Gram Points in the Universality of the Dirichlet Series with Periodic Coefficients

Let a={am:m∈N} be a periodic multiplicative sequence of complex numbers and L(s;a), s=σ+it a Dirichlet series with coefficients am. In the paper, we obtain a theorem on the approximation of non-vanishing analytic functions defined in the strip 1/2<σ<1 via discrete shifts L(s+ihtk;a), h>0, k...

Full description

Saved in:
Bibliographic Details
Published in:Mathematics (Basel) Vol. 11; no. 22; p. 4615
Main Authors: Šiaučiūnas, Darius, Tekorė, Monika
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.11.2023
Subjects:
ISSN:2227-7390, 2227-7390
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Let a={am:m∈N} be a periodic multiplicative sequence of complex numbers and L(s;a), s=σ+it a Dirichlet series with coefficients am. In the paper, we obtain a theorem on the approximation of non-vanishing analytic functions defined in the strip 1/2<σ<1 via discrete shifts L(s+ihtk;a), h>0, k∈N, where {tk:k∈N} is the sequence of Gram points. We prove that the set of such shifts approximating a given analytic function is infinite. This result extends and covers that of [Korolev, M.; Laurinčikas, A. A new application of the Gram points. Aequat. Math. 2019, 93, 859–873]. For the proof, a limit theorem on weakly convergent probability measures in the space of analytic functions is applied.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2227-7390
2227-7390
DOI:10.3390/math11224615