A robust clustering algorithm using spatial fuzzy C-means for brain MR images

Magnetic Resonance Imaging (MRI) is a medical imaging modality that is commonly employed for the analysis of different diseases. However, these images come with several problems such as noise and other imaging artifacts added during acquisition process. The researchers have actual challenges for seg...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Egyptian informatics journal Ročník 21; číslo 1; s. 51 - 66
Hlavní autoři: Alruwaili, Madallah, Siddiqi, Muhammad Hameed, Javed, Muhammad Arshad
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.03.2020
Elsevier
Témata:
ISSN:1110-8665
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Magnetic Resonance Imaging (MRI) is a medical imaging modality that is commonly employed for the analysis of different diseases. However, these images come with several problems such as noise and other imaging artifacts added during acquisition process. The researchers have actual challenges for segmentation under the consideration of these effects. In medical images, a well-known clustering approach like Fuzzy C-Means widely used for segmentation. The performance of FCM algorithm is fast in noise-free images; however, this method did not consider the spatial context of the image due to which its performance suffers when images corrupted with noise and other imaging relics. In this paper, a weighted spatial Fuzzy C-Means (wsFCM) segmentation method is proposed that considered the spatial information of image. Moreover, a spatial function is also developed that integrate a membership function. In order assess this function, a neighborhood window is established around a pixel and more weights have been assigned to those pixels which have greater correlation with central pixel in local neighborhood. By integration of this spatial function in membership function, the modified membership function strengthens the original membership function in handling the noise and intensity inhomogeneity, which has the ability to preserves and maintains structural information like edges. A comprehensive set of experimentation is performed on publicly accessible simulated and real standard brain MRI datasets. The performance of the proposed method has been compared with existing state-of-the-art methods. The results show that the performance of the proposed method is better and robust in handling noise and intensity inhomogeneity than of the existing works.
AbstractList Magnetic Resonance Imaging (MRI) is a medical imaging modality that is commonly employed for the analysis of different diseases. However, these images come with several problems such as noise and other imaging artifacts added during acquisition process. The researchers have actual challenges for segmentation under the consideration of these effects. In medical images, a well-known clustering approach like Fuzzy C-Means widely used for segmentation. The performance of FCM algorithm is fast in noise-free images; however, this method did not consider the spatial context of the image due to which its performance suffers when images corrupted with noise and other imaging relics. In this paper, a weighted spatial Fuzzy C-Means (wsFCM) segmentation method is proposed that considered the spatial information of image. Moreover, a spatial function is also developed that integrate a membership function. In order assess this function, a neighborhood window is established around a pixel and more weights have been assigned to those pixels which have greater correlation with central pixel in local neighborhood. By integration of this spatial function in membership function, the modified membership function strengthens the original membership function in handling the noise and intensity inhomogeneity, which has the ability to preserves and maintains structural information like edges. A comprehensive set of experimentation is performed on publicly accessible simulated and real standard brain MRI datasets. The performance of the proposed method has been compared with existing state-of-the-art methods. The results show that the performance of the proposed method is better and robust in handling noise and intensity inhomogeneity than of the existing works. Keywords: Clustering algorithm, MRI, Fuzzy C-means
Magnetic Resonance Imaging (MRI) is a medical imaging modality that is commonly employed for the analysis of different diseases. However, these images come with several problems such as noise and other imaging artifacts added during acquisition process. The researchers have actual challenges for segmentation under the consideration of these effects. In medical images, a well-known clustering approach like Fuzzy C-Means widely used for segmentation. The performance of FCM algorithm is fast in noise-free images; however, this method did not consider the spatial context of the image due to which its performance suffers when images corrupted with noise and other imaging relics. In this paper, a weighted spatial Fuzzy C-Means (wsFCM) segmentation method is proposed that considered the spatial information of image. Moreover, a spatial function is also developed that integrate a membership function. In order assess this function, a neighborhood window is established around a pixel and more weights have been assigned to those pixels which have greater correlation with central pixel in local neighborhood. By integration of this spatial function in membership function, the modified membership function strengthens the original membership function in handling the noise and intensity inhomogeneity, which has the ability to preserves and maintains structural information like edges. A comprehensive set of experimentation is performed on publicly accessible simulated and real standard brain MRI datasets. The performance of the proposed method has been compared with existing state-of-the-art methods. The results show that the performance of the proposed method is better and robust in handling noise and intensity inhomogeneity than of the existing works.
Author Siddiqi, Muhammad Hameed
Javed, Muhammad Arshad
Alruwaili, Madallah
Author_xml – sequence: 1
  givenname: Madallah
  surname: Alruwaili
  fullname: Alruwaili, Madallah
  email: madallah@ju.edu.sa
– sequence: 2
  givenname: Muhammad Hameed
  surname: Siddiqi
  fullname: Siddiqi, Muhammad Hameed
  email: mhsiddiqi@ju.edu.sa
– sequence: 3
  givenname: Muhammad Arshad
  surname: Javed
  fullname: Javed, Muhammad Arshad
  email: arsh_qau@ju.edu.sa
BookMark eNp9kM9qAyEQhz2k0DTNA_TmC2yqcXV36SmE_gkkFEp7FlfHrctmDbopJE9f05QeeoiHkRn4fjN8N2jU-x4QuqNkRgkV9-0MXDubE1qlfkYIH6ExpZRkpRD8Gk1jbEl6gs5zLsZos8DB1_s4YN2lCsH1DVZd44MbPrd4H0993KnBqQ7b_fF4wMtsC6qP2PqA66Bcjzdv2G1VA_EWXVnVRZj-_hP08fT4vnzJ1q_Pq-VinemciCGriOHWMCZyzeqqtJpwC6Y0NSuBcM5JDZowwwpi8jqVUmgmWFWyec21KGo2QatzrvGqlbuQtoeD9MrJn4EPjVRhcLoDmeJMBTllVuR5oVU5tzy3ylCmleaMpyx6ztLBxxjA_uVRIk9KZSuTUnlSeholpYkp_jHaDcmR74ckpLtIPpxJSHq-HAQZtYNeg3EB9JDudxfob5BRlFA
CitedBy_id crossref_primary_10_3103_S014641162470010X
crossref_primary_10_1016_j_advengsoft_2022_103377
crossref_primary_10_1016_j_cmpb_2020_105841
crossref_primary_10_1016_j_knosys_2021_108008
crossref_primary_10_1038_s41598_025_00897_4
crossref_primary_10_1155_2021_7270908
crossref_primary_10_3390_app11135931
crossref_primary_10_1155_2023_4387134
crossref_primary_10_1007_s00500_023_08542_w
crossref_primary_10_1007_s11042_023_15230_2
crossref_primary_10_7717_peerj_cs_654
crossref_primary_10_1016_j_ijar_2021_06_004
crossref_primary_10_1186_s12880_021_00683_4
crossref_primary_10_3390_app11114878
crossref_primary_10_32604_cmc_2024_046501
crossref_primary_10_1016_j_bspc_2023_104925
crossref_primary_10_1016_j_eswa_2023_120377
crossref_primary_10_1007_s10489_024_05813_3
crossref_primary_10_1155_2021_6611053
crossref_primary_10_3390_math9101095
crossref_primary_10_1016_j_enbuild_2021_111121
crossref_primary_10_1007_s00357_023_09443_1
crossref_primary_10_1007_s00371_023_02910_1
Cites_doi 10.1016/j.cviu.2013.05.001
10.3844/ajassp.2014.329.336
10.1016/S0734-189X(85)90153-7
10.1007/s11704-010-0393-8
10.1109/TIP.2015.2473099
10.4236/jbise.2011.42014
10.1016/j.compmedimag.2010.12.001
10.1002/hbm.10062
10.1016/j.compmedimag.2005.10.001
10.2307/1932409
10.1016/j.patcog.2006.07.011
10.1007/s13369-015-1791-x
10.1016/j.neucom.2016.03.046
10.1007/s40846-015-0096-6
10.1109/LSP.2006.884014
10.1155/2015/450341
10.1109/TST.2014.6961028
10.3390/ijms140918682
10.1109/TITB.2005.847500
10.1007/s11390-016-1643-5
10.1016/j.patcog.2010.06.006
10.1007/s00138-014-0606-5
10.1016/j.patrec.2013.04.021
10.1186/1475-925X-14-2
10.1016/j.asoc.2015.05.038
ContentType Journal Article
Copyright 2019
Copyright_xml – notice: 2019
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.eij.2019.10.005
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 66
ExternalDocumentID oai_doaj_org_article_555d9e413f6447ca82f54fad13cac535
10_1016_j_eij_2019_10_005
S1110866519301823
GroupedDBID --K
0R~
1B1
4.4
457
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
ADVLN
AEXQZ
AFJKZ
AFTJW
AGHFR
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
E3Z
EBS
EJD
FDB
GROUPED_DOAJ
HZ~
IPNFZ
IXB
KQ8
M41
O-L
O9-
OK1
RIG
ROL
SES
SSZ
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
APXCP
CITATION
ID FETCH-LOGICAL-c406t-90d5fd3364c3b98fc05fed8db38e05550bec03d370d4b70d86c3639832b5c67b3
IEDL.DBID DOA
ISICitedReferencesCount 27
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000518407500006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1110-8665
IngestDate Fri Oct 03 12:41:10 EDT 2025
Wed Oct 29 21:13:51 EDT 2025
Tue Nov 18 21:32:33 EST 2025
Sun Apr 06 06:54:25 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Fuzzy C-means
MRI
Clustering algorithm
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-90d5fd3364c3b98fc05fed8db38e05550bec03d370d4b70d86c3639832b5c67b3
OpenAccessLink https://doaj.org/article/555d9e413f6447ca82f54fad13cac535
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_555d9e413f6447ca82f54fad13cac535
crossref_primary_10_1016_j_eij_2019_10_005
crossref_citationtrail_10_1016_j_eij_2019_10_005
elsevier_sciencedirect_doi_10_1016_j_eij_2019_10_005
PublicationCentury 2000
PublicationDate March 2020
2020-03-00
2020-03-01
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: March 2020
PublicationDecade 2020
PublicationTitle Egyptian informatics journal
PublicationYear 2020
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Yu, Fan (b0090) 2008
Cma.mgh.harvard.edu.
Liu, Li, Wang, Wu, Liu, Pan (b0060) 2014; 19
Zhao, Jiao, Liu (b0105) 2011; 5
Pham (b0065) 2002; vol. 2
Lewis T, Writer S. Human brain: Facts, functions & anatomy; 2016. [accessed: 2019-03-20].
Jiang, Wang, He, Chen, Li (b0085) 2016; 207
Qiu, Xiao, Yu, Han, Iqbal (b0180) 2013; 34
Du, Lai, Leung, Pong (b0005) 2013; 14
Long-term study plays down risk of brain problems in HIV-positive patients.
Dong, Xu (b0150) 2007; 14
Dice (b0165) 1945; 26
Miao, Lin, Liu (b0030) 2011; 4
Alruwaili, Javed, Javed (b0140) 2017; 17
Shen, Sandham, Granat, Sterr (b0070) 2005; 9
Ali, Elmogy, El-Daydamony, Atwan (b0125) 2015; 40
Kumar, Kumar (b0025) 2014; 11
Adhikari, Sing, Basu, Nasipuri (b0045) 2015; 34
Deng, Li, Gao, Zhang (b0130) 2016; 31
[accessed: 2019-03-20].
McAuliffe, Lalonde, McGarry, Gandler, Csaky, Trus (b0155) 2001
Riad, Atwan, El, Mostafa, Elminir, Mastorakis (b0040) 2010; vol. 5125
Caldairou, Passat, Habas, Studholme, Rousseau (b0100) 2011; 44
Ji, Sun, Xia (b0110) 2011; 35
Chuang, Tzeng, Chen, Wu, Chen (b0075) 2006; 30
Yang, Fan, Ai, Zhou, Tang, Wang (b0010) 2015; 14
Chen, Chen, Wu, Horng, Wu, Hsueh, Ho (b0115) 2015; 35
Shi, Ngan, Li, Paramesran, Li (b0170) 2015; 24
Cai, Chen, Zhang (b0080) 2007; 40
Wang, Song, Soh, Sim (b0095) 2013; 117
Alipour, Shanbehzadeh (b0120) 2014; 25
Haralick, Shapiro (b0050) 1985; 29
Bezdek (b0135) 2013
Roy S, Nag S, Maitra IK, Bandyopadhyay SK. A review on automated brain tumor detection and segmentation from MRI of brain. arXiv preprint arXiv:1312.6150.
Smith (b0145) 2002; 17
Thung, Raveendran (b0175) 2009; 2009
Despotovic I, Goossens B, Philips W. Mri segmentation of the human brain: challenges, methods, and applications. Computational and mathematical methods in medicine; 2015.
Zhao (10.1016/j.eij.2019.10.005_b0105) 2011; 5
Wang (10.1016/j.eij.2019.10.005_b0095) 2013; 117
Chen (10.1016/j.eij.2019.10.005_b0115) 2015; 35
Shi (10.1016/j.eij.2019.10.005_b0170) 2015; 24
Caldairou (10.1016/j.eij.2019.10.005_b0100) 2011; 44
Yang (10.1016/j.eij.2019.10.005_b0010) 2015; 14
Cai (10.1016/j.eij.2019.10.005_b0080) 2007; 40
Qiu (10.1016/j.eij.2019.10.005_b0180) 2013; 34
Jiang (10.1016/j.eij.2019.10.005_b0085) 2016; 207
Liu (10.1016/j.eij.2019.10.005_b0060) 2014; 19
Du (10.1016/j.eij.2019.10.005_b0005) 2013; 14
Riad (10.1016/j.eij.2019.10.005_b0040) 2010; vol. 5125
Adhikari (10.1016/j.eij.2019.10.005_b0045) 2015; 34
Thung (10.1016/j.eij.2019.10.005_b0175) 2009; 2009
10.1016/j.eij.2019.10.005_b0015
Yu (10.1016/j.eij.2019.10.005_b0090) 2008
10.1016/j.eij.2019.10.005_b0035
Haralick (10.1016/j.eij.2019.10.005_b0050) 1985; 29
10.1016/j.eij.2019.10.005_b0055
Bezdek (10.1016/j.eij.2019.10.005_b0135) 2013
Alruwaili (10.1016/j.eij.2019.10.005_b0140) 2017; 17
Alipour (10.1016/j.eij.2019.10.005_b0120) 2014; 25
Miao (10.1016/j.eij.2019.10.005_b0030) 2011; 4
Ali (10.1016/j.eij.2019.10.005_b0125) 2015; 40
Chuang (10.1016/j.eij.2019.10.005_b0075) 2006; 30
Smith (10.1016/j.eij.2019.10.005_b0145) 2002; 17
McAuliffe (10.1016/j.eij.2019.10.005_b0155) 2001
Shen (10.1016/j.eij.2019.10.005_b0070) 2005; 9
Ji (10.1016/j.eij.2019.10.005_b0110) 2011; 35
Dice (10.1016/j.eij.2019.10.005_b0165) 1945; 26
10.1016/j.eij.2019.10.005_b0020
10.1016/j.eij.2019.10.005_b0160
Kumar (10.1016/j.eij.2019.10.005_b0025) 2014; 11
Deng (10.1016/j.eij.2019.10.005_b0130) 2016; 31
Dong (10.1016/j.eij.2019.10.005_b0150) 2007; 14
Pham (10.1016/j.eij.2019.10.005_b0065) 2002; vol. 2
References_xml – volume: 34
  start-page: 758
  year: 2015
  end-page: 769
  ident: b0045
  article-title: Conditional spatial fuzzy c-means clustering algorithm for segmentation of MRI images
  publication-title: Appl Soft Comput
– volume: 40
  start-page: 825
  year: 2007
  end-page: 838
  ident: b0080
  article-title: Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation
  publication-title: Pattern Recognition
– volume: 40
  start-page: 3173
  year: 2015
  end-page: 3185
  ident: b0125
  article-title: Multi-resolution MRI brain image segmentation based on morphological pyramid and fuzzy c-mean clustering
  publication-title: Arab J Sci Eng
– reference: Roy S, Nag S, Maitra IK, Bandyopadhyay SK. A review on automated brain tumor detection and segmentation from MRI of brain. arXiv preprint arXiv:1312.6150.
– reference: Cma.mgh.harvard.edu.
– volume: 35
  start-page: 383
  year: 2011
  end-page: 397
  ident: b0110
  article-title: A modified possibilistic fuzzy c-means clustering algorithm for bias field estimation and segmentation of brain mr image
  publication-title: Comput Med Imaging Graph
– volume: 35
  start-page: 724
  year: 2015
  end-page: 734
  ident: b0115
  article-title: Automatic contrast enhancement of brain mr images using hierarchical correlation histogram analysis
  publication-title: J Med Biol Eng
– volume: 14
  start-page: 2
  year: 2015
  ident: b0010
  article-title: Brain MR image denoising for Rician noise using pre-smooth non-local means filter
  publication-title: Biomed Eng Online
– volume: 34
  start-page: 1329
  year: 2013
  end-page: 1338
  ident: b0180
  article-title: A modified interval type-2 fuzzy c-means algorithm with application in mr image segmentation
  publication-title: Pattern Recogn Lett
– volume: 17
  start-page: 143
  year: 2002
  end-page: 155
  ident: b0145
  article-title: Fast robust automated brain extraction
  publication-title: Human Brain Mapping
– reference: Lewis T, Writer S. Human brain: Facts, functions & anatomy; 2016. [accessed: 2019-03-20].
– volume: 30
  start-page: 9
  year: 2006
  end-page: 15
  ident: b0075
  article-title: Fuzzy c-means clustering with spatial information for image segmentation
  publication-title: Comput Med Imaging Graph
– reference: Long-term study plays down risk of brain problems in HIV-positive patients.
– volume: 2009
  start-page: 1
  year: 2009
  end-page: 4
  ident: b0175
  article-title: A survey of image quality measures, in, international conference for technical postgraduates (TECHPOS)
  publication-title: IEEE
– reference: Despotovic I, Goossens B, Philips W. Mri segmentation of the human brain: challenges, methods, and applications. Computational and mathematical methods in medicine; 2015.
– volume: vol. 2
  year: 2002
  ident: b0065
  article-title: Fuzzy clustering with spatial constraints
  publication-title: Proceedings. International Conference on Image Processing
– volume: 14
  start-page: 193
  year: 2007
  end-page: 196
  ident: b0150
  article-title: A new directional weighted median filter for removal of random-valued impulse noise
  publication-title: IEEE Signal Process Lett
– volume: 4
  start-page: 100
  year: 2011
  end-page: 104
  ident: b0030
  article-title: Automatic segmentation of brain tissue based on improved fuzzy c means clustering algorithm
  publication-title: J Biomed Sci Eng
– volume: 14
  start-page: 18682
  year: 2013
  end-page: 18710
  ident: b0005
  article-title: Design of superparamagnetic nanoparticles for magnetic particle imaging (MPI)
  publication-title: Int J Mol Sci
– year: 2013
  ident: b0135
  article-title: Pattern recognition with fuzzy objective function algorithms
– start-page: 484
  year: 2008
  end-page: 493
  ident: b0090
  article-title: Three-level image segmentation based on maximum fuzzy partition entropy of 2-d histogram and quantum genetic algorithm
  publication-title: International Conference on Intelligent Computing
– volume: 5
  start-page: 45
  year: 2011
  end-page: 56
  ident: b0105
  article-title: Fuzzy c-means clustering with non local spatial information for noisy image segmentation
  publication-title: Front Comput Sci China
– volume: 207
  start-page: 22
  year: 2016
  end-page: 35
  ident: b0085
  article-title: Robust level set image segmentation algorithm using local correntropy-based fuzzy c-means clustering with spatial constraints
  publication-title: Neurocomputing
– reference: [accessed: 2019-03-20].
– volume: 44
  start-page: 1916
  year: 2011
  end-page: 1927
  ident: b0100
  article-title: A non-local fuzzy segmentation method: application to brain MRI
  publication-title: Pattern Recogn
– volume: 9
  start-page: 459
  year: 2005
  end-page: 467
  ident: b0070
  article-title: MRI fuzzy segmentation of brain tissue using neighborhood attraction with neural-network optimization
  publication-title: IEEE Trans Inf Technol Biomed
– volume: 26
  start-page: 297
  year: 1945
  end-page: 302
  ident: b0165
  article-title: Measures of the amount of ecologic association between species
  publication-title: Ecology
– volume: 31
  start-page: 501
  year: 2016
  end-page: 511
  ident: b0130
  article-title: A modified fuzzy c-means algorithm for brain mr image segmentation and bias field correction
  publication-title: J Comput Sci Technol
– volume: 11
  start-page: 329
  year: 2014
  end-page: 336
  ident: b0025
  article-title: Performance analysis of brain tumor diagnosis based on soft computing techniques
  publication-title: Am J Appl Sci
– volume: vol. 5125
  start-page: 74
  year: 2010
  end-page: 83
  ident: b0040
  article-title: A new approach for segmentation of brain MR image
  publication-title: Proceedings of the WSEAS International Conference on Environment, Medicine and Health Sciences
– volume: 19
  start-page: 578
  year: 2014
  end-page: 595
  ident: b0060
  article-title: A survey of MRI-based brain tumor segmentation methods
  publication-title: Tsinghua Sci Technol
– volume: 24
  start-page: 5033
  year: 2015
  end-page: 5045
  ident: b0170
  article-title: Visual quality evaluation of image object segmentation: Subjective assessment and objective measure
  publication-title: IEEE Trans Image Process
– volume: 117
  start-page: 1412
  year: 2013
  end-page: 1420
  ident: b0095
  article-title: An adaptive spatial information-theoretic fuzzy clustering algorithm for image segmentation
  publication-title: Comput Vis Image Underst
– volume: 17
  start-page: 252
  year: 2017
  ident: b0140
  article-title: Hybrid genetic filter for restoration of brain MRI images corrupted with impulse noise
  publication-title: Int J Comput Sci Network Secur (IJCSNS)
– volume: 29
  start-page: 100
  year: 1985
  end-page: 132
  ident: b0050
  article-title: Image segmentation techniques
  publication-title: Computer Vision, Graphics, and Image Processing
– volume: 25
  start-page: 1469
  year: 2014
  end-page: 1488
  ident: b0120
  article-title: Fast automatic medical image segmentation based on spatial kernel fuzzy c-means on level set method
  publication-title: Mach Vision Appl
– start-page: 381
  year: 2001
  end-page: 386
  ident: b0155
  article-title: Medical image processing, analysis and visualization in clinical research
  publication-title: Proceedings 14th IEEE Symposium on Computer-Based Medical Systems. CBMS 2001
– volume: 117
  start-page: 1412
  issue: 10
  year: 2013
  ident: 10.1016/j.eij.2019.10.005_b0095
  article-title: An adaptive spatial information-theoretic fuzzy clustering algorithm for image segmentation
  publication-title: Comput Vis Image Underst
  doi: 10.1016/j.cviu.2013.05.001
– volume: vol. 2
  year: 2002
  ident: 10.1016/j.eij.2019.10.005_b0065
  article-title: Fuzzy clustering with spatial constraints
– volume: 11
  start-page: 329
  issue: 2
  year: 2014
  ident: 10.1016/j.eij.2019.10.005_b0025
  article-title: Performance analysis of brain tumor diagnosis based on soft computing techniques
  publication-title: Am J Appl Sci
  doi: 10.3844/ajassp.2014.329.336
– ident: 10.1016/j.eij.2019.10.005_b0020
– ident: 10.1016/j.eij.2019.10.005_b0160
– volume: 29
  start-page: 100
  issue: 1
  year: 1985
  ident: 10.1016/j.eij.2019.10.005_b0050
  article-title: Image segmentation techniques
  publication-title: Computer Vision, Graphics, and Image Processing
  doi: 10.1016/S0734-189X(85)90153-7
– volume: 5
  start-page: 45
  issue: 1
  year: 2011
  ident: 10.1016/j.eij.2019.10.005_b0105
  article-title: Fuzzy c-means clustering with non local spatial information for noisy image segmentation
  publication-title: Front Comput Sci China
  doi: 10.1007/s11704-010-0393-8
– volume: 24
  start-page: 5033
  issue: 12
  year: 2015
  ident: 10.1016/j.eij.2019.10.005_b0170
  article-title: Visual quality evaluation of image object segmentation: Subjective assessment and objective measure
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2015.2473099
– volume: vol. 5125
  start-page: 74
  year: 2010
  ident: 10.1016/j.eij.2019.10.005_b0040
  article-title: A new approach for segmentation of brain MR image
– volume: 4
  start-page: 100
  year: 2011
  ident: 10.1016/j.eij.2019.10.005_b0030
  article-title: Automatic segmentation of brain tissue based on improved fuzzy c means clustering algorithm
  publication-title: J Biomed Sci Eng
  doi: 10.4236/jbise.2011.42014
– volume: 35
  start-page: 383
  issue: 5
  year: 2011
  ident: 10.1016/j.eij.2019.10.005_b0110
  article-title: A modified possibilistic fuzzy c-means clustering algorithm for bias field estimation and segmentation of brain mr image
  publication-title: Comput Med Imaging Graph
  doi: 10.1016/j.compmedimag.2010.12.001
– volume: 17
  start-page: 143
  issue: 3
  year: 2002
  ident: 10.1016/j.eij.2019.10.005_b0145
  article-title: Fast robust automated brain extraction
  publication-title: Human Brain Mapping
  doi: 10.1002/hbm.10062
– ident: 10.1016/j.eij.2019.10.005_b0055
– volume: 30
  start-page: 9
  issue: 1
  year: 2006
  ident: 10.1016/j.eij.2019.10.005_b0075
  article-title: Fuzzy c-means clustering with spatial information for image segmentation
  publication-title: Comput Med Imaging Graph
  doi: 10.1016/j.compmedimag.2005.10.001
– volume: 26
  start-page: 297
  issue: 3
  year: 1945
  ident: 10.1016/j.eij.2019.10.005_b0165
  article-title: Measures of the amount of ecologic association between species
  publication-title: Ecology
  doi: 10.2307/1932409
– volume: 40
  start-page: 825
  issue: 3
  year: 2007
  ident: 10.1016/j.eij.2019.10.005_b0080
  article-title: Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2006.07.011
– volume: 40
  start-page: 3173
  issue: 11
  year: 2015
  ident: 10.1016/j.eij.2019.10.005_b0125
  article-title: Multi-resolution MRI brain image segmentation based on morphological pyramid and fuzzy c-mean clustering
  publication-title: Arab J Sci Eng
  doi: 10.1007/s13369-015-1791-x
– volume: 207
  start-page: 22
  year: 2016
  ident: 10.1016/j.eij.2019.10.005_b0085
  article-title: Robust level set image segmentation algorithm using local correntropy-based fuzzy c-means clustering with spatial constraints
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.03.046
– volume: 35
  start-page: 724
  issue: 6
  year: 2015
  ident: 10.1016/j.eij.2019.10.005_b0115
  article-title: Automatic contrast enhancement of brain mr images using hierarchical correlation histogram analysis
  publication-title: J Med Biol Eng
  doi: 10.1007/s40846-015-0096-6
– volume: 2009
  start-page: 1
  year: 2009
  ident: 10.1016/j.eij.2019.10.005_b0175
  article-title: A survey of image quality measures, in, international conference for technical postgraduates (TECHPOS)
  publication-title: IEEE
– volume: 14
  start-page: 193
  issue: 3
  year: 2007
  ident: 10.1016/j.eij.2019.10.005_b0150
  article-title: A new directional weighted median filter for removal of random-valued impulse noise
  publication-title: IEEE Signal Process Lett
  doi: 10.1109/LSP.2006.884014
– ident: 10.1016/j.eij.2019.10.005_b0015
  doi: 10.1155/2015/450341
– volume: 19
  start-page: 578
  issue: 6
  year: 2014
  ident: 10.1016/j.eij.2019.10.005_b0060
  article-title: A survey of MRI-based brain tumor segmentation methods
  publication-title: Tsinghua Sci Technol
  doi: 10.1109/TST.2014.6961028
– volume: 14
  start-page: 18682
  issue: 9
  year: 2013
  ident: 10.1016/j.eij.2019.10.005_b0005
  article-title: Design of superparamagnetic nanoparticles for magnetic particle imaging (MPI)
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms140918682
– volume: 9
  start-page: 459
  issue: 3
  year: 2005
  ident: 10.1016/j.eij.2019.10.005_b0070
  article-title: MRI fuzzy segmentation of brain tissue using neighborhood attraction with neural-network optimization
  publication-title: IEEE Trans Inf Technol Biomed
  doi: 10.1109/TITB.2005.847500
– year: 2013
  ident: 10.1016/j.eij.2019.10.005_b0135
– ident: 10.1016/j.eij.2019.10.005_b0035
– volume: 31
  start-page: 501
  issue: 3
  year: 2016
  ident: 10.1016/j.eij.2019.10.005_b0130
  article-title: A modified fuzzy c-means algorithm for brain mr image segmentation and bias field correction
  publication-title: J Comput Sci Technol
  doi: 10.1007/s11390-016-1643-5
– volume: 44
  start-page: 1916
  issue: 9
  year: 2011
  ident: 10.1016/j.eij.2019.10.005_b0100
  article-title: A non-local fuzzy segmentation method: application to brain MRI
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2010.06.006
– start-page: 381
  year: 2001
  ident: 10.1016/j.eij.2019.10.005_b0155
  article-title: Medical image processing, analysis and visualization in clinical research
– start-page: 484
  year: 2008
  ident: 10.1016/j.eij.2019.10.005_b0090
  article-title: Three-level image segmentation based on maximum fuzzy partition entropy of 2-d histogram and quantum genetic algorithm
– volume: 25
  start-page: 1469
  issue: 6
  year: 2014
  ident: 10.1016/j.eij.2019.10.005_b0120
  article-title: Fast automatic medical image segmentation based on spatial kernel fuzzy c-means on level set method
  publication-title: Mach Vision Appl
  doi: 10.1007/s00138-014-0606-5
– volume: 34
  start-page: 1329
  issue: 12
  year: 2013
  ident: 10.1016/j.eij.2019.10.005_b0180
  article-title: A modified interval type-2 fuzzy c-means algorithm with application in mr image segmentation
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2013.04.021
– volume: 14
  start-page: 2
  issue: 1
  year: 2015
  ident: 10.1016/j.eij.2019.10.005_b0010
  article-title: Brain MR image denoising for Rician noise using pre-smooth non-local means filter
  publication-title: Biomed Eng Online
  doi: 10.1186/1475-925X-14-2
– volume: 17
  start-page: 252
  issue: 2
  year: 2017
  ident: 10.1016/j.eij.2019.10.005_b0140
  article-title: Hybrid genetic filter for restoration of brain MRI images corrupted with impulse noise
  publication-title: Int J Comput Sci Network Secur (IJCSNS)
– volume: 34
  start-page: 758
  year: 2015
  ident: 10.1016/j.eij.2019.10.005_b0045
  article-title: Conditional spatial fuzzy c-means clustering algorithm for segmentation of MRI images
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2015.05.038
SSID ssj0000612456
Score 2.3328428
Snippet Magnetic Resonance Imaging (MRI) is a medical imaging modality that is commonly employed for the analysis of different diseases. However, these images come...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 51
SubjectTerms Clustering algorithm
Fuzzy C-means
MRI
Title A robust clustering algorithm using spatial fuzzy C-means for brain MR images
URI https://dx.doi.org/10.1016/j.eij.2019.10.005
https://doaj.org/article/555d9e413f6447ca82f54fad13cac535
Volume 21
WOSCitedRecordID wos000518407500006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  issn: 1110-8665
  databaseCode: DOA
  dateStart: 20100101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: false
  ssIdentifier: ssj0000612456
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iHvQgPnF9kYMnoZpumm1yVHHxoIuIireSTBJd2YfsQ3B_vZO0K_WgXrz0ENKkTKbzzZCPbwg5kgxYpplKgDksUFxqEsVTnmipJUhIJYuyi4_Xeacjn57Uba3VV-CElfLApeFOhRBWOQy1HpE7By2bXmRe25SDBsGjeinLVa2YKmNwGm70YmcVDDRB1G1-pRnJXa77Gmhd6iQyu8Q3UIra_TVsquFNe42sVokiPSs_cJ0suMEGWanJB26SmzM6GprpeEKhNw2CBzhKde95iAX_S58GSvszHQfKNC7kp7PZB71I-g7BiWKqSk3oDkFv7mi3j0FlvEUe2pf3F1dJ1R4hAUThSaKYFd5y3sqAGyU9MOGdldZw6YKMF8PjYdzynNnM4EO2gGM-gr-wEdDKDd8mi4PhwO0Q2vQScq8y7j0WfNwanVnd1KCka2nPoEHY3D4FVNrhoYVFr5iTxF4LNGkRTBqG0KQNcvz1ylspnPHb5PNg9K-JQfM6DqAnFJUnFH95QoNk8yMrqvShTAtwqe7Pe-_-x957ZLkZCvFITtsni5PR1B2QJXifdMejw-ibn3uH5jQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+robust+clustering+algorithm+using+spatial+fuzzy+C-means+for+brain+MR+images&rft.jtitle=Egyptian+informatics+journal&rft.au=Madallah+Alruwaili&rft.au=Muhammad+Hameed+Siddiqi&rft.au=Muhammad+Arshad+Javed&rft.date=2020-03-01&rft.pub=Elsevier&rft.issn=1110-8665&rft.volume=21&rft.issue=1&rft.spage=51&rft.epage=66&rft_id=info:doi/10.1016%2Fj.eij.2019.10.005&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_555d9e413f6447ca82f54fad13cac535
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1110-8665&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1110-8665&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1110-8665&client=summon