Parallel Implementation of a Sensitivity Operator-Based Source Identification Algorithm for Distributed Memory Computers

Large-scale inverse problems that require high-performance computing arise in various fields, including regional air quality studies. The paper focuses on parallel solutions of an emission source identification problem for a 2D advection–diffusion–reaction model where the sources are identified by h...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematics (Basel) Ročník 10; číslo 23; s. 4522
Hlavní autoři: Penenko, Alexey, Rusin, Evgeny
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.12.2022
Témata:
ISSN:2227-7390, 2227-7390
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Large-scale inverse problems that require high-performance computing arise in various fields, including regional air quality studies. The paper focuses on parallel solutions of an emission source identification problem for a 2D advection–diffusion–reaction model where the sources are identified by heterogeneous measurement data. In the inverse modeling approach we use, a source identification problem is transformed to a quasi-linear operator equation with a sensitivity operator, which allows working in a unified way with heterogeneous measurement data and provides natural parallelization of numeric algorithms by concurrent calculation of the rows of a sensitivity operator matrix. The parallel version of the algorithm implemented with a message passing interface (MPI) has shown a 40× speedup on four Intel Xeon Gold 6248R nodes in an inverse modeling scenario for the Lake Baikal region.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2227-7390
2227-7390
DOI:10.3390/math10234522