Gram Points in the Universality of the Dirichlet Series with Periodic Coefficients

Let a={am:m∈N} be a periodic multiplicative sequence of complex numbers and L(s;a), s=σ+it a Dirichlet series with coefficients am. In the paper, we obtain a theorem on the approximation of non-vanishing analytic functions defined in the strip 1/2<σ<1 via discrete shifts L(s+ihtk;a), h>0, k...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematics (Basel) Ročník 11; číslo 22; s. 4615
Hlavní autoři: Šiaučiūnas, Darius, Tekorė, Monika
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.11.2023
Témata:
ISSN:2227-7390, 2227-7390
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Let a={am:m∈N} be a periodic multiplicative sequence of complex numbers and L(s;a), s=σ+it a Dirichlet series with coefficients am. In the paper, we obtain a theorem on the approximation of non-vanishing analytic functions defined in the strip 1/2<σ<1 via discrete shifts L(s+ihtk;a), h>0, k∈N, where {tk:k∈N} is the sequence of Gram points. We prove that the set of such shifts approximating a given analytic function is infinite. This result extends and covers that of [Korolev, M.; Laurinčikas, A. A new application of the Gram points. Aequat. Math. 2019, 93, 859–873]. For the proof, a limit theorem on weakly convergent probability measures in the space of analytic functions is applied.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2227-7390
2227-7390
DOI:10.3390/math11224615