Machine-learning-based spatio-temporal super resolution reconstruction of turbulent flows

We present a new data reconstruction method with supervised machine learning techniques inspired by super resolution and inbetweening to recover high-resolution turbulent flows from grossly coarse flow data in space and time. For the present machine-learning-based data reconstruction, we use the dow...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of fluid mechanics Ročník 909
Hlavní autori: Fukami, Kai, Fukagata, Koji, Taira, Kunihiko
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Cambridge, UK Cambridge University Press 25.02.2021
Predmet:
ISSN:0022-1120, 1469-7645
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We present a new data reconstruction method with supervised machine learning techniques inspired by super resolution and inbetweening to recover high-resolution turbulent flows from grossly coarse flow data in space and time. For the present machine-learning-based data reconstruction, we use the downsampled skip-connection/multiscale model based on a convolutional neural network, incorporating the multiscale nature of fluid flows into its network structure. As an initial example, the model is applied to the two-dimensional cylinder wake at $Re_D = 100$. The reconstructed flow fields by the present method show great agreement with the reference data obtained by direct numerical simulation. Next, we apply the current model to a two-dimensional decaying homogeneous isotropic turbulence. The machine-learned model is able to track the decaying evolution from spatial and temporal coarse input data. The proposed concept is further applied to a complex turbulent channel flow over a three-dimensional domain at $Re_{\tau }=180$. The present model reconstructs high-resolved turbulent flows from very coarse input data in space, and also reproduces the temporal evolution for appropriately chosen time interval. The dependence on the number of training snapshots and duration between the first and last frames based on a temporal two-point correlation coefficient are also assessed to reveal the capability and robustness of spatio-temporal super resolution reconstruction. These results suggest that the present method can perform a range of flow reconstructions in support of computational and experimental efforts.
AbstractList We present a new data reconstruction method with supervised machine learning techniques inspired by super resolution and inbetweening to recover high-resolution turbulent flows from grossly coarse flow data in space and time. For the present machine-learning-based data reconstruction, we use the downsampled skip-connection/multiscale model based on a convolutional neural network, incorporating the multiscale nature of fluid flows into its network structure. As an initial example, the model is applied to the two-dimensional cylinder wake at $Re_D = 100$ . The reconstructed flow fields by the present method show great agreement with the reference data obtained by direct numerical simulation. Next, we apply the current model to a two-dimensional decaying homogeneous isotropic turbulence. The machine-learned model is able to track the decaying evolution from spatial and temporal coarse input data. The proposed concept is further applied to a complex turbulent channel flow over a three-dimensional domain at $Re_{\tau }=180$ . The present model reconstructs high-resolved turbulent flows from very coarse input data in space, and also reproduces the temporal evolution for appropriately chosen time interval. The dependence on the number of training snapshots and duration between the first and last frames based on a temporal two-point correlation coefficient are also assessed to reveal the capability and robustness of spatio-temporal super resolution reconstruction. These results suggest that the present method can perform a range of flow reconstructions in support of computational and experimental efforts.
We present a new data reconstruction method with supervised machine learning techniques inspired by super resolution and inbetweening to recover high-resolution turbulent flows from grossly coarse flow data in space and time. For the present machine-learning-based data reconstruction, we use the downsampled skip-connection/multiscale model based on a convolutional neural network, incorporating the multiscale nature of fluid flows into its network structure. As an initial example, the model is applied to the two-dimensional cylinder wake at \(Re_D = 100\). The reconstructed flow fields by the present method show great agreement with the reference data obtained by direct numerical simulation. Next, we apply the current model to a two-dimensional decaying homogeneous isotropic turbulence. The machine-learned model is able to track the decaying evolution from spatial and temporal coarse input data. The proposed concept is further applied to a complex turbulent channel flow over a three-dimensional domain at \(Re_{\tau }=180\). The present model reconstructs high-resolved turbulent flows from very coarse input data in space, and also reproduces the temporal evolution for appropriately chosen time interval. The dependence on the number of training snapshots and duration between the first and last frames based on a temporal two-point correlation coefficient are also assessed to reveal the capability and robustness of spatio-temporal super resolution reconstruction. These results suggest that the present method can perform a range of flow reconstructions in support of computational and experimental efforts.
ArticleNumber A9
Author Taira, Kunihiko
Fukagata, Koji
Fukami, Kai
Author_xml – sequence: 1
  givenname: Kai
  orcidid: 0000-0002-1381-7322
  surname: Fukami
  fullname: Fukami, Kai
  email: kfukami1@g.ucla.edu
  organization: 1Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA 90095, USA
– sequence: 2
  givenname: Koji
  orcidid: 0000-0003-4805-238X
  surname: Fukagata
  fullname: Fukagata, Koji
  organization: 2Department of Mechanical Engineering, Keio University, Yokohama 223-8522, Japan
– sequence: 3
  givenname: Kunihiko
  orcidid: 0000-0002-3762-8075
  surname: Taira
  fullname: Taira, Kunihiko
  organization: 1Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA 90095, USA
BookMark eNp1UMtKxDAUDTKCM6M7P6Dg1tSbNH0tZfAFI2504SqkaTJ2aJOapIh_b8YZEERX5z7OuY-zQDNjjULonEBKgJRXWz2kFCikNauO0JywosZlwfIZmgNQigmhcIIW3m8BSAZ1OUevj0K-dUbhXglnOrPBjfCqTfwoQmdxUMNonegTP43KJU5520-xYWIorfHBTfI7tToJk2umXpmQ6N5--FN0rEXv1dkBl-jl9uZ5dY_XT3cPq-s1lgyKgGsigUhRQK2LNhNt2VRSEWBlpbQSlS7yWKpprgpW6ogZq0jTZIwwBrmoRbZEF_u5o7Pvk_KBb-3kTFzJKSsJoxWlLLLoniWd9d4pzWUXdi-a4ETXcwJ8ZyGPFvKdhTxaGEWXv0Sj6wbhPv-jpwe6GBrXtRv1c8qfgi8034Wg
CitedBy_id crossref_primary_10_1016_j_compfluid_2024_106249
crossref_primary_10_1080_19942060_2024_2407005
crossref_primary_10_1007_s00162_021_00586_8
crossref_primary_10_1017_jfm_2021_812
crossref_primary_10_1017_jfm_2022_1088
crossref_primary_10_1007_s42405_023_00598_0
crossref_primary_10_1140_epje_s10189_023_00286_7
crossref_primary_10_1016_j_engappai_2025_110463
crossref_primary_10_1016_j_buildenv_2021_108315
crossref_primary_10_3847_1538_4357_ad1c55
crossref_primary_10_1016_j_ast_2025_110861
crossref_primary_10_1016_j_jcp_2023_112438
crossref_primary_10_1109_ACCESS_2025_3542173
crossref_primary_10_3390_s23010081
crossref_primary_10_1016_j_ijheatmasstransfer_2024_126208
crossref_primary_10_1017_jfm_2024_81
crossref_primary_10_1007_s13351_025_4902_y
crossref_primary_10_1016_j_physrep_2021_09_003
crossref_primary_10_1017_jfm_2024_178
crossref_primary_10_1017_jfm_2024_211
crossref_primary_10_2514_1_J063263
crossref_primary_10_1016_j_combustflame_2025_114469
crossref_primary_10_1016_j_jhydrol_2025_132852
crossref_primary_10_1016_j_oceaneng_2023_113693
crossref_primary_10_1007_s00348_025_04020_1
crossref_primary_10_1016_j_buildenv_2023_110613
crossref_primary_10_2514_1_J064590
crossref_primary_10_1016_j_ast_2022_107328
crossref_primary_10_1016_j_cja_2025_103624
crossref_primary_10_1109_TPWRS_2024_3427637
crossref_primary_10_1088_1361_6501_ac93a4
crossref_primary_10_1088_2632_2153_ad7e7a
crossref_primary_10_1007_s12273_025_1304_0
crossref_primary_10_1145_3637491
crossref_primary_10_3390_fluids9080173
crossref_primary_10_1007_s00162_023_00663_0
crossref_primary_10_1016_j_buildenv_2022_108966
crossref_primary_10_1016_j_paerosci_2022_100823
crossref_primary_10_3390_jmse12091597
crossref_primary_10_1063_5_0074724
crossref_primary_10_1002_fld_5093
crossref_primary_10_1016_j_jocs_2022_101906
crossref_primary_10_1016_j_paerosci_2025_101130
crossref_primary_10_1109_ACCESS_2021_3131391
crossref_primary_10_3390_fluids7120367
crossref_primary_10_1016_j_compfluid_2025_106592
crossref_primary_10_1080_19942060_2024_2399672
crossref_primary_10_1038_s43588_024_00643_2
crossref_primary_10_1016_j_physrep_2021_07_001
crossref_primary_10_1063_5_0132326
crossref_primary_10_1109_TVCG_2022_3214420
crossref_primary_10_1016_j_oceaneng_2025_122223
crossref_primary_10_1016_j_oceaneng_2024_118326
crossref_primary_10_1038_s41467_024_54712_1
crossref_primary_10_1209_0295_5075_acc88c
crossref_primary_10_1016_j_cma_2022_114800
crossref_primary_10_3390_fluids6090332
crossref_primary_10_1016_j_jcp_2024_113224
crossref_primary_10_1088_1742_6596_2694_1_012009
crossref_primary_10_1109_ACCESS_2024_3512873
crossref_primary_10_1017_jfm_2024_432
crossref_primary_10_1145_3478513_3480492
crossref_primary_10_1186_s42774_023_00148_y
crossref_primary_10_1088_2632_2153_ad9883
crossref_primary_10_3390_math12101417
crossref_primary_10_1063_5_0265946
crossref_primary_10_1016_j_ast_2025_110371
crossref_primary_10_1016_j_oceaneng_2024_118578
crossref_primary_10_1016_j_physd_2022_133454
crossref_primary_10_3390_w14142211
crossref_primary_10_1007_s00162_023_00643_4
crossref_primary_10_1017_jfm_2021_697
crossref_primary_10_1016_j_cpc_2025_109582
crossref_primary_10_1007_s00348_023_03736_2
crossref_primary_10_1016_j_eswa_2024_123137
crossref_primary_10_1103_PhysRevFluids_6_050504
crossref_primary_10_1007_s11071_025_11773_1
crossref_primary_10_1016_j_cma_2024_117023
crossref_primary_10_1016_j_scs_2022_104252
crossref_primary_10_1016_j_buildenv_2025_113667
crossref_primary_10_1017_jfm_2020_1028
crossref_primary_10_1016_j_cma_2025_118072
crossref_primary_10_1016_j_proci_2024_105638
crossref_primary_10_1016_j_buildenv_2021_108597
crossref_primary_10_1007_s10044_024_01409_2
crossref_primary_10_1063_5_0215223
crossref_primary_10_1007_s00162_021_00580_0
crossref_primary_10_1038_s41598_023_29525_9
crossref_primary_10_1017_jfm_2023_972
crossref_primary_10_1017_jfm_2023_573
crossref_primary_10_1051_meca_2024023
crossref_primary_10_1016_j_cep_2023_109540
crossref_primary_10_1016_j_ast_2023_108198
crossref_primary_10_1017_jfm_2025_91
crossref_primary_10_1038_s42256_021_00402_2
crossref_primary_10_1117_1_JEI_33_6_063010
crossref_primary_10_1016_j_jweia_2023_105574
crossref_primary_10_1063_5_0058346
crossref_primary_10_3390_math12071028
crossref_primary_10_1007_s10409_023_22491_x
crossref_primary_10_1007_s42979_024_02602_0
crossref_primary_10_1016_j_energy_2024_132828
crossref_primary_10_1007_s00466_023_02434_4
crossref_primary_10_1063_5_0283021
crossref_primary_10_1007_s00521_021_06633_z
crossref_primary_10_1016_j_ijheatfluidflow_2022_108997
crossref_primary_10_1016_j_rineng_2024_103597
crossref_primary_10_1063_5_0066077
crossref_primary_10_1016_j_energy_2023_129405
crossref_primary_10_1002_nme_7310
crossref_primary_10_1038_s41598_022_07515_7
crossref_primary_10_1016_j_compfluid_2022_105611
crossref_primary_10_1063_5_0274979
crossref_primary_10_1103_PhysRevFluids_8_064612
crossref_primary_10_1017_jfm_2025_10211
crossref_primary_10_1088_1742_6596_2767_5_052005
crossref_primary_10_1177_14680874251330354
crossref_primary_10_1016_j_cma_2025_118332
crossref_primary_10_1007_s11831_025_10378_6
crossref_primary_10_1016_j_ijheatfluidflow_2025_110032
crossref_primary_10_1017_jfm_2024_521
crossref_primary_10_1016_j_engappai_2023_105978
crossref_primary_10_1016_j_jweia_2024_105885
crossref_primary_10_1177_13506501221144697
crossref_primary_10_1038_s42256_023_00685_7
crossref_primary_10_3390_app13126891
crossref_primary_10_1063_5_0265738
crossref_primary_10_1016_j_engappai_2023_107483
crossref_primary_10_3390_computation12010004
crossref_primary_10_1007_s11004_025_10202_8
crossref_primary_10_1103_2lqd_g9mt
crossref_primary_10_1063_5_0215681
crossref_primary_10_1017_jfm_2023_154
crossref_primary_10_1007_s42979_021_00867_3
crossref_primary_10_1017_jfm_2021_1041
crossref_primary_10_1063_5_0225657
crossref_primary_10_1016_j_renene_2025_124336
crossref_primary_10_1007_s10439_022_02967_4
crossref_primary_10_1063_5_0097496
crossref_primary_10_1007_s12650_024_00959_1
crossref_primary_10_2514_1_J065581
crossref_primary_10_1007_s00348_021_03213_8
crossref_primary_10_1103_PhysRevFluids_10_034901
crossref_primary_10_1016_j_ces_2025_121825
crossref_primary_10_1007_s11242_023_01961_1
crossref_primary_10_1007_s00348_023_03639_2
crossref_primary_10_3390_fire7080293
crossref_primary_10_1080_19942060_2024_2394177
crossref_primary_10_1063_5_0221568
crossref_primary_10_5194_essd_15_4519_2023
crossref_primary_10_1016_j_jcp_2023_111972
Cites_doi 10.1007/s00162-020-00542-y
10.1016/0893-6080(91)90074-F
10.1016/j.cma.2007.08.014
10.1063/1.5140772
10.1063/1.5127031
10.1103/PhysRevFluids.4.054603
10.1063/5.0060760
10.1162/neco.1997.9.8.1735
10.1103/PhysRevE.97.042322
10.1007/s00162-020-00518-y
10.1016/0893-6080(91)90009-T
10.1146/annurev-fluid-010719-060214
10.1007/978-3-319-61753-4_1
10.1109/5.726791
10.1038/323533a0
10.1103/PhysRevFluids.5.054604
10.1017/jfm.2016.235
10.1017/jfm.2016.615
10.1016/j.jcp.2007.03.005
10.1017/jfm.2018.770
10.1007/BF02551274
10.1146/annurev-fluid-010518-040547
10.1017/jfm.2019.238
10.1063/5.0020721
10.1103/PhysRevFluids.4.100501
10.1126/science.1127647
10.1017/jfm.2019.822
10.1103/PhysRevFluids.5.104401
10.1126/science.aaw4741
10.1007/s00162-020-00528-w
10.1017/jfm.2016.803
10.1063/1.2205307
10.1016/S0893-6080(98)00010-0
10.1017/jfm.2019.700
10.1017/S0022112087000892
10.1103/PhysRevFluids.4.064603
ContentType Journal Article
Copyright The Author(s), 2020. Published by Cambridge University Press
2020 This article is published under (https://creativecommons.org/licenses/by/3.0/) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s), 2020. Published by Cambridge University Press
– notice: 2020 This article is published under (https://creativecommons.org/licenses/by/3.0/) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID IKXGN
AAYXX
CITATION
3V.
7TB
7U5
7UA
7XB
88I
8FD
8FE
8FG
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
GUQSH
H8D
H96
HCIFZ
KR7
L.G
L6V
L7M
M2O
M2P
M7S
MBDVC
P5Z
P62
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
S0W
DOI 10.1017/jfm.2020.948
DatabaseName Cambridge University Press Wholly Gold Open Access Journals
CrossRef
ProQuest Central (Corporate)
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
ProQuest Research Library
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Research Library
Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DELNET Engineering & Technology Collection
DatabaseTitle CrossRef
Research Library Prep
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
Aerospace Database
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
DatabaseTitleList CrossRef
Research Library Prep

Database_xml – sequence: 1
  dbid: IKXGN
  name: Cambridge University Press Wholly Gold Open Access Journals
  url: http://journals.cambridge.org/action/login
  sourceTypes: Publisher
– sequence: 2
  dbid: BENPR
  name: ProQuest Central - New (Subscription)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Physics
EISSN 1469-7645
ExternalDocumentID 10_1017_jfm_2020_948
GroupedDBID -DZ
-E.
-~X
.DC
.FH
09C
09E
0E1
0R~
29K
4.4
5GY
5VS
74X
74Y
7~V
88I
8FE
8FG
8FH
8G5
8R4
8R5
AAAZR
AABES
AABWE
AACJH
AAEED
AAGFV
AAKTX
AAMNQ
AARAB
AASVR
AAUIS
AAUKB
ABBXD
ABGDZ
ABITZ
ABJCF
ABJNI
ABKKG
ABMWE
ABMYL
ABQTM
ABQWD
ABROB
ABTCQ
ABUWG
ABZCX
ACBEA
ACBMC
ACCHT
ACGFO
ACGFS
ACGOD
ACIMK
ACIWK
ACQFJ
ACREK
ACUIJ
ACUYZ
ACWGA
ACYZP
ACZBM
ACZUX
ACZWT
ADCGK
ADDNB
ADFEC
ADFRT
ADGEJ
ADKIL
ADOCW
ADOVH
ADVJH
AEBAK
AEMTW
AENEX
AENGE
AEYYC
AFFUJ
AFKQG
AFKRA
AFKSM
AFLOS
AFLVW
AFRAH
AFUTZ
AGABE
AGBYD
AGJUD
AGOOT
AHQXX
AHRGI
AIDUJ
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
ALMA_UNASSIGNED_HOLDINGS
ALVPG
ALWZO
AQJOH
ARABE
ARAPS
ATUCA
AUXHV
AZQEC
BBLKV
BENPR
BGHMG
BGLVJ
BHPHI
BKSAR
BLZWO
BMAJL
BPHCQ
C0O
CBIIA
CCPQU
CCQAD
CFAFE
CHEAL
CJCSC
CS3
D-I
DC4
DOHLZ
DU5
DWQXO
E.L
EBS
F5P
GNUQQ
GUQSH
HCIFZ
HG-
HST
HZ~
I.6
IH6
IKXGN
IOEEP
IS6
I~P
J36
J38
J3A
JHPGK
JQKCU
KCGVB
KFECR
L6V
L98
LK5
LW7
M-V
M2O
M2P
M7R
M7S
NIKVX
O9-
OYBOY
P2P
P62
PCBAR
PQQKQ
PROAC
PTHSS
PYCCK
Q2X
RAMDC
RCA
RNS
ROL
RR0
S0W
S6-
S6U
SAAAG
SC5
T9M
TAE
TN5
UT1
WFFJZ
WH7
WQ3
WXU
WXY
WYP
ZYDXJ
~02
AANRG
AAYXX
ABUFD
ABVKB
ABVZP
ABXAU
ABXHF
ACDLN
ADMLS
AEUYN
AFFHD
AFZFC
AKMAY
CITATION
PHGZM
PHGZT
PQGLB
3V.
7TB
7U5
7UA
7XB
8FD
8FK
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
MBDVC
PKEHL
PQEST
PQUKI
PRINS
PUEGO
Q9U
ID FETCH-LOGICAL-c406t-91c01ca609f6d3ad7b8ce10478efea8f65d7b925e647f9253481bb3414405a9a3
IEDL.DBID M7S
ISICitedReferencesCount 222
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000600608500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0022-1120
IngestDate Sun Sep 07 07:10:53 EDT 2025
Tue Nov 18 19:52:51 EST 2025
Sat Nov 29 04:24:26 EST 2025
Wed Mar 13 05:59:30 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords computational methods
turbulence simulation
Language English
License http://creativecommons.org/licenses/by/4.0/ This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-91c01ca609f6d3ad7b8ce10478efea8f65d7b925e647f9253481bb3414405a9a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3762-8075
0000-0002-1381-7322
0000-0003-4805-238X
OpenAccessLink https://www.cambridge.org/core/product/identifier/S0022112020009489/type/journal_article
PQID 2471428224
PQPubID 34769
PageCount 24
ParticipantIDs proquest_journals_2471428224
crossref_citationtrail_10_1017_jfm_2020_948
crossref_primary_10_1017_jfm_2020_948
cambridge_journals_10_1017_jfm_2020_948
PublicationCentury 2000
PublicationDate 2021-02-25
PublicationDateYYYYMMDD 2021-02-25
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-25
  day: 25
PublicationDecade 2020
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
– name: Cambridge
PublicationTitle Journal of fluid mechanics
PublicationTitleAlternate J. Fluid Mech
PublicationYear 2021
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References 1991; 4
1989; 2
2007; 225
2017; 814
2019; 4
2019; 51
2019; 31
2018; 789
2016; 807
2019; 15
2006; 18
2020; 882
2020; 34
2020; 367
2020; 32
2006; 313
1998; 86
1997; 9
2010; 23
2020; 5
1986; 322
1987; 177
2020; 52
2019; 858
2016; 795
2019; 879
2008; 197
2018; 97
2019; 870
1998; 11
S0022112020009489_ref30
S0022112020009489_ref31
S0022112020009489_ref10
S0022112020009489_ref32
S0022112020009489_ref33
S0022112020009489_ref11
S0022112020009489_ref28
S0022112020009489_ref29
S0022112020009489_ref45
S0022112020009489_ref23
S0022112020009489_ref46
S0022112020009489_ref24
S0022112020009489_ref47
S0022112020009489_ref25
S0022112020009489_ref48
S0022112020009489_ref26
Onishi (S0022112020009489_ref39) 2019; 15
Du (S0022112020009489_ref8) 2018; 789
Le (S0022112020009489_ref27) 2010; 23
S0022112020009489_ref9
S0022112020009489_ref41
S0022112020009489_ref5
S0022112020009489_ref20
S0022112020009489_ref6
S0022112020009489_ref42
S0022112020009489_ref3
S0022112020009489_ref43
S0022112020009489_ref21
S0022112020009489_ref22
S0022112020009489_ref44
S0022112020009489_ref4
S0022112020009489_ref1
S0022112020009489_ref2
S0022112020009489_ref40
S0022112020009489_ref38
S0022112020009489_ref16
S0022112020009489_ref17
S0022112020009489_ref18
S0022112020009489_ref19
S0022112020009489_ref34
S0022112020009489_ref12
S0022112020009489_ref35
S0022112020009489_ref13
S0022112020009489_ref36
S0022112020009489_ref14
S0022112020009489_ref15
S0022112020009489_ref37
Deng (S0022112020009489_ref7) 2019; 31
References_xml – volume: 4
  start-page: 381
  year: 1991
  end-page: 383
  article-title: Arbitrary nonlinearity is sufficient to represent all functions by neural networks: a theorem
  publication-title: Neural Networks
– volume: 31
  start-page: 125111
  year: 2019
  article-title: Super-resolution reconstruction of turbulent velocity fields using a generative adversarial network-based artificial intelligence framework
  publication-title: Phys. Fluids
– volume: 879
  start-page: 217
  year: 2019
  end-page: 254
  article-title: Data-driven prediction of unsteady flow fields over a circular cylinder using deep learning
  publication-title: J. Fluid Mech.
– volume: 197
  start-page: 2131
  year: 2008
  end-page: 2146
  article-title: A fast immersed boundary method using a nullspace approach and multi-domain far-field boundary conditions
  publication-title: Comput. Meth. Appl. Mech. Engng
– volume: 23
  start-page: 1279
  year: 2010
  end-page: 1287
  article-title: Tiled convolutional neural networks
  publication-title: Adv. Neural Inform. Proc. Syst.
– volume: 795
  start-page: R2
  year: 2016
  article-title: Network structure of two-dimensional decaying isotropic turbulence
  publication-title: J. Fluid Mech.
– volume: 4
  start-page: 100501
  year: 2019
  article-title: Perspective on machine learning for advancing fluid mechanics
  publication-title: Phys. Rev. Fluids
– volume: 34
  start-page: 333
  issue: 4
  year: 2020
  end-page: 337
  article-title: Special issue on machine learning and data-driven methods in fluid dynamics
  publication-title: Theor. Comput. Fluid Dyn.
– volume: 313
  start-page: 504
  issue: 5786
  year: 2006
  end-page: 507
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
– volume: 882
  start-page: A13
  year: 2020
  article-title: Nonlinear mode decomposition with convolutional neural networks for fluid dynamics
  publication-title: J. Fluid Mech.
– volume: 97
  start-page: 042322
  year: 2018
  article-title: Extreme learning machine for reduced order modeling of turbulent geophysical flows
  publication-title: Phys. Rev. E
– volume: 4
  start-page: 064603
  year: 2019
  article-title: Synthetic turbulent inflow generator using machine learning
  publication-title: Phys. Rev. Fluids
– volume: 32
  start-page: 095110
  year: 2020
  article-title: Convolutional neural network based hierarchical autoencoder for nonlinear mode decomposition of fluid field data
  publication-title: Phys. Fluids
– volume: 367
  start-page: 1026
  issue: 6481
  year: 2020
  end-page: 1030
  article-title: Hidden fluid mechanics: learning velocity and pressure fields from flow visualizations
  publication-title: Science
– volume: 18
  start-page: 051703
  year: 2006
  article-title: A theoretical prediction of friction drag reduction in turbulent flow by superhydrophobic surfaces
  publication-title: Phys. Fluids
– volume: 32
  start-page: 025105
  year: 2020
  article-title: Deep learning methods for super-resolution reconstruction of turbulent flows
  publication-title: Phys. Fluids
– volume: 858
  start-page: 122
  year: 2019
  end-page: 144
  article-title: Sub-grid modelling for two-dimensional turbulence using neural networks
  publication-title: J. Fluid Mech.
– volume: 789
  start-page: 1
  issue: 18
  year: 2018
  end-page: 17
  article-title: Single image super-resolution based on multi-scale competitive convolutional neural network
  publication-title: Sensors
– volume: 11
  start-page: 761
  issue: 4
  year: 1998
  end-page: 767
  article-title: Automatic early stopping using cross validation: quantifying the criteria
  publication-title: Neural Networks
– volume: 51
  start-page: 357
  year: 2019
  end-page: 377
  article-title: Turbulence modeling in the age of data
  publication-title: Annu. Rev. Fluid Mech.
– volume: 870
  start-page: 106
  year: 2019
  end-page: 120
  article-title: Super-resolution reconstruction of turbulent flows with machine learning
  publication-title: J. Fluid Mech.
– volume: 4
  start-page: 251
  year: 1991
  end-page: 257
  article-title: Approximation capabilities of multilayer feedforward networks
  publication-title: Neural Networks
– volume: 34
  start-page: 367
  issue: 4
  year: 2020
  end-page: 388
  article-title: Machine-learning-based reduced-order modeling for unsteady flows around bluff bodies of various shapes
  publication-title: Theor. Comput. Fluid Dyn.
– volume: 52
  start-page: 477
  year: 2020
  end-page: 508
  article-title: Machine learning for fluid mechanics
  publication-title: Annu. Rev. Fluid Mech.
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  article-title: Long short-term memory
  publication-title: Neural Comput.
– volume: 5
  start-page: 104401
  year: 2020
  publication-title: Phys. Rev. Fluids
– volume: 15
  start-page: 178
  year: 2019
  end-page: 182
  article-title: Super-resolution simulation for real-time prediction of urban micrometeorology
  publication-title: Scientific Online Letters on the Atmosphere (SOLA)
– volume: 4
  start-page: 054603
  year: 2019
  article-title: Predictions of turbulent shear flows using deep neural networks
  publication-title: Phys. Rev. Fluids
– volume: 322
  start-page: 533
  year: 1986
  end-page: 536
  article-title: Learning representations by back-propagation errors
  publication-title: Nature
– volume: 807
  start-page: 155
  year: 2016
  end-page: 166
  article-title: Reynolds averaged turbulence modelling using deep neural networks with embedded invariance
  publication-title: J. Fluid Mech.
– volume: 177
  start-page: 133
  year: 1987
  end-page: 166
  article-title: Turbulence statistics in fully developed channel flow at low Reynolds number
  publication-title: J. Fluid Mech.
– volume: 5
  start-page: 054604
  issue: 5
  year: 2020
  article-title: Reconstructing the time evolution of wall-bounded turbulent flows from non-time resolved PIV measurements
  publication-title: Phys. Rev. Fluids
– volume: 814
  start-page: 1
  year: 2017
  end-page: 4
  article-title: Deep learning in fluid dynamics
  publication-title: J. Fluid Mech.
– volume: 2
  start-page: 303
  year: 1989
  end-page: 314
  article-title: Approximation by superpositions of a sigmoidal function
  publication-title: Math. Control Signals Syst.
– volume: 34
  start-page: 497
  issue: 4
  year: 2020
  end-page: 519
  article-title: Assessment of supervised machine learning for fluid flows
  publication-title: Theor. Comput. Fluid Dyn.
– volume: 86
  start-page: 2278
  issue: 11
  year: 1998
  end-page: 2324
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
– volume: 225
  start-page: 2118
  issue: 2
  year: 2007
  end-page: 2137
  article-title: The immersed boundary method: a projection approach
  publication-title: J. Comput. Phys.
– ident: S0022112020009489_ref3
  doi: 10.1007/s00162-020-00542-y
– ident: S0022112020009489_ref24
  doi: 10.1016/0893-6080(91)90074-F
– ident: S0022112020009489_ref5
  doi: 10.1016/j.cma.2007.08.014
– ident: S0022112020009489_ref32
  doi: 10.1063/1.5140772
– volume: 31
  start-page: 125111
  year: 2019
  ident: S0022112020009489_ref7
  article-title: Super-resolution reconstruction of turbulent velocity fields using a generative adversarial network-based artificial intelligence framework
  publication-title: Phys. Fluids
  doi: 10.1063/1.5127031
– ident: S0022112020009489_ref48
– ident: S0022112020009489_ref44
  doi: 10.1103/PhysRevFluids.4.054603
– volume: 15
  start-page: 178
  year: 2019
  ident: S0022112020009489_ref39
  article-title: Super-resolution simulation for real-time prediction of urban micrometeorology
  publication-title: Scientific Online Letters on the Atmosphere (SOLA)
– volume: 23
  start-page: 1279
  year: 2010
  ident: S0022112020009489_ref27
  article-title: Tiled convolutional neural networks
  publication-title: Adv. Neural Inform. Proc. Syst.
– ident: S0022112020009489_ref21
– ident: S0022112020009489_ref36
  doi: 10.1063/5.0060760
– ident: S0022112020009489_ref30
– ident: S0022112020009489_ref18
  doi: 10.1162/neco.1997.9.8.1735
– ident: S0022112020009489_ref43
  doi: 10.1103/PhysRevE.97.042322
– ident: S0022112020009489_ref12
  doi: 10.1007/s00162-020-00518-y
– ident: S0022112020009489_ref19
  doi: 10.1016/0893-6080(91)90009-T
– ident: S0022112020009489_ref4
  doi: 10.1146/annurev-fluid-010719-060214
– ident: S0022112020009489_ref1
  doi: 10.1007/978-3-319-61753-4_1
– ident: S0022112020009489_ref28
  doi: 10.1109/5.726791
– ident: S0022112020009489_ref38
– ident: S0022112020009489_ref42
  doi: 10.1038/323533a0
– ident: S0022112020009489_ref25
  doi: 10.1103/PhysRevFluids.5.054604
– ident: S0022112020009489_ref47
  doi: 10.1017/jfm.2016.235
– ident: S0022112020009489_ref31
  doi: 10.1017/jfm.2016.615
– ident: S0022112020009489_ref20
– ident: S0022112020009489_ref46
  doi: 10.1016/j.jcp.2007.03.005
– ident: S0022112020009489_ref34
  doi: 10.1017/jfm.2018.770
– ident: S0022112020009489_ref6
  doi: 10.1007/BF02551274
– ident: S0022112020009489_ref9
  doi: 10.1146/annurev-fluid-010518-040547
– ident: S0022112020009489_ref22
– ident: S0022112020009489_ref11
  doi: 10.1017/jfm.2019.238
– ident: S0022112020009489_ref45
– ident: S0022112020009489_ref14
  doi: 10.1063/5.0020721
– ident: S0022112020009489_ref2
  doi: 10.1103/PhysRevFluids.4.100501
– ident: S0022112020009489_ref17
  doi: 10.1126/science.1127647
– ident: S0022112020009489_ref37
  doi: 10.1017/jfm.2019.822
– volume: 789
  start-page: 1
  year: 2018
  ident: S0022112020009489_ref8
  article-title: Single image super-resolution based on multi-scale competitive convolutional neural network
  publication-title: Sensors
– ident: S0022112020009489_ref33
  doi: 10.1103/PhysRevFluids.5.104401
– ident: S0022112020009489_ref41
  doi: 10.1126/science.aaw4741
– ident: S0022112020009489_ref15
  doi: 10.1007/s00162-020-00528-w
– ident: S0022112020009489_ref26
  doi: 10.1017/jfm.2016.803
– ident: S0022112020009489_ref10
  doi: 10.1063/1.2205307
– ident: S0022112020009489_ref40
  doi: 10.1016/S0893-6080(98)00010-0
– ident: S0022112020009489_ref29
  doi: 10.1017/jfm.2019.700
– ident: S0022112020009489_ref23
  doi: 10.1017/S0022112087000892
– ident: S0022112020009489_ref16
– ident: S0022112020009489_ref35
– ident: S0022112020009489_ref13
  doi: 10.1103/PhysRevFluids.4.064603
SSID ssj0013097
Score 2.704638
Snippet We present a new data reconstruction method with supervised machine learning techniques inspired by super resolution and inbetweening to recover...
SourceID proquest
crossref
cambridge
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Artificial neural networks
Channel flow
Computational fluid dynamics
Computer applications
Correlation coefficient
Correlation coefficients
Cylinders
Data
Direct numerical simulation
Evolution
Fluid dynamics
Fluid flow
Isotropic turbulence
JFM Papers
Learning algorithms
Machine learning
Mathematical models
Neural networks
Reconstruction
Resolution
Robustness (mathematics)
Three dimensional flow
Three dimensional models
Training
Turbulence
Turbulent flow
Two dimensional models
SummonAdditionalLinks – databaseName: Cambridge University Press Wholly Gold Open Access Journals
  dbid: IKXGN
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1BS8MwFH7MTUEPTqfidEoOigepq13btEcRp6IODyr1VJI2kcnYxrrp3_clTTt3GHjxVCghbV8e-d5rvvc9gBPJmZ0Gvm9xTm3VwoxaPBUYyAkvpUxpPOl2b2-PtNcLoih8rkBU1MIoWmWpcaBP8nV_tHEuf9rupzmHRkxUja-D2Qsm75oeF4Rt9dOybZYgNoZfgRpGMI5Thdr9Q3Tbm58w2CEtlMTVLIYUr-SkP6UqUXfsi1B1BZpLLixC1-LOreGoW_-_D9mCTROikqv8zjZUxLABdROuErMZZA3Y-KVl2IA1zSVNsh14f9IETWGZjhQfloLKlGSavG0ZMawByWZjMSGY7hvvJzo5LwVtyUgSxEM-U7hI5GD0ne3Ca_fm5frOMh0crAQDhSnupIl9mTDfDqWfdlhKeZAILQgkpGCB9NEheOh4wnepxKuqCuYcgdXFOJKFrLMH1eFoKPaBUOa5vsBsMxUSk1AXw6rQk0z6CXfcgLtNOCvNHRvbZXHOYaMxLmmsDByjfZtwXixjnBghdNWPY7Bk9Gk5epwLgCwZ1yo8Yv54B6Hf1UTdgz-_3iGsO4o3o8rmvRZU0eriCFaTr2k_mxwbN_4BRDoEvw
  priority: 102
  providerName: Cambridge University Press
Title Machine-learning-based spatio-temporal super resolution reconstruction of turbulent flows
URI https://www.cambridge.org/core/product/identifier/S0022112020009489/type/journal_article
https://www.proquest.com/docview/2471428224
Volume 909
WOSCitedRecordID wos000600608500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1469-7645
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0013097
  issn: 0022-1120
  databaseCode: P5Z
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1469-7645
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0013097
  issn: 0022-1120
  databaseCode: PCBAR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1469-7645
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0013097
  issn: 0022-1120
  databaseCode: M7S
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central - New (Subscription)
  customDbUrl:
  eissn: 1469-7645
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0013097
  issn: 0022-1120
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library (subscription)
  customDbUrl:
  eissn: 1469-7645
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0013097
  issn: 0022-1120
  databaseCode: M2O
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1469-7645
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0013097
  issn: 0022-1120
  databaseCode: M2P
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV05T8MwFH4CChIMHAVEOSoPIAYUCCGJkwkBKoeAUHGpsES2YyNQ1Zamhb_Ps-u0MMDCYg-xlCif_Q778_cANhVnbhaFocM5dXUJM-rwTGIgJ4OMMq3xZMq9PV7RJIkajbhuN9xyS6ssbKIx1Flb6D3yPQ-tqG84j4edd0dXjdKnq7aExjiUtEqCZ6h7d6NTBDemhVo4xhWuJb5ryeg3pa-he-5urCv_jGQVfrqnn9bZuJzTuf9-7DzM2mCTHA1mxwKMyVYZ5mzgSeyyzssw802VsAxThhUq8kV4ujZUS-nY2hIvjnZ6GckNDduxslZNkvc7skswcbfzmJg0eyhNS9qKoGfjfe3hiGq2P_MleDit3Z-cO7YWgyPQ5ffQJgp3X7DQjVWYHbCM8khII-0jlWSRChFaHnuBDH2qsNf3ezlHF-ljRMhidrAME612S64AoSzwQ4l5YyYVppM-BkhxoJgKBff8iPsV2B7CkdoVlacDNhpNEbhUA5cicBXYKcBKhZU015U1mr-M3hqO7gykPH4Zt16AOnr9CNHVvx-vwbSnaS_61nuwDhP4q-UGTIqP3mverULpuJbUb7G_uGycJVWcr96NaetVM3exrQfPX2D89Iw
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT-MwEB7xWLRwgKUsojx9AHFAYUNI4uSAEIJFIEqFxENwCrZjr0BVW5oC4k_xG5lxnRYOcOOwpxxi5WF_nhnb33wDsGqk8PMkjj0puU8lzLgnc42BnI5yLkjjyZZ7u6rxej25vk7PhuC1zIUhWmVpE62hzluK9sj_BGhFQ8t53G0_eFQ1ik5XyxIaPVic6JdnXLIVO8cHOL5rQXD492L_yHNVBTyFzquLs1v5W0rEfmrifFvkXCZKW5EabbRITIwfKdMg0nHIDV4pU1VKNPYhxjYiFdv43GEYDcn6W6rg-eDUwk95qU6OcYzviPYkUX1vKO098DdTqjQ0kHH46A4_egPr4g6n_rfO-QWTLphmez30T8OQblZgygXWzJmtogIT71QXKzBmWa-qmIGbU0sl1Z6rnfHPI6ees8LSzD0n29VgxWNbd1hHl_OU2W2EvvQuaxmGnls-kgdnptF6Ln7D5bf8-CyMNFtNPQeMiyiMNa6Lc21wuRxiAJhGRphYySBMZFiF9f7wZ85iFFmPbcczBEpGQMkQKFXYKMGRKSfZTpVDGp-0Xuu3bvekSj5pt1iCaPD6AYLmv769Aj-PLk5rWe24frIA4wFRfCjDP1qEEex2vQQ_1FP3rugs27nB4Pa78fYG1D5Kmg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine-learning-based+spatio-temporal+super+resolution+reconstruction+of+turbulent+flows&rft.jtitle=Journal+of+fluid+mechanics&rft.au=Fukami%2C+Kai&rft.au=Fukagata%2C+Koji&rft.au=Taira%2C+Kunihiko&rft.date=2021-02-25&rft.pub=Cambridge+University+Press&rft.issn=0022-1120&rft.eissn=1469-7645&rft.volume=909&rft_id=info:doi/10.1017%2Fjfm.2020.948
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1120&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1120&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1120&client=summon