Benchmark of proton exchange membrane fuel cell parameters extraction with metaheuristic optimization algorithms
Proton exchange membrane fuel cell (PEMFC) models are multivariate with different nonlinear elements which should be identified accurately to assure dependable modeling. Metaheuristic algorithms are perfect candidates for this purpose since they do an informed search for finding the parameters. This...
Uloženo v:
| Vydáno v: | Energy (Oxford) Ročník 183; s. 912 - 925 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Oxford
Elsevier Ltd
15.09.2019
Elsevier BV |
| Témata: | |
| ISSN: | 0360-5442, 1873-6785 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Proton exchange membrane fuel cell (PEMFC) models are multivariate with different nonlinear elements which should be identified accurately to assure dependable modeling. Metaheuristic algorithms are perfect candidates for this purpose since they do an informed search for finding the parameters. This paper utilizes three algorithms, namely shuffled frog-leaping algorithm (SFLA), firefly optimization algorithm (FOA), and imperialist competitive algorithm (ICA) for the PEMFC model calibration. In this regard, firstly, the algorithms are employed to find the parameters of a benchmark PEMFC model by minimizing the sum of squared errors (SSE) between the measured and estimated voltage for two available case studies in the literature. After conducting 100 independent runs, the algorithms are compared in terms of the best and the worst SSEs, the variance, and standard deviation. This comparison indicates that SFLA marginally outperforms ICA and FOA regarding the best SSE in both cases while it performs 20% and twofold better than other algorithms concerning the worst SSE. Furthermore, the obtained variance and standard deviation by SFLA are much less than the other algorithms showing the precision and repeatability of this method. Finally, SFLA is used to calibrate the model for a new case study (Horizon 500-W PEMFC) with variable temperature.
[Display omitted]
•New metaheuristic algorithms are used for PEMFC parameters extraction problem.•Robustness of the algorithms is assessed over 100 independent runs.•A new 500-W open cathode PEMFC case study is introduced.•SFLA has been selected for the parameters identification of the new case study. |
|---|---|
| AbstractList | Proton exchange membrane fuel cell (PEMFC) models are multivariate with different nonlinear elements which should be identified accurately to assure dependable modeling. Metaheuristic algorithms are perfect candidates for this purpose since they do an informed search for finding the parameters. This paper utilizes three algorithms, namely shuffled frog-leaping algorithm (SFLA), firefly optimization algorithm (FOA), and imperialist competitive algorithm (ICA) for the PEMFC model calibration. In this regard, firstly, the algorithms are employed to find the parameters of a benchmark PEMFC model by minimizing the sum of squared errors (SSE) between the measured and estimated voltage for two available case studies in the literature. After conducting 100 independent runs, the algorithms are compared in terms of the best and the worst SSEs, the variance, and standard deviation. This comparison indicates that SFLA marginally outperforms ICA and FOA regarding the best SSE in both cases while it performs 20% and twofold better than other algorithms concerning the worst SSE. Furthermore, the obtained variance and standard deviation by SFLA are much less than the other algorithms showing the precision and repeatability of this method. Finally, SFLA is used to calibrate the model for a new case study (Horizon 500-W PEMFC) with variable temperature. Proton exchange membrane fuel cell (PEMFC) models are multivariate with different nonlinear elements which should be identified accurately to assure dependable modeling. Metaheuristic algorithms are perfect candidates for this purpose since they do an informed search for finding the parameters. This paper utilizes three algorithms, namely shuffled frog-leaping algorithm (SFLA), firefly optimization algorithm (FOA), and imperialist competitive algorithm (ICA) for the PEMFC model calibration. In this regard, firstly, the algorithms are employed to find the parameters of a benchmark PEMFC model by minimizing the sum of squared errors (SSE) between the measured and estimated voltage for two available case studies in the literature. After conducting 100 independent runs, the algorithms are compared in terms of the best and the worst SSEs, the variance, and standard deviation. This comparison indicates that SFLA marginally outperforms ICA and FOA regarding the best SSE in both cases while it performs 20% and twofold better than other algorithms concerning the worst SSE. Furthermore, the obtained variance and standard deviation by SFLA are much less than the other algorithms showing the precision and repeatability of this method. Finally, SFLA is used to calibrate the model for a new case study (Horizon 500-W PEMFC) with variable temperature. [Display omitted] •New metaheuristic algorithms are used for PEMFC parameters extraction problem.•Robustness of the algorithms is assessed over 100 independent runs.•A new 500-W open cathode PEMFC case study is introduced.•SFLA has been selected for the parameters identification of the new case study. |
| Author | Kelouwani, S. Macias, A. Boulon, L. Kandidayeni, M. Khalatbarisoltani, A. |
| Author_xml | – sequence: 1 givenname: M. surname: Kandidayeni fullname: Kandidayeni, M. email: mohsen.kandi.dayeni@uqtr.ca organization: Hydrogen Research Institute, Department of Electrical Engineering and Computer Science, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, G9A 5H7, Canada – sequence: 2 givenname: A. surname: Macias fullname: Macias, A. organization: Hydrogen Research Institute, Department of Electrical Engineering and Computer Science, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, G9A 5H7, Canada – sequence: 3 givenname: A. surname: Khalatbarisoltani fullname: Khalatbarisoltani, A. organization: Hydrogen Research Institute, Department of Electrical Engineering and Computer Science, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, G9A 5H7, Canada – sequence: 4 givenname: L. surname: Boulon fullname: Boulon, L. organization: Hydrogen Research Institute, Department of Electrical Engineering and Computer Science, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, G9A 5H7, Canada – sequence: 5 givenname: S. surname: Kelouwani fullname: Kelouwani, S. organization: Hydrogen Research Institute, Department of Mechanical Engineering, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, G9A 5H7, Canada |
| BookMark | eNqFkT9v2zAQxYkiAer8-QYdBGTJIoWkRErMUKAN2rSAgSzJTNDk0aYriSpJpXU-fWi7U4Z0uuF-73DvvTN0MvoREPpEcEUw4TfbCkYI611FMREV5hVh9ANakK6tS9527AQtcM1xyZqGfkRnMW4xxqwTYoGmrzDqzaDCr8LbYgo--bGAv3qjxjUUAwyroEYo7Ax9oaHvi0kFNUCCEDOWgtLJZcUflzaZTmoDc3AxOV34KbnBvajDXvVrHzIzxAt0alUf4fLfPEdP37893v0olw_3P---LEvdYJ7KlgFmRlGOa2FMJ5hoOdGN5aI2K8VX2Fqj2aphRNNWUWuVYYpRUFQYygmvz9H18W729HuGmOTg4t5BtuPnKCnteNfithEZvXqDbv0cxvxdpkQt6oYxmqnbI6WDjzGAldqlg7ucguslwXJfhtzKYxlyX4bEXJKDuHkjnoLLqe_-J_t8lEFO6tlBkFG7XBgYF0Anabx7_8Ar4oirIw |
| CitedBy_id | crossref_primary_10_1002_er_6946 crossref_primary_10_1080_15567036_2023_2252672 crossref_primary_10_1016_j_ijhydene_2024_09_211 crossref_primary_10_1002_er_4809 crossref_primary_10_1016_j_fuel_2023_127586 crossref_primary_10_1016_j_icheatmasstransfer_2025_109570 crossref_primary_10_3390_en17102333 crossref_primary_10_3389_fenrg_2022_964042 crossref_primary_10_1016_j_energy_2020_118331 crossref_primary_10_1080_01430750_2020_1745276 crossref_primary_10_1016_j_enconman_2024_118371 crossref_primary_10_3389_fenrg_2022_875332 crossref_primary_10_1016_j_enconman_2024_119231 crossref_primary_10_1016_j_ijhydene_2021_06_126 crossref_primary_10_1016_j_measurement_2024_115302 crossref_primary_10_1016_j_energy_2024_130601 crossref_primary_10_3390_pr9081416 crossref_primary_10_1016_j_enconman_2021_114444 crossref_primary_10_1016_j_apenergy_2020_115293 crossref_primary_10_1016_j_egyr_2024_08_015 crossref_primary_10_1016_j_energy_2021_119836 crossref_primary_10_1002_oca_3197 crossref_primary_10_1007_s00500_022_07520_y crossref_primary_10_1016_j_energy_2021_119951 crossref_primary_10_1016_j_ijhydene_2020_06_256 crossref_primary_10_1007_s10586_024_05064_4 crossref_primary_10_1016_j_enconman_2020_113777 crossref_primary_10_1016_j_enconman_2022_116338 crossref_primary_10_1007_s41939_025_00814_2 crossref_primary_10_1038_s41598_024_81160_0 crossref_primary_10_1016_j_engappai_2024_107880 crossref_primary_10_1109_TII_2023_3347736 crossref_primary_10_1016_j_energy_2022_123530 crossref_primary_10_1155_2024_7616065 crossref_primary_10_1080_15567036_2021_1999347 crossref_primary_10_1049_rpg2_12156 crossref_primary_10_1002_er_7576 crossref_primary_10_1038_s41598_024_71223_7 crossref_primary_10_1016_j_egyr_2022_04_015 crossref_primary_10_3390_electronics14010035 crossref_primary_10_1038_s41598_024_81168_6 crossref_primary_10_1016_j_enconman_2022_116580 crossref_primary_10_1016_j_applthermaleng_2023_121114 crossref_primary_10_1007_s00202_024_02935_2 crossref_primary_10_1016_j_ijhydene_2025_150931 crossref_primary_10_1016_j_ijhydene_2025_01_256 crossref_primary_10_1108_EC_03_2025_0219 crossref_primary_10_1109_ACCESS_2021_3049528 crossref_primary_10_1016_j_energy_2023_128456 crossref_primary_10_1007_s40095_021_00410_3 crossref_primary_10_1002_fuce_70011 crossref_primary_10_1016_j_energy_2023_127083 crossref_primary_10_1016_j_energy_2023_130130 crossref_primary_10_1002_fuce_202100006 crossref_primary_10_3389_fenrg_2022_893475 crossref_primary_10_1016_j_renene_2020_12_131 crossref_primary_10_1080_15435075_2022_2131432 crossref_primary_10_1007_s00521_021_05821_1 crossref_primary_10_1016_j_enconman_2020_112501 crossref_primary_10_1002_asjc_3490 crossref_primary_10_1002_er_6065 crossref_primary_10_3390_su132212771 crossref_primary_10_1016_j_energy_2022_123830 crossref_primary_10_1016_j_ijhydene_2025_04_431 crossref_primary_10_3390_en13143713 crossref_primary_10_1016_j_enconman_2021_114099 crossref_primary_10_1002_er_6987 crossref_primary_10_1016_j_ijhydene_2023_05_347 crossref_primary_10_1109_ACCESS_2024_3453594 crossref_primary_10_1016_j_enconman_2025_119655 crossref_primary_10_1002_er_5527 crossref_primary_10_1002_er_6616 crossref_primary_10_1109_ACCESS_2023_3236023 crossref_primary_10_1016_j_energy_2022_126165 crossref_primary_10_1016_j_egyr_2023_07_002 crossref_primary_10_1038_s41598_023_35581_y crossref_primary_10_1016_j_egyr_2024_07_063 crossref_primary_10_3390_en14030619 crossref_primary_10_3390_su15054625 crossref_primary_10_1002_er_5244 crossref_primary_10_1080_15435075_2021_1904939 crossref_primary_10_1109_ACCESS_2020_2973351 crossref_primary_10_1016_j_matcom_2020_12_021 crossref_primary_10_1016_j_jclepro_2020_124776 crossref_primary_10_3390_su13147911 crossref_primary_10_1016_j_enconman_2019_112197 crossref_primary_10_1016_j_seta_2024_103673 crossref_primary_10_1016_j_energy_2024_130235 crossref_primary_10_1038_s41598_025_93162_7 crossref_primary_10_3390_en14165022 crossref_primary_10_1109_TIA_2021_3116549 crossref_primary_10_1016_j_jclepro_2020_121660 crossref_primary_10_3390_app15158316 crossref_primary_10_1016_j_enconman_2022_115324 crossref_primary_10_1002_er_6282 crossref_primary_10_1016_j_ijhydene_2020_11_119 crossref_primary_10_1038_s41598_023_46847_w crossref_primary_10_1080_15567036_2020_1829203 crossref_primary_10_1109_TTE_2024_3361649 crossref_primary_10_1016_j_enconman_2020_113220 crossref_primary_10_1016_j_knosys_2023_111134 crossref_primary_10_1016_j_enconman_2025_119483 crossref_primary_10_3389_fenrg_2024_1384649 crossref_primary_10_1007_s00202_023_02221_7 crossref_primary_10_3390_su12198127 crossref_primary_10_1016_j_rineng_2024_103369 crossref_primary_10_1002_fuce_201900155 crossref_primary_10_1111_jfpe_13411 crossref_primary_10_3390_en14185631 crossref_primary_10_1016_j_ces_2020_116100 crossref_primary_10_1016_j_energy_2025_136079 crossref_primary_10_1016_j_egyr_2022_02_066 crossref_primary_10_3390_en17122917 |
| Cites_doi | 10.1016/j.asej.2015.05.003 10.1002/fuce.200400072 10.1016/j.energy.2012.01.039 10.1016/j.ijhydene.2013.12.110 10.1109/TIE.2009.2026760 10.1016/j.apenergy.2018.02.071 10.1109/TIE.2004.834972 10.1016/j.energy.2019.02.106 10.1016/j.renene.2017.12.051 10.1016/j.rser.2018.05.017 10.1016/j.renene.2012.10.012 10.1080/03052150500384759 10.1002/er.1170 10.1016/j.energy.2017.07.070 10.1016/j.ijhydene.2012.02.131 10.1149/1.2220792 10.1016/j.energy.2015.03.117 10.1016/j.energy.2017.03.110 10.1016/j.ijhydene.2014.10.045 10.1109/TIE.2011.2172173 10.1016/j.ijhydene.2018.11.140 10.1007/s40565-016-0196-5 10.1109/TII.2014.2317982 10.1016/j.energy.2017.04.110 10.1016/j.jpowsour.2018.01.075 10.1016/j.seta.2015.09.001 10.1016/j.renene.2017.04.036 10.1016/j.ijhydene.2013.03.106 10.1016/j.energy.2016.04.093 10.1016/j.energy.2018.11.095 10.1016/j.renene.2017.04.014 10.1016/j.egypro.2019.04.003 10.1016/j.energy.2018.11.140 10.1016/j.ijhydene.2008.01.013 10.1002/fuce.201500190 10.1016/j.energy.2015.06.081 10.1149/1.2043866 10.1049/iet-rpg.2017.0232 10.1002/fuce.201800025 10.1016/j.ijepes.2014.04.043 10.1016/j.enconman.2010.05.012 10.1016/j.asej.2015.05.007 10.1016/j.engappai.2013.07.016 10.1016/S0378-7753(99)00484-X |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier Ltd Copyright Elsevier BV Sep 15, 2019 |
| Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright Elsevier BV Sep 15, 2019 |
| DBID | AAYXX CITATION 7SP 7ST 7TB 8FD C1K F28 FR3 KR7 L7M SOI 7S9 L.6 |
| DOI | 10.1016/j.energy.2019.06.152 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Environmental Sciences |
| EISSN | 1873-6785 |
| EndPage | 925 |
| ExternalDocumentID | 10_1016_j_energy_2019_06_152 S0360544219312848 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SES SPC SPCBC SSR SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ 9DU AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABFNM ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AGQPQ AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW WUQ ~HD 7SP 7ST 7TB 8FD AGCQF C1K F28 FR3 KR7 L7M SOI 7S9 L.6 |
| ID | FETCH-LOGICAL-c406t-75e05da26039dd8959761c4f693dba6b0ffdc5b451c27a2ffad5a52ea29d26163 |
| ISICitedReferencesCount | 138 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000483005400077&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0360-5442 |
| IngestDate | Sat Sep 27 19:08:04 EDT 2025 Wed Aug 13 11:30:25 EDT 2025 Sat Nov 29 07:20:59 EST 2025 Tue Nov 18 22:25:26 EST 2025 Fri Feb 23 02:23:59 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | PEMFC Shuffled frog-leaping algorithm Metaheuristic algorithms Semi-empirical modeling |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c406t-75e05da26039dd8959761c4f693dba6b0ffdc5b451c27a2ffad5a52ea29d26163 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PQID | 2293934552 |
| PQPubID | 2045484 |
| PageCount | 14 |
| ParticipantIDs | proquest_miscellaneous_2286870749 proquest_journals_2293934552 crossref_citationtrail_10_1016_j_energy_2019_06_152 crossref_primary_10_1016_j_energy_2019_06_152 elsevier_sciencedirect_doi_10_1016_j_energy_2019_06_152 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-09-15 |
| PublicationDateYYYYMMDD | 2019-09-15 |
| PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Energy (Oxford) |
| PublicationYear | 2019 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Atashpaz-Gargari, Lucas (bib52) 2007 Rajasekar, Jacob, Balasubramanian, Priya, Sangeetha, Sudhakar Babu (bib38) 2015; 6 Wu, Yuan, Wang, Blanco, Martin, Zhang (bib14) 2008; 33 Priya, Sathishkumar, Rajasekar (bib26) 2018; 93 El-Fergany (bib30) 2018; 119 Petrone, Zheng, Hissel, Péra, Pianese, Sorrentino (bib12) 2013; 38 Sun, Wang, Bi, Srinivasan (bib36) 2015; 90 Amamou, Kandidayeni, Boulon, Kelouwani (bib10) 2018; 216 Kandidayeni, Macias, Amamou, Boulon, Kelouwani (bib9) 2018; 18 El-Fergany (bib31) 2018; 12 Restrepo, Konjedic, Garces, Calvente, Giral (bib37) 2015; 11 Gong, Yan, Liu, Cai (bib40) 2015; 86 Sadollah, Choi, Kim (bib23) 2015 Turgut, Coban (bib34) 2016; 7 Soltani, Kandidayeni, Boulon, St-Pierre (bib5) 2019; 162 Xu, Wang, Wang (bib28) 2019; 173 Amphlett, Baumert, Mann, Peppley, Roberge, Harris (bib17) 1995 Cheng, Zhang (bib43) 2014; 62 Nguyen, White (bib45) 1993; 140 Chavan, Talange (bib7) 2017; 138 Ettihir, Boulon, Becherif, Agbossou, Ramadan (bib13) 2014; 39 Boulon, Hissel, Bouscayrol, Pera (bib16) 2010; 57 Blal, Benatiallah, NeÇaibia, Lachtar, Sahouane, Belasri (bib6) 2019; 168 Soltani, Mohammad Taghi Bathaee (bib18) 2010; 51 Jha, Puppala (bib1) 2017; 127 Tripathi, Ikbal (bib24) 2015; 132 Khan, Iqbal (bib47) 2005; 5 Askarzadeh, Rezazadeh (bib22) 2012; 59 Priya, Sudhakar Babu, Balasubramanian, Sathish Kumar, Rajasekar (bib39) 2015; 12 Mann, Amphlett, Hooper, Jensen, Peppley, Roberge (bib44) 2000; 86 Ali, El-Hameed, Farahat (bib32) 2017; 111 Karamanev, Pupkevich, Penev, Glibin, Gohil, Vajihinejad (bib3) 2017; 129 Zhao, Huang (bib25) 2017 Fathy, Rezk (bib51) 2017; 111 Al-Nassar, Neelamani, Al-Salem, Al-Dashti (bib2) 2019; 169 Uzunoglu, Alam (bib4) 2018 Yang, Chellali, Lu, Li, Bo (bib33) 2016; 109 Macias, Kandidayeni, Boulon, Chaoui (bib8) 2018 Kandidayeni, Macias, Boulon, Kelouwani (bib11) 2018 Niu, Zhang, Li (bib41) 2014; 39 Niya, Hoorfar (bib46) 2014 Eusuff, Lansey, Pasha (bib50) 2006; 38 Chen, Wang (bib29) 2019; 44 Mo, Zhu, Wei, Cao (bib27) 2006; 30 SALEH, ALI, ZHANG (bib54) October 01 2016; 4 Yang, Wang (bib20) 2012; 37 Garg (bib49) 2016; 274 Geem, Noh (bib35) 2016; 16 Chakraborty, Abbott, Das (bib21) 2012; 40 Yang (bib53) 2014 Kandidayeni, Macias, Amamou, Boulon, Kelouwani, Chaoui (bib19) 2018; 380 Gong, Cai (bib42) 2014; 27 Saadi, Becherif, Aboubou, Ayad (bib15) 2013; 56 Correa, Farret, Canha, Simoes (bib48) 2004; 51 Xu (10.1016/j.energy.2019.06.152_bib28) 2019; 173 Amphlett (10.1016/j.energy.2019.06.152_bib17) 1995 Correa (10.1016/j.energy.2019.06.152_bib48) 2004; 51 Kandidayeni (10.1016/j.energy.2019.06.152_bib9) 2018; 18 Ali (10.1016/j.energy.2019.06.152_bib32) 2017; 111 Cheng (10.1016/j.energy.2019.06.152_bib43) 2014; 62 Sadollah (10.1016/j.energy.2019.06.152_bib23) 2015 Wu (10.1016/j.energy.2019.06.152_bib14) 2008; 33 El-Fergany (10.1016/j.energy.2019.06.152_bib31) 2018; 12 Yang (10.1016/j.energy.2019.06.152_bib20) 2012; 37 Mo (10.1016/j.energy.2019.06.152_bib27) 2006; 30 Zhao (10.1016/j.energy.2019.06.152_bib25) 2017 SALEH (10.1016/j.energy.2019.06.152_bib54) 2016; 4 Niu (10.1016/j.energy.2019.06.152_bib41) 2014; 39 Mann (10.1016/j.energy.2019.06.152_bib44) 2000; 86 Chen (10.1016/j.energy.2019.06.152_bib29) 2019; 44 Jha (10.1016/j.energy.2019.06.152_bib1) 2017; 127 Turgut (10.1016/j.energy.2019.06.152_bib34) 2016; 7 Karamanev (10.1016/j.energy.2019.06.152_bib3) 2017; 129 Chakraborty (10.1016/j.energy.2019.06.152_bib21) 2012; 40 Askarzadeh (10.1016/j.energy.2019.06.152_bib22) 2012; 59 Eusuff (10.1016/j.energy.2019.06.152_bib50) 2006; 38 Yang (10.1016/j.energy.2019.06.152_bib33) 2016; 109 Gong (10.1016/j.energy.2019.06.152_bib42) 2014; 27 Gong (10.1016/j.energy.2019.06.152_bib40) 2015; 86 Soltani (10.1016/j.energy.2019.06.152_bib5) 2019; 162 Kandidayeni (10.1016/j.energy.2019.06.152_bib11) 2018 Boulon (10.1016/j.energy.2019.06.152_bib16) 2010; 57 Khan (10.1016/j.energy.2019.06.152_bib47) 2005; 5 Soltani (10.1016/j.energy.2019.06.152_bib18) 2010; 51 Priya (10.1016/j.energy.2019.06.152_bib39) 2015; 12 Yang (10.1016/j.energy.2019.06.152_bib53) 2014 Saadi (10.1016/j.energy.2019.06.152_bib15) 2013; 56 Fathy (10.1016/j.energy.2019.06.152_bib51) 2017; 111 Blal (10.1016/j.energy.2019.06.152_bib6) 2019; 168 Macias (10.1016/j.energy.2019.06.152_bib8) 2018 Al-Nassar (10.1016/j.energy.2019.06.152_bib2) 2019; 169 Chavan (10.1016/j.energy.2019.06.152_bib7) 2017; 138 Ettihir (10.1016/j.energy.2019.06.152_bib13) 2014; 39 Priya (10.1016/j.energy.2019.06.152_bib26) 2018; 93 El-Fergany (10.1016/j.energy.2019.06.152_bib30) 2018; 119 Rajasekar (10.1016/j.energy.2019.06.152_bib38) 2015; 6 Uzunoglu (10.1016/j.energy.2019.06.152_bib4) 2018 Kandidayeni (10.1016/j.energy.2019.06.152_bib19) 2018; 380 Amamou (10.1016/j.energy.2019.06.152_bib10) 2018; 216 Geem (10.1016/j.energy.2019.06.152_bib35) 2016; 16 Petrone (10.1016/j.energy.2019.06.152_bib12) 2013; 38 Garg (10.1016/j.energy.2019.06.152_bib49) 2016; 274 Sun (10.1016/j.energy.2019.06.152_bib36) 2015; 90 Niya (10.1016/j.energy.2019.06.152_bib46) 2014 Nguyen (10.1016/j.energy.2019.06.152_bib45) 1993; 140 Tripathi (10.1016/j.energy.2019.06.152_bib24) 2015; 132 Restrepo (10.1016/j.energy.2019.06.152_bib37) 2015; 11 Atashpaz-Gargari (10.1016/j.energy.2019.06.152_bib52) 2007 |
| References_xml | – volume: 168 start-page: 182 year: 2019 end-page: 199 ident: bib6 article-title: Contribution and investigation to compare models parameters of (PEMFC), comprehensives review of fuel cell models and their degradation publication-title: Energy – volume: 93 start-page: 121 year: 2018 end-page: 144 ident: bib26 article-title: A comprehensive review on parameter estimation techniques for Proton Exchange Membrane fuel cell modelling publication-title: Renew Sustain Energy Rev – volume: 40 start-page: 387 year: 2012 end-page: 399 ident: bib21 article-title: PEM fuel cell modeling using differential evolution publication-title: Energy – start-page: 111 year: 2014 end-page: 127 ident: bib53 article-title: Chapter 8 - firefly algorithms publication-title: Nature-inspired optimization algorithms – volume: 274 start-page: 292 year: 2016 end-page: 305 ident: bib49 article-title: A hybrid PSO-GA algorithm for constrained optimization problems publication-title: Appl Math Comput – volume: 132 start-page: 0975 year: 2015 end-page: 8887 ident: bib24 article-title: Optimization of LMS algorithm for adaptive filtering using global optimization techniques publication-title: Int J Comput Appl – volume: 127 start-page: 116 year: 2017 end-page: 127 ident: bib1 article-title: Prospects of renewable energy sources in India: prioritization of alternative sources in terms of Energy Index publication-title: Energy – volume: 33 start-page: 1735 year: 2008 end-page: 1746 ident: bib14 article-title: Diagnostic tools in PEM fuel cell research: Part I Electrochemical techniques publication-title: Int J Hydrogen Energy – volume: 12 start-page: 46 year: 2015 end-page: 52 ident: bib39 article-title: A novel approach for fuel cell parameter estimation using simple Genetic Algorithm publication-title: Sustainable Energy Technologies and Assessments – volume: 111 start-page: 307 year: 2017 end-page: 320 ident: bib51 article-title: Parameter estimation of photovoltaic system using imperialist competitive algorithm publication-title: Renew Energy – volume: 6 start-page: 1187 year: 2015 end-page: 1194 ident: bib38 article-title: Comparative study of PEM fuel cell parameter extraction using Genetic Algorithm publication-title: Ain Shams Engineering Journal – volume: 173 start-page: 457 year: 2019 end-page: 467 ident: bib28 article-title: Parameter estimation of proton exchange membrane fuel cells using eagle strategy based on JAYA algorithm and Nelder-Mead simplex method publication-title: Energy – volume: 109 start-page: 569 year: 2016 end-page: 577 ident: bib33 article-title: Modeling and optimization for proton exchange membrane fuel cell stack using aging and challenging P systems based optimization algorithm publication-title: Energy – volume: 51 start-page: 2492 year: 2010 end-page: 2500 ident: bib18 article-title: Development of an empirical dynamic model for a Nexa PEM fuel cell power module publication-title: Energy Convers Manag – start-page: 565 year: 2017 end-page: 570 ident: bib25 article-title: On initialization of the Kalman filter publication-title: 2017 6th international symposium on advanced control of industrial processes – volume: 7 start-page: 347 year: 2016 end-page: 360 ident: bib34 article-title: Optimal proton exchange membrane fuel cell modelling based on hybrid Teaching Learning Based Optimization – differential Evolution algorithm publication-title: Ain Shams Engineering Journal – volume: 90 start-page: 1334 year: 2015 end-page: 1341 ident: bib36 article-title: Parameter identification of PEMFC model based on hybrid adaptive differential evolution algorithm publication-title: Energy – volume: 51 start-page: 1103 year: 2004 end-page: 1112 ident: bib48 article-title: An electrochemical-based fuel-cell model suitable for electrical engineering automation approach publication-title: IEEE Trans Ind Electron – volume: 4 start-page: 668 year: October 01 2016 end-page: 679 ident: bib54 article-title: Simplified mathematical model of proton exchange membrane fuel cell based on horizon fuel cell stack publication-title: Journal of Modern Power Systems and Clean Energy – start-page: 2043 year: 2018 end-page: 2048 ident: bib8 article-title: A novel online energy management strategy for multi fuel cell systems publication-title: 2018 IEEE international conference on industrial technology (ICIT) – volume: 39 start-page: 3837 year: 2014 end-page: 3854 ident: bib41 article-title: An improved TLBO with elite strategy for parameters identification of PEM fuel cell and solar cell models publication-title: Int J Hydrogen Energy – volume: 216 start-page: 21 year: 2018 end-page: 30 ident: bib10 article-title: Real time adaptive efficient cold start strategy for proton exchange membrane fuel cells publication-title: Appl Energy – volume: 16 start-page: 640 year: 2016 end-page: 645 ident: bib35 article-title: Parameter estimation for a proton exchange membrane fuel cell model using GRG technique publication-title: Fuel Cells – volume: 86 start-page: 139 year: 2015 end-page: 151 ident: bib40 article-title: Parameter extraction of different fuel cell models with transferred adaptive differential evolution publication-title: Energy – volume: 39 start-page: 21165 year: 2014 end-page: 21176 ident: bib13 article-title: Online identification of semi-empirical model parameters for PEMFCs publication-title: Int J Hydrogen Energy – volume: 56 start-page: 64 year: 2013 end-page: 71 ident: bib15 article-title: Comparison of proton exchange membrane fuel cell static models publication-title: Renew Energy – start-page: 4661 year: 2007 end-page: 4667 ident: bib52 article-title: Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition publication-title: 2007 IEEE congress on evolutionary computation – volume: 38 start-page: 129 year: 2006 end-page: 154 ident: bib50 article-title: Shuffled frog-leaping algorithm: a memetic meta-heuristic for discrete optimization publication-title: Eng Optim – start-page: 792 year: 2015 end-page: 798 ident: bib23 article-title: Metaheuristic optimization algorithms for approximate solutions to ordinary differential equations publication-title: 2015 IEEE congress on evolutionary computation (CEC) – volume: 37 start-page: 8465 year: 2012 end-page: 8476 ident: bib20 article-title: A novel P systems based optimization algorithm for parameter estimation of proton exchange membrane fuel cell model publication-title: Int J Hydrogen Energy – volume: 380 start-page: 92 year: 2018 end-page: 104 ident: bib19 article-title: Overview and benchmark analysis of fuel cell parameters estimation for energy management purposes publication-title: J Power Sources – year: 2014 ident: bib46 article-title: Determination of activation losses in proton exchange membrane fuel cells – volume: 27 start-page: 28 year: 2014 end-page: 40 ident: bib42 article-title: Parameter optimization of PEMFC model with improved multi-strategy adaptive differential evolution publication-title: Eng Appl Artif Intell – volume: 86 start-page: 173 year: 2000 end-page: 180 ident: bib44 article-title: Development and application of a generalised steady-state electrochemical model for a PEM fuel cell publication-title: J Power Sources – volume: 169 start-page: 783 year: 2019 end-page: 796 ident: bib2 article-title: Feasibility of offshore wind energy as an alternative source for the state of Kuwait publication-title: Energy – start-page: 1 year: 1995 end-page: 8 ident: bib17 article-title: Performance modeling of the Ballard Mark IV solid polymer electrolyte fuel cell. 1: mechanistic model development publication-title: J Electrochem Soc – volume: 18 start-page: 347 year: 2018 end-page: 358 ident: bib9 article-title: Comparative analysis of two online identification algorithms in a fuel cell system publication-title: Fuel Cells – volume: 30 start-page: 585 year: 2006 end-page: 597 ident: bib27 article-title: Parameter optimization for a PEMFC model with a hybrid genetic algorithm publication-title: Int J Energy Res – volume: 140 start-page: 2178 year: 1993 end-page: 2186 ident: bib45 article-title: A water and heat management model for proton-exchange-membrane fuel cells publication-title: J Electrochem Soc – volume: 12 start-page: 9 year: 2018 end-page: 17 ident: bib31 article-title: Electrical characterisation of proton exchange membrane fuel cells stack using grasshopper optimiser publication-title: IET Renew Power Gener – volume: 111 start-page: 455 year: 2017 end-page: 462 ident: bib32 article-title: Effective parameters' identification for polymer electrolyte membrane fuel cell models using grey wolf optimizer publication-title: Renew Energy – start-page: 1 year: 2018 end-page: 6 ident: bib11 article-title: Optimized fuzzy thermal management of an open cathode fuel cell system publication-title: 2018 IEEE vehicle power and propulsion conference – volume: 119 start-page: 641 year: 2018 end-page: 648 ident: bib30 article-title: Extracting optimal parameters of PEM fuel cells using Salp Swarm Optimizer publication-title: Renew Energy – start-page: 1091 year: 2018 end-page: 1112 ident: bib4 article-title: 33 - fuel-cell systems for transportations A2 - rashid, Muhammad H publication-title: Power electronics handbook – volume: 44 start-page: 3075 year: 2019 end-page: 3087 ident: bib29 article-title: Cuckoo search algorithm with explosion operator for modeling proton exchange membrane fuel cells publication-title: Int J Hydrogen Energy – volume: 62 start-page: 189 year: 2014 end-page: 198 ident: bib43 article-title: Parameter fitting of PEMFC models based on adaptive differential evolution publication-title: Int J Electr Power Energy Syst – volume: 138 start-page: 437 year: 2017 end-page: 445 ident: bib7 article-title: Modeling and performance evaluation of PEM fuel cell by controlling its input parameters publication-title: Energy – volume: 38 start-page: 7077 year: 2013 end-page: 7091 ident: bib12 article-title: A review on model-based diagnosis methodologies for PEMFCs publication-title: Int J Hydrogen Energy – volume: 57 start-page: 1882 year: 2010 end-page: 1891 ident: bib16 article-title: From modeling to control of a PEM fuel cell using energetic macroscopic representation publication-title: IEEE Trans Ind Electron – volume: 11 start-page: 548 year: 2015 end-page: 559 ident: bib37 article-title: Identification of a proton-exchange membrane fuel cell's model parameters by means of an evolution strategy publication-title: IEEE Transactions on Industrial Informatics – volume: 162 start-page: 14 year: 2019 end-page: 23 ident: bib5 article-title: Modular energy systems in vehicular applications publication-title: Energy Procedia – volume: 59 start-page: 3473 year: 2012 end-page: 3480 ident: bib22 article-title: An innovative global harmony search algorithm for parameter identification of a PEM fuel cell model publication-title: IEEE Trans Ind Electron – volume: 129 start-page: 237 year: 2017 end-page: 245 ident: bib3 article-title: Biological conversion of hydrogen to electricity for energy storage publication-title: Energy – volume: 5 start-page: 463 year: 2005 end-page: 475 ident: bib47 article-title: Modelling and analysis of electro-chemical, thermal, and reactant flow dynamics for a PEM fuel cell system publication-title: Fuel Cells – volume: 7 start-page: 347 year: 2016 ident: 10.1016/j.energy.2019.06.152_bib34 article-title: Optimal proton exchange membrane fuel cell modelling based on hybrid Teaching Learning Based Optimization – differential Evolution algorithm publication-title: Ain Shams Engineering Journal doi: 10.1016/j.asej.2015.05.003 – volume: 5 start-page: 463 year: 2005 ident: 10.1016/j.energy.2019.06.152_bib47 article-title: Modelling and analysis of electro-chemical, thermal, and reactant flow dynamics for a PEM fuel cell system publication-title: Fuel Cells doi: 10.1002/fuce.200400072 – volume: 40 start-page: 387 year: 2012 ident: 10.1016/j.energy.2019.06.152_bib21 article-title: PEM fuel cell modeling using differential evolution publication-title: Energy doi: 10.1016/j.energy.2012.01.039 – volume: 39 start-page: 3837 year: 2014 ident: 10.1016/j.energy.2019.06.152_bib41 article-title: An improved TLBO with elite strategy for parameters identification of PEM fuel cell and solar cell models publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2013.12.110 – volume: 57 start-page: 1882 year: 2010 ident: 10.1016/j.energy.2019.06.152_bib16 article-title: From modeling to control of a PEM fuel cell using energetic macroscopic representation publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2009.2026760 – volume: 216 start-page: 21 year: 2018 ident: 10.1016/j.energy.2019.06.152_bib10 article-title: Real time adaptive efficient cold start strategy for proton exchange membrane fuel cells publication-title: Appl Energy doi: 10.1016/j.apenergy.2018.02.071 – volume: 274 start-page: 292 year: 2016 ident: 10.1016/j.energy.2019.06.152_bib49 article-title: A hybrid PSO-GA algorithm for constrained optimization problems publication-title: Appl Math Comput – start-page: 792 year: 2015 ident: 10.1016/j.energy.2019.06.152_bib23 article-title: Metaheuristic optimization algorithms for approximate solutions to ordinary differential equations – volume: 51 start-page: 1103 year: 2004 ident: 10.1016/j.energy.2019.06.152_bib48 article-title: An electrochemical-based fuel-cell model suitable for electrical engineering automation approach publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2004.834972 – volume: 173 start-page: 457 year: 2019 ident: 10.1016/j.energy.2019.06.152_bib28 article-title: Parameter estimation of proton exchange membrane fuel cells using eagle strategy based on JAYA algorithm and Nelder-Mead simplex method publication-title: Energy doi: 10.1016/j.energy.2019.02.106 – start-page: 111 year: 2014 ident: 10.1016/j.energy.2019.06.152_bib53 article-title: Chapter 8 - firefly algorithms – volume: 119 start-page: 641 year: 2018 ident: 10.1016/j.energy.2019.06.152_bib30 article-title: Extracting optimal parameters of PEM fuel cells using Salp Swarm Optimizer publication-title: Renew Energy doi: 10.1016/j.renene.2017.12.051 – start-page: 2043 year: 2018 ident: 10.1016/j.energy.2019.06.152_bib8 article-title: A novel online energy management strategy for multi fuel cell systems – volume: 93 start-page: 121 year: 2018 ident: 10.1016/j.energy.2019.06.152_bib26 article-title: A comprehensive review on parameter estimation techniques for Proton Exchange Membrane fuel cell modelling publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2018.05.017 – volume: 56 start-page: 64 year: 2013 ident: 10.1016/j.energy.2019.06.152_bib15 article-title: Comparison of proton exchange membrane fuel cell static models publication-title: Renew Energy doi: 10.1016/j.renene.2012.10.012 – volume: 38 start-page: 129 year: 2006 ident: 10.1016/j.energy.2019.06.152_bib50 article-title: Shuffled frog-leaping algorithm: a memetic meta-heuristic for discrete optimization publication-title: Eng Optim doi: 10.1080/03052150500384759 – volume: 30 start-page: 585 year: 2006 ident: 10.1016/j.energy.2019.06.152_bib27 article-title: Parameter optimization for a PEMFC model with a hybrid genetic algorithm publication-title: Int J Energy Res doi: 10.1002/er.1170 – volume: 138 start-page: 437 year: 2017 ident: 10.1016/j.energy.2019.06.152_bib7 article-title: Modeling and performance evaluation of PEM fuel cell by controlling its input parameters publication-title: Energy doi: 10.1016/j.energy.2017.07.070 – volume: 37 start-page: 8465 year: 2012 ident: 10.1016/j.energy.2019.06.152_bib20 article-title: A novel P systems based optimization algorithm for parameter estimation of proton exchange membrane fuel cell model publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2012.02.131 – start-page: 4661 year: 2007 ident: 10.1016/j.energy.2019.06.152_bib52 article-title: Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition – volume: 140 start-page: 2178 year: 1993 ident: 10.1016/j.energy.2019.06.152_bib45 article-title: A water and heat management model for proton-exchange-membrane fuel cells publication-title: J Electrochem Soc doi: 10.1149/1.2220792 – volume: 86 start-page: 139 year: 2015 ident: 10.1016/j.energy.2019.06.152_bib40 article-title: Parameter extraction of different fuel cell models with transferred adaptive differential evolution publication-title: Energy doi: 10.1016/j.energy.2015.03.117 – volume: 127 start-page: 116 year: 2017 ident: 10.1016/j.energy.2019.06.152_bib1 article-title: Prospects of renewable energy sources in India: prioritization of alternative sources in terms of Energy Index publication-title: Energy doi: 10.1016/j.energy.2017.03.110 – volume: 39 start-page: 21165 year: 2014 ident: 10.1016/j.energy.2019.06.152_bib13 article-title: Online identification of semi-empirical model parameters for PEMFCs publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2014.10.045 – volume: 59 start-page: 3473 year: 2012 ident: 10.1016/j.energy.2019.06.152_bib22 article-title: An innovative global harmony search algorithm for parameter identification of a PEM fuel cell model publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2011.2172173 – volume: 44 start-page: 3075 year: 2019 ident: 10.1016/j.energy.2019.06.152_bib29 article-title: Cuckoo search algorithm with explosion operator for modeling proton exchange membrane fuel cells publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2018.11.140 – volume: 4 start-page: 668 year: 2016 ident: 10.1016/j.energy.2019.06.152_bib54 article-title: Simplified mathematical model of proton exchange membrane fuel cell based on horizon fuel cell stack publication-title: Journal of Modern Power Systems and Clean Energy doi: 10.1007/s40565-016-0196-5 – volume: 11 start-page: 548 year: 2015 ident: 10.1016/j.energy.2019.06.152_bib37 article-title: Identification of a proton-exchange membrane fuel cell's model parameters by means of an evolution strategy publication-title: IEEE Transactions on Industrial Informatics doi: 10.1109/TII.2014.2317982 – volume: 132 start-page: 0975 year: 2015 ident: 10.1016/j.energy.2019.06.152_bib24 article-title: Optimization of LMS algorithm for adaptive filtering using global optimization techniques publication-title: Int J Comput Appl – volume: 129 start-page: 237 year: 2017 ident: 10.1016/j.energy.2019.06.152_bib3 article-title: Biological conversion of hydrogen to electricity for energy storage publication-title: Energy doi: 10.1016/j.energy.2017.04.110 – volume: 380 start-page: 92 year: 2018 ident: 10.1016/j.energy.2019.06.152_bib19 article-title: Overview and benchmark analysis of fuel cell parameters estimation for energy management purposes publication-title: J Power Sources doi: 10.1016/j.jpowsour.2018.01.075 – volume: 12 start-page: 46 year: 2015 ident: 10.1016/j.energy.2019.06.152_bib39 article-title: A novel approach for fuel cell parameter estimation using simple Genetic Algorithm publication-title: Sustainable Energy Technologies and Assessments doi: 10.1016/j.seta.2015.09.001 – volume: 111 start-page: 455 year: 2017 ident: 10.1016/j.energy.2019.06.152_bib32 article-title: Effective parameters' identification for polymer electrolyte membrane fuel cell models using grey wolf optimizer publication-title: Renew Energy doi: 10.1016/j.renene.2017.04.036 – volume: 38 start-page: 7077 year: 2013 ident: 10.1016/j.energy.2019.06.152_bib12 article-title: A review on model-based diagnosis methodologies for PEMFCs publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2013.03.106 – volume: 109 start-page: 569 year: 2016 ident: 10.1016/j.energy.2019.06.152_bib33 article-title: Modeling and optimization for proton exchange membrane fuel cell stack using aging and challenging P systems based optimization algorithm publication-title: Energy doi: 10.1016/j.energy.2016.04.093 – volume: 168 start-page: 182 year: 2019 ident: 10.1016/j.energy.2019.06.152_bib6 article-title: Contribution and investigation to compare models parameters of (PEMFC), comprehensives review of fuel cell models and their degradation publication-title: Energy doi: 10.1016/j.energy.2018.11.095 – volume: 111 start-page: 307 year: 2017 ident: 10.1016/j.energy.2019.06.152_bib51 article-title: Parameter estimation of photovoltaic system using imperialist competitive algorithm publication-title: Renew Energy doi: 10.1016/j.renene.2017.04.014 – volume: 162 start-page: 14 year: 2019 ident: 10.1016/j.energy.2019.06.152_bib5 article-title: Modular energy systems in vehicular applications publication-title: Energy Procedia doi: 10.1016/j.egypro.2019.04.003 – volume: 169 start-page: 783 year: 2019 ident: 10.1016/j.energy.2019.06.152_bib2 article-title: Feasibility of offshore wind energy as an alternative source for the state of Kuwait publication-title: Energy doi: 10.1016/j.energy.2018.11.140 – volume: 33 start-page: 1735 year: 2008 ident: 10.1016/j.energy.2019.06.152_bib14 article-title: Diagnostic tools in PEM fuel cell research: Part I Electrochemical techniques publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2008.01.013 – start-page: 1 year: 2018 ident: 10.1016/j.energy.2019.06.152_bib11 article-title: Optimized fuzzy thermal management of an open cathode fuel cell system – volume: 16 start-page: 640 year: 2016 ident: 10.1016/j.energy.2019.06.152_bib35 article-title: Parameter estimation for a proton exchange membrane fuel cell model using GRG technique publication-title: Fuel Cells doi: 10.1002/fuce.201500190 – volume: 90 start-page: 1334 year: 2015 ident: 10.1016/j.energy.2019.06.152_bib36 article-title: Parameter identification of PEMFC model based on hybrid adaptive differential evolution algorithm publication-title: Energy doi: 10.1016/j.energy.2015.06.081 – start-page: 1 year: 1995 ident: 10.1016/j.energy.2019.06.152_bib17 article-title: Performance modeling of the Ballard Mark IV solid polymer electrolyte fuel cell. 1: mechanistic model development publication-title: J Electrochem Soc doi: 10.1149/1.2043866 – start-page: 1091 year: 2018 ident: 10.1016/j.energy.2019.06.152_bib4 article-title: 33 - fuel-cell systems for transportations A2 - rashid, Muhammad H – volume: 12 start-page: 9 year: 2018 ident: 10.1016/j.energy.2019.06.152_bib31 article-title: Electrical characterisation of proton exchange membrane fuel cells stack using grasshopper optimiser publication-title: IET Renew Power Gener doi: 10.1049/iet-rpg.2017.0232 – year: 2014 ident: 10.1016/j.energy.2019.06.152_bib46 – volume: 18 start-page: 347 year: 2018 ident: 10.1016/j.energy.2019.06.152_bib9 article-title: Comparative analysis of two online identification algorithms in a fuel cell system publication-title: Fuel Cells doi: 10.1002/fuce.201800025 – volume: 62 start-page: 189 year: 2014 ident: 10.1016/j.energy.2019.06.152_bib43 article-title: Parameter fitting of PEMFC models based on adaptive differential evolution publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2014.04.043 – volume: 51 start-page: 2492 year: 2010 ident: 10.1016/j.energy.2019.06.152_bib18 article-title: Development of an empirical dynamic model for a Nexa PEM fuel cell power module publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2010.05.012 – volume: 6 start-page: 1187 year: 2015 ident: 10.1016/j.energy.2019.06.152_bib38 article-title: Comparative study of PEM fuel cell parameter extraction using Genetic Algorithm publication-title: Ain Shams Engineering Journal doi: 10.1016/j.asej.2015.05.007 – start-page: 565 year: 2017 ident: 10.1016/j.energy.2019.06.152_bib25 article-title: On initialization of the Kalman filter – volume: 27 start-page: 28 year: 2014 ident: 10.1016/j.energy.2019.06.152_bib42 article-title: Parameter optimization of PEMFC model with improved multi-strategy adaptive differential evolution publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2013.07.016 – volume: 86 start-page: 173 year: 2000 ident: 10.1016/j.energy.2019.06.152_bib44 article-title: Development and application of a generalised steady-state electrochemical model for a PEM fuel cell publication-title: J Power Sources doi: 10.1016/S0378-7753(99)00484-X |
| SSID | ssj0005899 |
| Score | 2.6128242 |
| Snippet | Proton exchange membrane fuel cell (PEMFC) models are multivariate with different nonlinear elements which should be identified accurately to assure dependable... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 912 |
| SubjectTerms | Algorithms Benchmarks Case studies Cell culture Evolutionary algorithms Fuel cells Fuel technology Heuristic methods Mathematical models Metaheuristic algorithms Optimization Parameters PEMFC Proton exchange membrane fuel cells Protons Semi-empirical modeling Shuffled frog-leaping algorithm Standard deviation temperature Variance |
| Title | Benchmark of proton exchange membrane fuel cell parameters extraction with metaheuristic optimization algorithms |
| URI | https://dx.doi.org/10.1016/j.energy.2019.06.152 https://www.proquest.com/docview/2293934552 https://www.proquest.com/docview/2286870749 |
| Volume | 183 |
| WOSCitedRecordID | wos000483005400077&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-6785 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005899 issn: 0360-5442 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELZKhwQvCAbTBgMZibcoU5PYSfxYUBE_xoTEkPoWObFDN6VN1aZT-SP4n7mL7aRsQgMkXqLKduK031f7fLrvjpBXZSRZolXsMy6Yz4I094XSzA95UUAX14XJrn-anJ2l06n4PBj8cFqYqypZLNLtViz_K9TQBmCjdPYv4O4eCg3wGUCHK8AO1z8C_jW8zGwuV23EOKZhqDGPvxH4enM9h-MxGJblRlceeu09TP49x6CYNQxrVrZ2eOufhWY50xuTzNmrYXWZW9mmJ6tv9QrG2GTnzrdvlISYwnRroub7WG7Uzyj5Xbc1pLxPJzu-8AujKht3bR9nspJN3hZIrBpTdmqnG4thm2iB05Ndt0XQxmUZ4abxpTk9TR-8ZDRcI58zdm19jnZWWGGjrs1mLYxq-sY-YFwSlye6_doYwScwTWvAw37f66IRv-C0OCsYs7hdp3fIXphwkQ7J3vj9ZPqhjxlK24Kk3Ws6LWYbMHhzrt_ZOtd2_daUOX9IHtgzCB0b7jwiA73YJ_ecRH29Tw4mvfwRBtr1f_2YLDty0bqkhlzUkYs6clEkF0Vy0Z5ctCcXRXLRX8hFd8lFe3I9IV_fTs7fvPNtzQ6_ANOw8ROuR1xJOCVHQqlUwHk1DgpWxiJSuYzzUVmqgueMB0WYyLAspeKSh1qGQsFhPo4OyHBRL_QhofDAUIJ9qYJYMSyrBpZtnMq0TEKVay6OSOR-3aywCe2xrkqVucjFy8xgkiEm2SjOAJMj4nd3LU1Cl1vGJw64zBqlxtjMgGu33HnscM7s-rDOQjCvRcQ4dr_sumFJR1AAoXqDY9IYttGEiaf_PPkzcr__1x2TYbPa6OfkbnHVXKxXLyyvfwKqvs8H |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Benchmark+of+proton+exchange+membrane+fuel+cell+parameters+extraction+with+metaheuristic+optimization+algorithms&rft.jtitle=Energy+%28Oxford%29&rft.au=Kandidayeni%2C+M.&rft.au=Macias%2C+A.&rft.au=Khalatbarisoltani%2C+A.&rft.au=Boulon%2C+L.&rft.date=2019-09-15&rft.pub=Elsevier+Ltd&rft.issn=0360-5442&rft.volume=183&rft.spage=912&rft.epage=925&rft_id=info:doi/10.1016%2Fj.energy.2019.06.152&rft.externalDocID=S0360544219312848 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon |