics |
| EISSN | 1469-7645 |
| ExternalDocumentID | 10_1017_jfm_2020_948 |
| GroupedDBID | -DZ -E. -~X .DC .FH 09C 09E 0E1 0R~ 29K 4.4 5GY 5VS 74X 74Y 7~V 88I 8FE 8FG 8FH 8G5 8R4 8R5 AAAZR AABES AABWE AACJH AAEED AAGFV AAKTX AAMNQ AARAB AASVR AAUIS AAUKB ABBXD ABGDZ ABITZ ABJCF ABJNI ABKKG ABMWE ABMYL ABQTM ABQWD ABROB ABTCQ ABUWG ABZCX ACBEA ACBMC ACCHT ACGFO ACGFS ACGOD ACIMK ACIWK ACQFJ ACREK ACUIJ ACUYZ ACWGA ACYZP ACZBM ACZUX ACZWT ADCGK ADDNB ADFEC ADFRT ADGEJ ADKIL ADOCW ADOVH ADVJH AEBAK AEMTW AENEX AENGE AEYYC AFFUJ AFKQG AFKRA AFKSM AFLOS AFLVW AFRAH AFUTZ AGABE AGBYD AGJUD AGOOT AHQXX AHRGI AIDUJ AIGNW AIHIV AIOIP AISIE AJ7 AJCYY AJPFC AJQAS ALMA_UNASSIGNED_HOLDINGS ALVPG ALWZO AQJOH ARABE ARAPS ATUCA AUXHV AZQEC BBLKV BENPR BGHMG BGLVJ BHPHI BKSAR BLZWO BMAJL BPHCQ C0O CBIIA CCPQU CCQAD CFAFE CHEAL CJCSC CS3 D-I DC4 DOHLZ DU5 DWQXO E.L EBS F5P GNUQQ GUQSH HCIFZ HG- HST HZ~ I.6 IH6 IKXGN IOEEP IS6 I~P J36 J38 J3A JHPGK JQKCU KCGVB KFECR L6V L98 LK5 LW7 M-V M2O M2P M7R M7S NIKVX O9- OYBOY P2P P62 PCBAR PQQKQ PROAC PTHSS PYCCK Q2X RAMDC RCA RNS ROL RR0 S0W S6- S6U SAAAG SC5 T9M TAE TN5 UT1 WFFJZ WH7 WQ3 WXU WXY WYP ZYDXJ ~02 AANRG AAYXX ABUFD ABVKB ABVZP ABXAU ABXHF ACDLN ADMLS AEUYN AFFHD AFZFC AKMAY CITATION PHGZM PHGZT PQGLB 3V. 7TB 7U5 7UA 7XB 8FD 8FK C1K F1W FR3 H8D H96 KR7 L.G L7M MBDVC PKEHL PQEST PQUKI PRINS PUEGO Q9U |
| ID | FETCH-LOGICAL-c406t-91c01ca609f6d3ad7b8ce10478efea8f65d7b925e647f9253481bb3414405a9a3 |
| IEDL.DBID | M7S |
| ISICitedReferencesCount | 222 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000600608500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0022-1120 |
| IngestDate | Sun Sep 07 07:10:53 EDT 2025 Tue Nov 18 19:52:51 EST 2025 Sat Nov 29 04:24:26 EST 2025 Wed Mar 13 05:59:30 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | computational methods turbulence simulation |
| Language | English |
| License | http://creativecommons.org/licenses/by/4.0/ This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c406t-91c01ca609f6d3ad7b8ce10478efea8f65d7b925e647f9253481bb3414405a9a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-3762-8075 0000-0002-1381-7322 0000-0003-4805-238X |
| OpenAccessLink | https://www.cambridge.org/core/product/identifier/S0022112020009489/type/journal_article |
| PQID | 2471428224 |
| PQPubID | 34769 |
| PageCount | 24 |
| ParticipantIDs | proquest_journals_2471428224 crossref_citationtrail_10_1017_jfm_2020_948 crossref_primary_10_1017_jfm_2020_948 cambridge_journals_10_1017_jfm_2020_948 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-02-25 |
| PublicationDateYYYYMMDD | 2021-02-25 |
| PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-25 day: 25 |
| PublicationDecade | 2020 |
| PublicationPlace | Cambridge, UK |
| PublicationPlace_xml | – name: Cambridge, UK – name: Cambridge |
| PublicationTitle | Journal of fluid mechanics |
| PublicationTitleAlternate | J. Fluid Mech |
| PublicationYear | 2021 |
| Publisher | Cambridge University Press |
| Publisher_xml | – name: Cambridge University Press |
| References | 1991; 4 1989; 2 2007; 225 2017; 814 2019; 4 2019; 51 2019; 31 2018; 789 2016; 807 2019; 15 2006; 18 2020; 882 2020; 34 2020; 367 2020; 32 2006; 313 1998; 86 1997; 9 2010; 23 2020; 5 1986; 322 1987; 177 2020; 52 2019; 858 2016; 795 2019; 879 2008; 197 2018; 97 2019; 870 1998; 11 S0022112020009489_ref30 S0022112020009489_ref31 S0022112020009489_ref10 S0022112020009489_ref32 S0022112020009489_ref33 S0022112020009489_ref11 S0022112020009489_ref28 S0022112020009489_ref29 S0022112020009489_ref45 S0022112020009489_ref23 S0022112020009489_ref46 S0022112020009489_ref24 S0022112020009489_ref47 S0022112020009489_ref25 S0022112020009489_ref48 S0022112020009489_ref26 Onishi (S0022112020009489_ref39) 2019; 15 Du (S0022112020009489_ref8) 2018; 789 Le (S0022112020009489_ref27) 2010; 23 S0022112020009489_ref9 S0022112020009489_ref41 S0022112020009489_ref5 S0022112020009489_ref20 S0022112020009489_ref6 S0022112020009489_ref42 S0022112020009489_ref3 S0022112020009489_ref43 S0022112020009489_ref21 S0022112020009489_ref22 S0022112020009489_ref44 S0022112020009489_ref4 S0022112020009489_ref1 S0022112020009489_ref2 S0022112020009489_ref40 S0022112020009489_ref38 S0022112020009489_ref16 S0022112020009489_ref17 S0022112020009489_ref18 S0022112020009489_ref19 S0022112020009489_ref34 S0022112020009489_ref12 S0022112020009489_ref35 S0022112020009489_ref13 S0022112020009489_ref36 S0022112020009489_ref14 S0022112020009489_ref15 S0022112020009489_ref37 Deng (S0022112020009489_ref7) 2019; 31 |
| References_xml | – volume: 4 start-page: 381 year: 1991 end-page: 383 article-title: Arbitrary nonlinearity is sufficient to represent all functions by neural networks: a theorem publication-title: Neural Networks – volume: 31 start-page: 125111 year: 2019 article-title: Super-resolution reconstruction of turbulent velocity fields using a generative adversarial network-based artificial intelligence framework publication-title: Phys. Fluids – volume: 879 start-page: 217 year: 2019 end-page: 254 article-title: Data-driven prediction of unsteady flow fields over a circular cylinder using deep learning publication-title: J. Fluid Mech. – volume: 197 start-page: 2131 year: 2008 end-page: 2146 article-title: A fast immersed boundary method using a nullspace approach and multi-domain far-field boundary conditions publication-title: Comput. Meth. Appl. Mech. Engng – volume: 23 start-page: 1279 year: 2010 end-page: 1287 article-title: Tiled convolutional neural networks publication-title: Adv. Neural Inform. Proc. Syst. – volume: 795 start-page: R2 year: 2016 article-title: Network structure of two-dimensional decaying isotropic turbulence publication-title: J. Fluid Mech. – volume: 4 start-page: 100501 year: 2019 article-title: Perspective on machine learning for advancing fluid mechanics publication-title: Phys. Rev. Fluids – volume: 34 start-page: 333 issue: 4 year: 2020 end-page: 337 article-title: Special issue on machine learning and data-driven methods in fluid dynamics publication-title: Theor. Comput. Fluid Dyn. – volume: 313 start-page: 504 issue: 5786 year: 2006 end-page: 507 article-title: Reducing the dimensionality of data with neural networks publication-title: Science – volume: 882 start-page: A13 year: 2020 article-title: Nonlinear mode decomposition with convolutional neural networks for fluid dynamics publication-title: J. Fluid Mech. – volume: 97 start-page: 042322 year: 2018 article-title: Extreme learning machine for reduced order modeling of turbulent geophysical flows publication-title: Phys. Rev. E – volume: 4 start-page: 064603 year: 2019 article-title: Synthetic turbulent inflow generator using machine learning publication-title: Phys. Rev. Fluids – volume: 32 start-page: 095110 year: 2020 article-title: Convolutional neural network based hierarchical autoencoder for nonlinear mode decomposition of fluid field data publication-title: Phys. Fluids – volume: 367 start-page: 1026 issue: 6481 year: 2020 end-page: 1030 article-title: Hidden fluid mechanics: learning velocity and pressure fields from flow visualizations publication-title: Science – volume: 18 start-page: 051703 year: 2006 article-title: A theoretical prediction of friction drag reduction in turbulent flow by superhydrophobic surfaces publication-title: Phys. Fluids – volume: 32 start-page: 025105 year: 2020 article-title: Deep learning methods for super-resolution reconstruction of turbulent flows publication-title: Phys. Fluids – volume: 858 start-page: 122 year: 2019 end-page: 144 article-title: Sub-grid modelling for two-dimensional turbulence using neural networks publication-title: J. Fluid Mech. – volume: 789 start-page: 1 issue: 18 year: 2018 end-page: 17 article-title: Single image super-resolution based on multi-scale competitive convolutional neural network publication-title: Sensors – volume: 11 start-page: 761 issue: 4 year: 1998 end-page: 767 article-title: Automatic early stopping using cross validation: quantifying the criteria publication-title: Neural Networks – volume: 51 start-page: 357 year: 2019 end-page: 377 article-title: Turbulence modeling in the age of data publication-title: Annu. Rev. Fluid Mech. – volume: 870 start-page: 106 year: 2019 end-page: 120 article-title: Super-resolution reconstruction of turbulent flows with machine learning publication-title: J. Fluid Mech. – volume: 4 start-page: 251 year: 1991 end-page: 257 article-title: Approximation capabilities of multilayer feedforward networks publication-title: Neural Networks – volume: 34 start-page: 367 issue: 4 year: 2020 end-page: 388 article-title: Machine-learning-based reduced-order modeling for unsteady flows around bluff bodies of various shapes publication-title: Theor. Comput. Fluid Dyn. – volume: 52 start-page: 477 year: 2020 end-page: 508 article-title: Machine learning for fluid mechanics publication-title: Annu. Rev. Fluid Mech. – volume: 9 start-page: 1735 year: 1997 end-page: 1780 article-title: Long short-term memory publication-title: Neural Comput. – volume: 5 start-page: 104401 year: 2020 publication-title: Phys. Rev. Fluids – volume: 15 start-page: 178 year: 2019 end-page: 182 article-title: Super-resolution simulation for real-time prediction of urban micrometeorology publication-title: Scientific Online Letters on the Atmosphere (SOLA) – volume: 4 start-page: 054603 year: 2019 article-title: Predictions of turbulent shear flows using deep neural networks publication-title: Phys. Rev. Fluids – volume: 322 start-page: 533 year: 1986 end-page: 536 article-title: Learning representations by back-propagation errors publication-title: Nature – volume: 807 start-page: 155 year: 2016 end-page: 166 article-title: Reynolds averaged turbulence modelling using deep neural networks with embedded invariance publication-title: J. Fluid Mech. – volume: 177 start-page: 133 year: 1987 end-page: 166 article-title: Turbulence statistics in fully developed channel flow at low Reynolds number publication-title: J. Fluid Mech. – volume: 5 start-page: 054604 issue: 5 year: 2020 article-title: Reconstructing the time evolution of wall-bounded turbulent flows from non-time resolved PIV measurements publication-title: Phys. Rev. Fluids – volume: 814 start-page: 1 year: 2017 end-page: 4 article-title: Deep learning in fluid dynamics publication-title: J. Fluid Mech. – volume: 2 start-page: 303 year: 1989 end-page: 314 article-title: Approximation by superpositions of a sigmoidal function publication-title: Math. Control Signals Syst. – volume: 34 start-page: 497 issue: 4 year: 2020 end-page: 519 article-title: Assessment of supervised machine learning for fluid flows publication-title: Theor. Comput. Fluid Dyn. – volume: 86 start-page: 2278 issue: 11 year: 1998 end-page: 2324 article-title: Gradient-based learning applied to document recognition publication-title: Proc. IEEE – volume: 225 start-page: 2118 issue: 2 year: 2007 end-page: 2137 article-title: The immersed boundary method: a projection approach publication-title: J. Comput. Phys. – ident: S0022112020009489_ref3 doi: 10.1007/s00162-020-00542-y – ident: S0022112020009489_ref24 doi: 10.1016/0893-6080(91)90074-F – ident: S0022112020009489_ref5 doi: 10.1016/j.cma.2007.08.014 – ident: S0022112020009489_ref32 doi: 10.1063/1.5140772 – volume: 31 start-page: 125111 year: 2019 ident: S0022112020009489_ref7 article-title: Super-resolution reconstruction of turbulent velocity fields using a generative adversarial network-based artificial intelligence framework publication-title: Phys. Fluids doi: 10.1063/1.5127031 – ident: S0022112020009489_ref48 – ident: S0022112020009489_ref44 doi: 10.1103/PhysRevFluids.4.054603 – volume: 15 start-page: 178 year: 2019 ident: S0022112020009489_ref39 article-title: Super-resolution simulation for real-time prediction of urban micrometeorology publication-title: Scientific Online Letters on the Atmosphere (SOLA) – volume: 23 start-page: 1279 year: 2010 ident: S0022112020009489_ref27 article-title: Tiled convolutional neural networks publication-title: Adv. Neural Inform. Proc. Syst. – ident: S0022112020009489_ref21 – ident: S0022112020009489_ref36 doi: 10.1063/5.0060760 – ident: S0022112020009489_ref30 – ident: S0022112020009489_ref18 doi: 10.1162/neco.1997.9.8.1735 – ident: S0022112020009489_ref43 doi: 10.1103/PhysRevE.97.042322 – ident: S0022112020009489_ref12 doi: 10.1007/s00162-020-00518-y – ident: S0022112020009489_ref19 doi: 10.1016/0893-6080(91)90009-T – ident: S0022112020009489_ref4 doi: 10.1146/annurev-fluid-010719-060214 – ident: S0022112020009489_ref1 doi: 10.1007/978-3-319-61753-4_1 – ident: S0022112020009489_ref28 doi: 10.1109/5.726791 – ident: S0022112020009489_ref38 – ident: S0022112020009489_ref42 doi: 10.1038/323533a0 – ident: S0022112020009489_ref25 doi: 10.1103/PhysRevFluids.5.054604 – ident: S0022112020009489_ref47 doi: 10.1017/jfm.2016.235 – ident: S0022112020009489_ref31 doi: 10.1017/jfm.2016.615 – ident: S0022112020009489_ref20 – ident: S0022112020009489_ref46 doi: 10.1016/j.jcp.2007.03.005 – ident: S0022112020009489_ref34 doi: 10.1017/jfm.2018.770 – ident: S0022112020009489_ref6 doi: 10.1007/BF02551274 – ident: S0022112020009489_ref9 doi: 10.1146/annurev-fluid-010518-040547 – ident: S0022112020009489_ref22 – ident: S0022112020009489_ref11 doi: 10.1017/jfm.2019.238 – ident: S0022112020009489_ref45 – ident: S0022112020009489_ref14 doi: 10.1063/5.0020721 – ident: S0022112020009489_ref2 doi: 10.1103/PhysRevFluids.4.100501 – ident: S0022112020009489_ref17 doi: 10.1126/science.1127647 – ident: S0022112020009489_ref37 doi: 10.1017/jfm.2019.822 – volume: 789 start-page: 1 year: 2018 ident: S0022112020009489_ref8 article-title: Single image super-resolution based on multi-scale competitive convolutional neural network publication-title: Sensors – ident: S0022112020009489_ref33 doi: 10.1103/PhysRevFluids.5.104401 – ident: S0022112020009489_ref41 doi: 10.1126/science.aaw4741 – ident: S0022112020009489_ref15 doi: 10.1007/s00162-020-00528-w – ident: S0022112020009489_ref26 doi: 10.1017/jfm.2016.803 – ident: S0022112020009489_ref10 doi: 10.1063/1.2205307 – ident: S0022112020009489_ref40 doi: 10.1016/S0893-6080(98)00010-0 – ident: S0022112020009489_ref29 doi: 10.1017/jfm.2019.700 – ident: S0022112020009489_ref23 doi: 10.1017/S0022112087000892 – ident: S0022112020009489_ref16 – ident: S0022112020009489_ref35 – ident: S0022112020009489_ref13 doi: 10.1103/PhysRevFluids.4.064603 |
| SSID | ssj0013097 |
| Score | 2.704638 |
| Snippet | We present a new data reconstruction method with supervised machine learning techniques inspired by super resolution and inbetweening to recover... |
| SourceID | proquest crossref cambridge |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Artificial neural networks Channel flow Computational fluid dynamics Computer applications Correlation coefficient Correlation coefficients Cylinders Data Direct numerical simulation Evolution Fluid dynamics Fluid flow Isotropic turbulence JFM Papers Learning algorithms Machine learning Mathematical models Neural networks Reconstruction Resolution Robustness (mathematics) Three dimensional flow Three dimensional models Training Turbulence Turbulent flow Two dimensional models |
| SummonAdditionalLinks | – databaseName: Cambridge University Press Wholly Gold Open Access Journals dbid: IKXGN link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1BS8MwFH7MTUEPTqfidEoOigepq13btEcRp6IODyr1VJI2kcnYxrrp3_clTTt3GHjxVCghbV8e-d5rvvc9gBPJmZ0Gvm9xTm3VwoxaPBUYyAkvpUxpPOl2b2-PtNcLoih8rkBU1MIoWmWpcaBP8nV_tHEuf9rupzmHRkxUja-D2Qsm75oeF4Rt9dOybZYgNoZfgRpGMI5Thdr9Q3Tbm58w2CEtlMTVLIYUr-SkP6UqUXfsi1B1BZpLLixC1-LOreGoW_-_D9mCTROikqv8zjZUxLABdROuErMZZA3Y-KVl2IA1zSVNsh14f9IETWGZjhQfloLKlGSavG0ZMawByWZjMSGY7hvvJzo5LwVtyUgSxEM-U7hI5GD0ne3Ca_fm5frOMh0crAQDhSnupIl9mTDfDqWfdlhKeZAILQgkpGCB9NEheOh4wnepxKuqCuYcgdXFOJKFrLMH1eFoKPaBUOa5vsBsMxUSk1AXw6rQk0z6CXfcgLtNOCvNHRvbZXHOYaMxLmmsDByjfZtwXixjnBghdNWPY7Bk9Gk5epwLgCwZ1yo8Yv54B6Hf1UTdgz-_3iGsO4o3o8rmvRZU0eriCFaTr2k_mxwbN_4BRDoEvw priority: 102 providerName: Cambridge University Press |
| Title | Machine-learning-based spatio-temporal super resolution reconstruction of turbulent flows |
| URI | https://www.cambridge.org/core/product/identifier/S0022112020009489/type/journal_article https://www.proquest.com/docview/2471428224 |
| Volume | 909 |
| WOSCitedRecordID | wos000600608500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1469-7645 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0013097 issn: 0022-1120 databaseCode: P5Z dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 1469-7645 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0013097 issn: 0022-1120 databaseCode: PCBAR dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1469-7645 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0013097 issn: 0022-1120 databaseCode: M7S dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central - New (Subscription) customDbUrl: eissn: 1469-7645 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0013097 issn: 0022-1120 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library (subscription) customDbUrl: eissn: 1469-7645 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0013097 issn: 0022-1120 databaseCode: M2O dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1469-7645 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0013097 issn: 0022-1120 databaseCode: M2P dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV05T8MwFH4CChIMHAVEOSoPIAYUCCGJkwkBKoeAUHGpsES2YyNQ1Zamhb_Ps-u0MMDCYg-xlCif_Q778_cANhVnbhaFocM5dXUJM-rwTGIgJ4OMMq3xZMq9PV7RJIkajbhuN9xyS6ssbKIx1Flb6D3yPQ-tqG84j4edd0dXjdKnq7aExjiUtEqCZ6h7d6NTBDemhVo4xhWuJb5ryeg3pa-he-5urCv_jGQVfrqnn9bZuJzTuf9-7DzM2mCTHA1mxwKMyVYZ5mzgSeyyzssw802VsAxThhUq8kV4ujZUS-nY2hIvjnZ6GckNDduxslZNkvc7skswcbfzmJg0eyhNS9qKoGfjfe3hiGq2P_MleDit3Z-cO7YWgyPQ5ffQJgp3X7DQjVWYHbCM8khII-0jlWSRChFaHnuBDH2qsNf3ezlHF-ljRMhidrAME612S64AoSzwQ4l5YyYVppM-BkhxoJgKBff8iPsV2B7CkdoVlacDNhpNEbhUA5cicBXYKcBKhZU015U1mr-M3hqO7gykPH4Zt16AOnr9CNHVvx-vwbSnaS_61nuwDhP4q-UGTIqP3mverULpuJbUb7G_uGycJVWcr96NaetVM3exrQfPX2D89Iw |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT-MwEB7xWLRwgKUsojx9AHFAYUNI4uSAEIJFIEqFxENwCrZjr0BVW5oC4k_xG5lxnRYOcOOwpxxi5WF_nhnb33wDsGqk8PMkjj0puU8lzLgnc42BnI5yLkjjyZZ7u6rxej25vk7PhuC1zIUhWmVpE62hzluK9sj_BGhFQ8t53G0_eFQ1ik5XyxIaPVic6JdnXLIVO8cHOL5rQXD492L_yHNVBTyFzquLs1v5W0rEfmrifFvkXCZKW5EabbRITIwfKdMg0nHIDV4pU1VKNPYhxjYiFdv43GEYDcn6W6rg-eDUwk95qU6OcYzviPYkUX1vKO098DdTqjQ0kHH46A4_egPr4g6n_rfO-QWTLphmez30T8OQblZgygXWzJmtogIT71QXKzBmWa-qmIGbU0sl1Z6rnfHPI6ees8LSzD0n29VgxWNbd1hHl_OU2W2EvvQuaxmGnls-kgdnptF6Ln7D5bf8-CyMNFtNPQeMiyiMNa6Lc21wuRxiAJhGRphYySBMZFiF9f7wZ85iFFmPbcczBEpGQMkQKFXYKMGRKSfZTpVDGp-0Xuu3bvekSj5pt1iCaPD6AYLmv769Aj-PLk5rWe24frIA4wFRfCjDP1qEEex2vQQ_1FP3rugs27nB4Pa78fYG1D5Kmg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine-learning-based+spatio-temporal+super+resolution+reconstruction+of+turbulent+flows&rft.jtitle=Journal+of+fluid+mechanics&rft.au=Fukami%2C+Kai&rft.au=Fukagata%2C+Koji&rft.au=Taira%2C+Kunihiko&rft.date=2021-02-25&rft.pub=Cambridge+University+Press&rft.issn=0022-1120&rft.eissn=1469-7645&rft.volume=909&rft_id=info:doi/10.1017%2Fjfm.2020.948 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1120&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1120&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1120&client=summon |