Classification of Normal and Apoptotic Cells from Fluorescence Microscopy Images Using Generalized Polynomial Chaos and Level Set Function

Accurate automated quantitative analysis of living cells based on fluorescence microscopy images can be very useful for fast evaluation of experimental outcomes and cell culture protocols. In this work, an algorithm is developed for fast differentiation of normal and apoptotic viable Chinese hamster...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Microscopy and microanalysis Ročník 22; číslo 3; s. 475 - 486
Hlavní autoři: Du, Yuncheng, Budman, Hector M., Duever, Thomas A.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York, USA Cambridge University Press 01.06.2016
Oxford University Press
Témata:
ISSN:1431-9276, 1435-8115, 1435-8115
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Accurate automated quantitative analysis of living cells based on fluorescence microscopy images can be very useful for fast evaluation of experimental outcomes and cell culture protocols. In this work, an algorithm is developed for fast differentiation of normal and apoptotic viable Chinese hamster ovary (CHO) cells. For effective segmentation of cell images, a stochastic segmentation algorithm is developed by combining a generalized polynomial chaos expansion with a level set function-based segmentation algorithm. This approach provides a probabilistic description of the segmented cellular regions along the boundary, from which it is possible to calculate morphological changes related to apoptosis, i.e., the curvature and length of a cell’s boundary. These features are then used as inputs to a support vector machine (SVM) classifier that is trained to distinguish between normal and apoptotic viable states of CHO cell images. The use of morphological features obtained from the stochastic level set segmentation of cell images in combination with the trained SVM classifier is more efficient in terms of differentiation accuracy as compared with the original deterministic level set method.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1431-9276
1435-8115
1435-8115
DOI:10.1017/S1431927616000702