Benchmark of proton exchange membrane fuel cell parameters extraction with metaheuristic optimization algorithms

Proton exchange membrane fuel cell (PEMFC) models are multivariate with different nonlinear elements which should be identified accurately to assure dependable modeling. Metaheuristic algorithms are perfect candidates for this purpose since they do an informed search for finding the parameters. This...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Energy (Oxford) Ročník 183; s. 912 - 925
Hlavní autoři: Kandidayeni, M., Macias, A., Khalatbarisoltani, A., Boulon, L., Kelouwani, S.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Oxford Elsevier Ltd 15.09.2019
Elsevier BV
Témata:
ISSN:0360-5442, 1873-6785
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Proton exchange membrane fuel cell (PEMFC) models are multivariate with different nonlinear elements which should be identified accurately to assure dependable modeling. Metaheuristic algorithms are perfect candidates for this purpose since they do an informed search for finding the parameters. This paper utilizes three algorithms, namely shuffled frog-leaping algorithm (SFLA), firefly optimization algorithm (FOA), and imperialist competitive algorithm (ICA) for the PEMFC model calibration. In this regard, firstly, the algorithms are employed to find the parameters of a benchmark PEMFC model by minimizing the sum of squared errors (SSE) between the measured and estimated voltage for two available case studies in the literature. After conducting 100 independent runs, the algorithms are compared in terms of the best and the worst SSEs, the variance, and standard deviation. This comparison indicates that SFLA marginally outperforms ICA and FOA regarding the best SSE in both cases while it performs 20% and twofold better than other algorithms concerning the worst SSE. Furthermore, the obtained variance and standard deviation by SFLA are much less than the other algorithms showing the precision and repeatability of this method. Finally, SFLA is used to calibrate the model for a new case study (Horizon 500-W PEMFC) with variable temperature. [Display omitted] •New metaheuristic algorithms are used for PEMFC parameters extraction problem.•Robustness of the algorithms is assessed over 100 independent runs.•A new 500-W open cathode PEMFC case study is introduced.•SFLA has been selected for the parameters identification of the new case study.
AbstractList Proton exchange membrane fuel cell (PEMFC) models are multivariate with different nonlinear elements which should be identified accurately to assure dependable modeling. Metaheuristic algorithms are perfect candidates for this purpose since they do an informed search for finding the parameters. This paper utilizes three algorithms, namely shuffled frog-leaping algorithm (SFLA), firefly optimization algorithm (FOA), and imperialist competitive algorithm (ICA) for the PEMFC model calibration. In this regard, firstly, the algorithms are employed to find the parameters of a benchmark PEMFC model by minimizing the sum of squared errors (SSE) between the measured and estimated voltage for two available case studies in the literature. After conducting 100 independent runs, the algorithms are compared in terms of the best and the worst SSEs, the variance, and standard deviation. This comparison indicates that SFLA marginally outperforms ICA and FOA regarding the best SSE in both cases while it performs 20% and twofold better than other algorithms concerning the worst SSE. Furthermore, the obtained variance and standard deviation by SFLA are much less than the other algorithms showing the precision and repeatability of this method. Finally, SFLA is used to calibrate the model for a new case study (Horizon 500-W PEMFC) with variable temperature.
Proton exchange membrane fuel cell (PEMFC) models are multivariate with different nonlinear elements which should be identified accurately to assure dependable modeling. Metaheuristic algorithms are perfect candidates for this purpose since they do an informed search for finding the parameters. This paper utilizes three algorithms, namely shuffled frog-leaping algorithm (SFLA), firefly optimization algorithm (FOA), and imperialist competitive algorithm (ICA) for the PEMFC model calibration. In this regard, firstly, the algorithms are employed to find the parameters of a benchmark PEMFC model by minimizing the sum of squared errors (SSE) between the measured and estimated voltage for two available case studies in the literature. After conducting 100 independent runs, the algorithms are compared in terms of the best and the worst SSEs, the variance, and standard deviation. This comparison indicates that SFLA marginally outperforms ICA and FOA regarding the best SSE in both cases while it performs 20% and twofold better than other algorithms concerning the worst SSE. Furthermore, the obtained variance and standard deviation by SFLA are much less than the other algorithms showing the precision and repeatability of this method. Finally, SFLA is used to calibrate the model for a new case study (Horizon 500-W PEMFC) with variable temperature. [Display omitted] •New metaheuristic algorithms are used for PEMFC parameters extraction problem.•Robustness of the algorithms is assessed over 100 independent runs.•A new 500-W open cathode PEMFC case study is introduced.•SFLA has been selected for the parameters identification of the new case study.
Author Kelouwani, S.
Macias, A.
Boulon, L.
Kandidayeni, M.
Khalatbarisoltani, A.
Author_xml – sequence: 1
  givenname: M.
  surname: Kandidayeni
  fullname: Kandidayeni, M.
  email: mohsen.kandi.dayeni@uqtr.ca
  organization: Hydrogen Research Institute, Department of Electrical Engineering and Computer Science, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, G9A 5H7, Canada
– sequence: 2
  givenname: A.
  surname: Macias
  fullname: Macias, A.
  organization: Hydrogen Research Institute, Department of Electrical Engineering and Computer Science, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, G9A 5H7, Canada
– sequence: 3
  givenname: A.
  surname: Khalatbarisoltani
  fullname: Khalatbarisoltani, A.
  organization: Hydrogen Research Institute, Department of Electrical Engineering and Computer Science, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, G9A 5H7, Canada
– sequence: 4
  givenname: L.
  surname: Boulon
  fullname: Boulon, L.
  organization: Hydrogen Research Institute, Department of Electrical Engineering and Computer Science, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, G9A 5H7, Canada
– sequence: 5
  givenname: S.
  surname: Kelouwani
  fullname: Kelouwani, S.
  organization: Hydrogen Research Institute, Department of Mechanical Engineering, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, G9A 5H7, Canada
BookMark eNqFkT9v2zAQxYkiAer8-QYdBGTJIoWkRErMUKAN2rSAgSzJTNDk0aYriSpJpXU-fWi7U4Z0uuF-73DvvTN0MvoREPpEcEUw4TfbCkYI611FMREV5hVh9ANakK6tS9527AQtcM1xyZqGfkRnMW4xxqwTYoGmrzDqzaDCr8LbYgo--bGAv3qjxjUUAwyroEYo7Ax9oaHvi0kFNUCCEDOWgtLJZcUflzaZTmoDc3AxOV34KbnBvajDXvVrHzIzxAt0alUf4fLfPEdP37893v0olw_3P---LEvdYJ7KlgFmRlGOa2FMJ5hoOdGN5aI2K8VX2Fqj2aphRNNWUWuVYYpRUFQYygmvz9H18W729HuGmOTg4t5BtuPnKCnteNfithEZvXqDbv0cxvxdpkQt6oYxmqnbI6WDjzGAldqlg7ucguslwXJfhtzKYxlyX4bEXJKDuHkjnoLLqe_-J_t8lEFO6tlBkFG7XBgYF0Anabx7_8Ar4oirIw
CitedBy_id crossref_primary_10_1002_er_6946
crossref_primary_10_1080_15567036_2023_2252672
crossref_primary_10_1016_j_ijhydene_2024_09_211
crossref_primary_10_1002_er_4809
crossref_primary_10_1016_j_fuel_2023_127586
crossref_primary_10_1016_j_icheatmasstransfer_2025_109570
crossref_primary_10_3390_en17102333
crossref_primary_10_3389_fenrg_2022_964042
crossref_primary_10_1016_j_energy_2020_118331
crossref_primary_10_1080_01430750_2020_1745276
crossref_primary_10_1016_j_enconman_2024_118371
crossref_primary_10_3389_fenrg_2022_875332
crossref_primary_10_1016_j_enconman_2024_119231
crossref_primary_10_1016_j_ijhydene_2021_06_126
crossref_primary_10_1016_j_measurement_2024_115302
crossref_primary_10_1016_j_energy_2024_130601
crossref_primary_10_3390_pr9081416
crossref_primary_10_1016_j_enconman_2021_114444
crossref_primary_10_1016_j_apenergy_2020_115293
crossref_primary_10_1016_j_egyr_2024_08_015
crossref_primary_10_1016_j_energy_2021_119836
crossref_primary_10_1002_oca_3197
crossref_primary_10_1007_s00500_022_07520_y
crossref_primary_10_1016_j_energy_2021_119951
crossref_primary_10_1016_j_ijhydene_2020_06_256
crossref_primary_10_1007_s10586_024_05064_4
crossref_primary_10_1016_j_enconman_2020_113777
crossref_primary_10_1016_j_enconman_2022_116338
crossref_primary_10_1007_s41939_025_00814_2
crossref_primary_10_1038_s41598_024_81160_0
crossref_primary_10_1016_j_engappai_2024_107880
crossref_primary_10_1109_TII_2023_3347736
crossref_primary_10_1016_j_energy_2022_123530
crossref_primary_10_1155_2024_7616065
crossref_primary_10_1080_15567036_2021_1999347
crossref_primary_10_1049_rpg2_12156
crossref_primary_10_1002_er_7576
crossref_primary_10_1038_s41598_024_71223_7
crossref_primary_10_1016_j_egyr_2022_04_015
crossref_primary_10_3390_electronics14010035
crossref_primary_10_1038_s41598_024_81168_6
crossref_primary_10_1016_j_enconman_2022_116580
crossref_primary_10_1016_j_applthermaleng_2023_121114
crossref_primary_10_1007_s00202_024_02935_2
crossref_primary_10_1016_j_ijhydene_2025_150931
crossref_primary_10_1016_j_ijhydene_2025_01_256
crossref_primary_10_1108_EC_03_2025_0219
crossref_primary_10_1109_ACCESS_2021_3049528
crossref_primary_10_1016_j_energy_2023_128456
crossref_primary_10_1007_s40095_021_00410_3
crossref_primary_10_1002_fuce_70011
crossref_primary_10_1016_j_energy_2023_127083
crossref_primary_10_1016_j_energy_2023_130130
crossref_primary_10_1002_fuce_202100006
crossref_primary_10_3389_fenrg_2022_893475
crossref_primary_10_1016_j_renene_2020_12_131
crossref_primary_10_1080_15435075_2022_2131432
crossref_primary_10_1007_s00521_021_05821_1
crossref_primary_10_1016_j_enconman_2020_112501
crossref_primary_10_1002_asjc_3490
crossref_primary_10_1002_er_6065
crossref_primary_10_3390_su132212771
crossref_primary_10_1016_j_energy_2022_123830
crossref_primary_10_1016_j_ijhydene_2025_04_431
crossref_primary_10_3390_en13143713
crossref_primary_10_1016_j_enconman_2021_114099
crossref_primary_10_1002_er_6987
crossref_primary_10_1016_j_ijhydene_2023_05_347
crossref_primary_10_1109_ACCESS_2024_3453594
crossref_primary_10_1016_j_enconman_2025_119655
crossref_primary_10_1002_er_5527
crossref_primary_10_1002_er_6616
crossref_primary_10_1109_ACCESS_2023_3236023
crossref_primary_10_1016_j_energy_2022_126165
crossref_primary_10_1016_j_egyr_2023_07_002
crossref_primary_10_1038_s41598_023_35581_y
crossref_primary_10_1016_j_egyr_2024_07_063
crossref_primary_10_3390_en14030619
crossref_primary_10_3390_su15054625
crossref_primary_10_1002_er_5244
crossref_primary_10_1080_15435075_2021_1904939
crossref_primary_10_1109_ACCESS_2020_2973351
crossref_primary_10_1016_j_matcom_2020_12_021
crossref_primary_10_1016_j_jclepro_2020_124776
crossref_primary_10_3390_su13147911
crossref_primary_10_1016_j_enconman_2019_112197
crossref_primary_10_1016_j_seta_2024_103673
crossref_primary_10_1016_j_energy_2024_130235
crossref_primary_10_1038_s41598_025_93162_7
crossref_primary_10_3390_en14165022
crossref_primary_10_1109_TIA_2021_3116549
crossref_primary_10_1016_j_jclepro_2020_121660
crossref_primary_10_3390_app15158316
crossref_primary_10_1016_j_enconman_2022_115324
crossref_primary_10_1002_er_6282
crossref_primary_10_1016_j_ijhydene_2020_11_119
crossref_primary_10_1038_s41598_023_46847_w
crossref_primary_10_1080_15567036_2020_1829203
crossref_primary_10_1109_TTE_2024_3361649
crossref_primary_10_1016_j_enconman_2020_113220
crossref_primary_10_1016_j_knosys_2023_111134
crossref_primary_10_1016_j_enconman_2025_119483
crossref_primary_10_3389_fenrg_2024_1384649
crossref_primary_10_1007_s00202_023_02221_7
crossref_primary_10_3390_su12198127
crossref_primary_10_1016_j_rineng_2024_103369
crossref_primary_10_1002_fuce_201900155
crossref_primary_10_1111_jfpe_13411
crossref_primary_10_3390_en14185631
crossref_primary_10_1016_j_ces_2020_116100
crossref_primary_10_1016_j_energy_2025_136079
crossref_primary_10_1016_j_egyr_2022_02_066
crossref_primary_10_3390_en17122917
Cites_doi 10.1016/j.asej.2015.05.003
10.1002/fuce.200400072
10.1016/j.energy.2012.01.039
10.1016/j.ijhydene.2013.12.110
10.1109/TIE.2009.2026760
10.1016/j.apenergy.2018.02.071
10.1109/TIE.2004.834972
10.1016/j.energy.2019.02.106
10.1016/j.renene.2017.12.051
10.1016/j.rser.2018.05.017
10.1016/j.renene.2012.10.012
10.1080/03052150500384759
10.1002/er.1170
10.1016/j.energy.2017.07.070
10.1016/j.ijhydene.2012.02.131
10.1149/1.2220792
10.1016/j.energy.2015.03.117
10.1016/j.energy.2017.03.110
10.1016/j.ijhydene.2014.10.045
10.1109/TIE.2011.2172173
10.1016/j.ijhydene.2018.11.140
10.1007/s40565-016-0196-5
10.1109/TII.2014.2317982
10.1016/j.energy.2017.04.110
10.1016/j.jpowsour.2018.01.075
10.1016/j.seta.2015.09.001
10.1016/j.renene.2017.04.036
10.1016/j.ijhydene.2013.03.106
10.1016/j.energy.2016.04.093
10.1016/j.energy.2018.11.095
10.1016/j.renene.2017.04.014
10.1016/j.egypro.2019.04.003
10.1016/j.energy.2018.11.140
10.1016/j.ijhydene.2008.01.013
10.1002/fuce.201500190
10.1016/j.energy.2015.06.081
10.1149/1.2043866
10.1049/iet-rpg.2017.0232
10.1002/fuce.201800025
10.1016/j.ijepes.2014.04.043
10.1016/j.enconman.2010.05.012
10.1016/j.asej.2015.05.007
10.1016/j.engappai.2013.07.016
10.1016/S0378-7753(99)00484-X
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright Elsevier BV Sep 15, 2019
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright Elsevier BV Sep 15, 2019
DBID AAYXX
CITATION
7SP
7ST
7TB
8FD
C1K
F28
FR3
KR7
L7M
SOI
7S9
L.6
DOI 10.1016/j.energy.2019.06.152
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
EISSN 1873-6785
EndPage 925
ExternalDocumentID 10_1016_j_energy_2019_06_152
S0360544219312848
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
WUQ
~HD
7SP
7ST
7TB
8FD
AGCQF
C1K
F28
FR3
KR7
L7M
SOI
7S9
L.6
ID FETCH-LOGICAL-c406t-75e05da26039dd8959761c4f693dba6b0ffdc5b451c27a2ffad5a52ea29d26163
ISICitedReferencesCount 138
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000483005400077&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0360-5442
IngestDate Sat Sep 27 19:08:04 EDT 2025
Wed Aug 13 11:30:25 EDT 2025
Sat Nov 29 07:20:59 EST 2025
Tue Nov 18 22:25:26 EST 2025
Fri Feb 23 02:23:59 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords PEMFC
Shuffled frog-leaping algorithm
Metaheuristic algorithms
Semi-empirical modeling
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c406t-75e05da26039dd8959761c4f693dba6b0ffdc5b451c27a2ffad5a52ea29d26163
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2293934552
PQPubID 2045484
PageCount 14
ParticipantIDs proquest_miscellaneous_2286870749
proquest_journals_2293934552
crossref_citationtrail_10_1016_j_energy_2019_06_152
crossref_primary_10_1016_j_energy_2019_06_152
elsevier_sciencedirect_doi_10_1016_j_energy_2019_06_152
PublicationCentury 2000
PublicationDate 2019-09-15
PublicationDateYYYYMMDD 2019-09-15
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-15
  day: 15
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Energy (Oxford)
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Atashpaz-Gargari, Lucas (bib52) 2007
Rajasekar, Jacob, Balasubramanian, Priya, Sangeetha, Sudhakar Babu (bib38) 2015; 6
Wu, Yuan, Wang, Blanco, Martin, Zhang (bib14) 2008; 33
Priya, Sathishkumar, Rajasekar (bib26) 2018; 93
El-Fergany (bib30) 2018; 119
Petrone, Zheng, Hissel, Péra, Pianese, Sorrentino (bib12) 2013; 38
Sun, Wang, Bi, Srinivasan (bib36) 2015; 90
Amamou, Kandidayeni, Boulon, Kelouwani (bib10) 2018; 216
Kandidayeni, Macias, Amamou, Boulon, Kelouwani (bib9) 2018; 18
El-Fergany (bib31) 2018; 12
Restrepo, Konjedic, Garces, Calvente, Giral (bib37) 2015; 11
Gong, Yan, Liu, Cai (bib40) 2015; 86
Sadollah, Choi, Kim (bib23) 2015
Turgut, Coban (bib34) 2016; 7
Soltani, Kandidayeni, Boulon, St-Pierre (bib5) 2019; 162
Xu, Wang, Wang (bib28) 2019; 173
Amphlett, Baumert, Mann, Peppley, Roberge, Harris (bib17) 1995
Cheng, Zhang (bib43) 2014; 62
Nguyen, White (bib45) 1993; 140
Chavan, Talange (bib7) 2017; 138
Ettihir, Boulon, Becherif, Agbossou, Ramadan (bib13) 2014; 39
Boulon, Hissel, Bouscayrol, Pera (bib16) 2010; 57
Blal, Benatiallah, NeÇaibia, Lachtar, Sahouane, Belasri (bib6) 2019; 168
Soltani, Mohammad Taghi Bathaee (bib18) 2010; 51
Jha, Puppala (bib1) 2017; 127
Tripathi, Ikbal (bib24) 2015; 132
Khan, Iqbal (bib47) 2005; 5
Askarzadeh, Rezazadeh (bib22) 2012; 59
Priya, Sudhakar Babu, Balasubramanian, Sathish Kumar, Rajasekar (bib39) 2015; 12
Mann, Amphlett, Hooper, Jensen, Peppley, Roberge (bib44) 2000; 86
Ali, El-Hameed, Farahat (bib32) 2017; 111
Karamanev, Pupkevich, Penev, Glibin, Gohil, Vajihinejad (bib3) 2017; 129
Zhao, Huang (bib25) 2017
Fathy, Rezk (bib51) 2017; 111
Al-Nassar, Neelamani, Al-Salem, Al-Dashti (bib2) 2019; 169
Uzunoglu, Alam (bib4) 2018
Yang, Chellali, Lu, Li, Bo (bib33) 2016; 109
Macias, Kandidayeni, Boulon, Chaoui (bib8) 2018
Kandidayeni, Macias, Boulon, Kelouwani (bib11) 2018
Niu, Zhang, Li (bib41) 2014; 39
Niya, Hoorfar (bib46) 2014
Eusuff, Lansey, Pasha (bib50) 2006; 38
Chen, Wang (bib29) 2019; 44
Mo, Zhu, Wei, Cao (bib27) 2006; 30
SALEH, ALI, ZHANG (bib54) October 01 2016; 4
Yang, Wang (bib20) 2012; 37
Garg (bib49) 2016; 274
Geem, Noh (bib35) 2016; 16
Chakraborty, Abbott, Das (bib21) 2012; 40
Yang (bib53) 2014
Kandidayeni, Macias, Amamou, Boulon, Kelouwani, Chaoui (bib19) 2018; 380
Gong, Cai (bib42) 2014; 27
Saadi, Becherif, Aboubou, Ayad (bib15) 2013; 56
Correa, Farret, Canha, Simoes (bib48) 2004; 51
Xu (10.1016/j.energy.2019.06.152_bib28) 2019; 173
Amphlett (10.1016/j.energy.2019.06.152_bib17) 1995
Correa (10.1016/j.energy.2019.06.152_bib48) 2004; 51
Kandidayeni (10.1016/j.energy.2019.06.152_bib9) 2018; 18
Ali (10.1016/j.energy.2019.06.152_bib32) 2017; 111
Cheng (10.1016/j.energy.2019.06.152_bib43) 2014; 62
Sadollah (10.1016/j.energy.2019.06.152_bib23) 2015
Wu (10.1016/j.energy.2019.06.152_bib14) 2008; 33
El-Fergany (10.1016/j.energy.2019.06.152_bib31) 2018; 12
Yang (10.1016/j.energy.2019.06.152_bib20) 2012; 37
Mo (10.1016/j.energy.2019.06.152_bib27) 2006; 30
Zhao (10.1016/j.energy.2019.06.152_bib25) 2017
SALEH (10.1016/j.energy.2019.06.152_bib54) 2016; 4
Niu (10.1016/j.energy.2019.06.152_bib41) 2014; 39
Mann (10.1016/j.energy.2019.06.152_bib44) 2000; 86
Chen (10.1016/j.energy.2019.06.152_bib29) 2019; 44
Jha (10.1016/j.energy.2019.06.152_bib1) 2017; 127
Turgut (10.1016/j.energy.2019.06.152_bib34) 2016; 7
Karamanev (10.1016/j.energy.2019.06.152_bib3) 2017; 129
Chakraborty (10.1016/j.energy.2019.06.152_bib21) 2012; 40
Askarzadeh (10.1016/j.energy.2019.06.152_bib22) 2012; 59
Eusuff (10.1016/j.energy.2019.06.152_bib50) 2006; 38
Yang (10.1016/j.energy.2019.06.152_bib33) 2016; 109
Gong (10.1016/j.energy.2019.06.152_bib42) 2014; 27
Gong (10.1016/j.energy.2019.06.152_bib40) 2015; 86
Soltani (10.1016/j.energy.2019.06.152_bib5) 2019; 162
Kandidayeni (10.1016/j.energy.2019.06.152_bib11) 2018
Boulon (10.1016/j.energy.2019.06.152_bib16) 2010; 57
Khan (10.1016/j.energy.2019.06.152_bib47) 2005; 5
Soltani (10.1016/j.energy.2019.06.152_bib18) 2010; 51
Priya (10.1016/j.energy.2019.06.152_bib39) 2015; 12
Yang (10.1016/j.energy.2019.06.152_bib53) 2014
Saadi (10.1016/j.energy.2019.06.152_bib15) 2013; 56
Fathy (10.1016/j.energy.2019.06.152_bib51) 2017; 111
Blal (10.1016/j.energy.2019.06.152_bib6) 2019; 168
Macias (10.1016/j.energy.2019.06.152_bib8) 2018
Al-Nassar (10.1016/j.energy.2019.06.152_bib2) 2019; 169
Chavan (10.1016/j.energy.2019.06.152_bib7) 2017; 138
Ettihir (10.1016/j.energy.2019.06.152_bib13) 2014; 39
Priya (10.1016/j.energy.2019.06.152_bib26) 2018; 93
El-Fergany (10.1016/j.energy.2019.06.152_bib30) 2018; 119
Rajasekar (10.1016/j.energy.2019.06.152_bib38) 2015; 6
Uzunoglu (10.1016/j.energy.2019.06.152_bib4) 2018
Kandidayeni (10.1016/j.energy.2019.06.152_bib19) 2018; 380
Amamou (10.1016/j.energy.2019.06.152_bib10) 2018; 216
Geem (10.1016/j.energy.2019.06.152_bib35) 2016; 16
Petrone (10.1016/j.energy.2019.06.152_bib12) 2013; 38
Garg (10.1016/j.energy.2019.06.152_bib49) 2016; 274
Sun (10.1016/j.energy.2019.06.152_bib36) 2015; 90
Niya (10.1016/j.energy.2019.06.152_bib46) 2014
Nguyen (10.1016/j.energy.2019.06.152_bib45) 1993; 140
Tripathi (10.1016/j.energy.2019.06.152_bib24) 2015; 132
Restrepo (10.1016/j.energy.2019.06.152_bib37) 2015; 11
Atashpaz-Gargari (10.1016/j.energy.2019.06.152_bib52) 2007
References_xml – volume: 168
  start-page: 182
  year: 2019
  end-page: 199
  ident: bib6
  article-title: Contribution and investigation to compare models parameters of (PEMFC), comprehensives review of fuel cell models and their degradation
  publication-title: Energy
– volume: 93
  start-page: 121
  year: 2018
  end-page: 144
  ident: bib26
  article-title: A comprehensive review on parameter estimation techniques for Proton Exchange Membrane fuel cell modelling
  publication-title: Renew Sustain Energy Rev
– volume: 40
  start-page: 387
  year: 2012
  end-page: 399
  ident: bib21
  article-title: PEM fuel cell modeling using differential evolution
  publication-title: Energy
– start-page: 111
  year: 2014
  end-page: 127
  ident: bib53
  article-title: Chapter 8 - firefly algorithms
  publication-title: Nature-inspired optimization algorithms
– volume: 274
  start-page: 292
  year: 2016
  end-page: 305
  ident: bib49
  article-title: A hybrid PSO-GA algorithm for constrained optimization problems
  publication-title: Appl Math Comput
– volume: 132
  start-page: 0975
  year: 2015
  end-page: 8887
  ident: bib24
  article-title: Optimization of LMS algorithm for adaptive filtering using global optimization techniques
  publication-title: Int J Comput Appl
– volume: 127
  start-page: 116
  year: 2017
  end-page: 127
  ident: bib1
  article-title: Prospects of renewable energy sources in India: prioritization of alternative sources in terms of Energy Index
  publication-title: Energy
– volume: 33
  start-page: 1735
  year: 2008
  end-page: 1746
  ident: bib14
  article-title: Diagnostic tools in PEM fuel cell research: Part I Electrochemical techniques
  publication-title: Int J Hydrogen Energy
– volume: 12
  start-page: 46
  year: 2015
  end-page: 52
  ident: bib39
  article-title: A novel approach for fuel cell parameter estimation using simple Genetic Algorithm
  publication-title: Sustainable Energy Technologies and Assessments
– volume: 111
  start-page: 307
  year: 2017
  end-page: 320
  ident: bib51
  article-title: Parameter estimation of photovoltaic system using imperialist competitive algorithm
  publication-title: Renew Energy
– volume: 6
  start-page: 1187
  year: 2015
  end-page: 1194
  ident: bib38
  article-title: Comparative study of PEM fuel cell parameter extraction using Genetic Algorithm
  publication-title: Ain Shams Engineering Journal
– volume: 173
  start-page: 457
  year: 2019
  end-page: 467
  ident: bib28
  article-title: Parameter estimation of proton exchange membrane fuel cells using eagle strategy based on JAYA algorithm and Nelder-Mead simplex method
  publication-title: Energy
– volume: 109
  start-page: 569
  year: 2016
  end-page: 577
  ident: bib33
  article-title: Modeling and optimization for proton exchange membrane fuel cell stack using aging and challenging P systems based optimization algorithm
  publication-title: Energy
– volume: 51
  start-page: 2492
  year: 2010
  end-page: 2500
  ident: bib18
  article-title: Development of an empirical dynamic model for a Nexa PEM fuel cell power module
  publication-title: Energy Convers Manag
– start-page: 565
  year: 2017
  end-page: 570
  ident: bib25
  article-title: On initialization of the Kalman filter
  publication-title: 2017 6th international symposium on advanced control of industrial processes
– volume: 7
  start-page: 347
  year: 2016
  end-page: 360
  ident: bib34
  article-title: Optimal proton exchange membrane fuel cell modelling based on hybrid Teaching Learning Based Optimization – differential Evolution algorithm
  publication-title: Ain Shams Engineering Journal
– volume: 90
  start-page: 1334
  year: 2015
  end-page: 1341
  ident: bib36
  article-title: Parameter identification of PEMFC model based on hybrid adaptive differential evolution algorithm
  publication-title: Energy
– volume: 51
  start-page: 1103
  year: 2004
  end-page: 1112
  ident: bib48
  article-title: An electrochemical-based fuel-cell model suitable for electrical engineering automation approach
  publication-title: IEEE Trans Ind Electron
– volume: 4
  start-page: 668
  year: October 01 2016
  end-page: 679
  ident: bib54
  article-title: Simplified mathematical model of proton exchange membrane fuel cell based on horizon fuel cell stack
  publication-title: Journal of Modern Power Systems and Clean Energy
– start-page: 2043
  year: 2018
  end-page: 2048
  ident: bib8
  article-title: A novel online energy management strategy for multi fuel cell systems
  publication-title: 2018 IEEE international conference on industrial technology (ICIT)
– volume: 39
  start-page: 3837
  year: 2014
  end-page: 3854
  ident: bib41
  article-title: An improved TLBO with elite strategy for parameters identification of PEM fuel cell and solar cell models
  publication-title: Int J Hydrogen Energy
– volume: 216
  start-page: 21
  year: 2018
  end-page: 30
  ident: bib10
  article-title: Real time adaptive efficient cold start strategy for proton exchange membrane fuel cells
  publication-title: Appl Energy
– volume: 16
  start-page: 640
  year: 2016
  end-page: 645
  ident: bib35
  article-title: Parameter estimation for a proton exchange membrane fuel cell model using GRG technique
  publication-title: Fuel Cells
– volume: 86
  start-page: 139
  year: 2015
  end-page: 151
  ident: bib40
  article-title: Parameter extraction of different fuel cell models with transferred adaptive differential evolution
  publication-title: Energy
– volume: 39
  start-page: 21165
  year: 2014
  end-page: 21176
  ident: bib13
  article-title: Online identification of semi-empirical model parameters for PEMFCs
  publication-title: Int J Hydrogen Energy
– volume: 56
  start-page: 64
  year: 2013
  end-page: 71
  ident: bib15
  article-title: Comparison of proton exchange membrane fuel cell static models
  publication-title: Renew Energy
– start-page: 4661
  year: 2007
  end-page: 4667
  ident: bib52
  article-title: Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition
  publication-title: 2007 IEEE congress on evolutionary computation
– volume: 38
  start-page: 129
  year: 2006
  end-page: 154
  ident: bib50
  article-title: Shuffled frog-leaping algorithm: a memetic meta-heuristic for discrete optimization
  publication-title: Eng Optim
– start-page: 792
  year: 2015
  end-page: 798
  ident: bib23
  article-title: Metaheuristic optimization algorithms for approximate solutions to ordinary differential equations
  publication-title: 2015 IEEE congress on evolutionary computation (CEC)
– volume: 37
  start-page: 8465
  year: 2012
  end-page: 8476
  ident: bib20
  article-title: A novel P systems based optimization algorithm for parameter estimation of proton exchange membrane fuel cell model
  publication-title: Int J Hydrogen Energy
– volume: 380
  start-page: 92
  year: 2018
  end-page: 104
  ident: bib19
  article-title: Overview and benchmark analysis of fuel cell parameters estimation for energy management purposes
  publication-title: J Power Sources
– year: 2014
  ident: bib46
  article-title: Determination of activation losses in proton exchange membrane fuel cells
– volume: 27
  start-page: 28
  year: 2014
  end-page: 40
  ident: bib42
  article-title: Parameter optimization of PEMFC model with improved multi-strategy adaptive differential evolution
  publication-title: Eng Appl Artif Intell
– volume: 86
  start-page: 173
  year: 2000
  end-page: 180
  ident: bib44
  article-title: Development and application of a generalised steady-state electrochemical model for a PEM fuel cell
  publication-title: J Power Sources
– volume: 169
  start-page: 783
  year: 2019
  end-page: 796
  ident: bib2
  article-title: Feasibility of offshore wind energy as an alternative source for the state of Kuwait
  publication-title: Energy
– start-page: 1
  year: 1995
  end-page: 8
  ident: bib17
  article-title: Performance modeling of the Ballard Mark IV solid polymer electrolyte fuel cell. 1: mechanistic model development
  publication-title: J Electrochem Soc
– volume: 18
  start-page: 347
  year: 2018
  end-page: 358
  ident: bib9
  article-title: Comparative analysis of two online identification algorithms in a fuel cell system
  publication-title: Fuel Cells
– volume: 30
  start-page: 585
  year: 2006
  end-page: 597
  ident: bib27
  article-title: Parameter optimization for a PEMFC model with a hybrid genetic algorithm
  publication-title: Int J Energy Res
– volume: 140
  start-page: 2178
  year: 1993
  end-page: 2186
  ident: bib45
  article-title: A water and heat management model for proton-exchange-membrane fuel cells
  publication-title: J Electrochem Soc
– volume: 12
  start-page: 9
  year: 2018
  end-page: 17
  ident: bib31
  article-title: Electrical characterisation of proton exchange membrane fuel cells stack using grasshopper optimiser
  publication-title: IET Renew Power Gener
– volume: 111
  start-page: 455
  year: 2017
  end-page: 462
  ident: bib32
  article-title: Effective parameters' identification for polymer electrolyte membrane fuel cell models using grey wolf optimizer
  publication-title: Renew Energy
– start-page: 1
  year: 2018
  end-page: 6
  ident: bib11
  article-title: Optimized fuzzy thermal management of an open cathode fuel cell system
  publication-title: 2018 IEEE vehicle power and propulsion conference
– volume: 119
  start-page: 641
  year: 2018
  end-page: 648
  ident: bib30
  article-title: Extracting optimal parameters of PEM fuel cells using Salp Swarm Optimizer
  publication-title: Renew Energy
– start-page: 1091
  year: 2018
  end-page: 1112
  ident: bib4
  article-title: 33 - fuel-cell systems for transportations A2 - rashid, Muhammad H
  publication-title: Power electronics handbook
– volume: 44
  start-page: 3075
  year: 2019
  end-page: 3087
  ident: bib29
  article-title: Cuckoo search algorithm with explosion operator for modeling proton exchange membrane fuel cells
  publication-title: Int J Hydrogen Energy
– volume: 62
  start-page: 189
  year: 2014
  end-page: 198
  ident: bib43
  article-title: Parameter fitting of PEMFC models based on adaptive differential evolution
  publication-title: Int J Electr Power Energy Syst
– volume: 138
  start-page: 437
  year: 2017
  end-page: 445
  ident: bib7
  article-title: Modeling and performance evaluation of PEM fuel cell by controlling its input parameters
  publication-title: Energy
– volume: 38
  start-page: 7077
  year: 2013
  end-page: 7091
  ident: bib12
  article-title: A review on model-based diagnosis methodologies for PEMFCs
  publication-title: Int J Hydrogen Energy
– volume: 57
  start-page: 1882
  year: 2010
  end-page: 1891
  ident: bib16
  article-title: From modeling to control of a PEM fuel cell using energetic macroscopic representation
  publication-title: IEEE Trans Ind Electron
– volume: 11
  start-page: 548
  year: 2015
  end-page: 559
  ident: bib37
  article-title: Identification of a proton-exchange membrane fuel cell's model parameters by means of an evolution strategy
  publication-title: IEEE Transactions on Industrial Informatics
– volume: 162
  start-page: 14
  year: 2019
  end-page: 23
  ident: bib5
  article-title: Modular energy systems in vehicular applications
  publication-title: Energy Procedia
– volume: 59
  start-page: 3473
  year: 2012
  end-page: 3480
  ident: bib22
  article-title: An innovative global harmony search algorithm for parameter identification of a PEM fuel cell model
  publication-title: IEEE Trans Ind Electron
– volume: 129
  start-page: 237
  year: 2017
  end-page: 245
  ident: bib3
  article-title: Biological conversion of hydrogen to electricity for energy storage
  publication-title: Energy
– volume: 5
  start-page: 463
  year: 2005
  end-page: 475
  ident: bib47
  article-title: Modelling and analysis of electro-chemical, thermal, and reactant flow dynamics for a PEM fuel cell system
  publication-title: Fuel Cells
– volume: 7
  start-page: 347
  year: 2016
  ident: 10.1016/j.energy.2019.06.152_bib34
  article-title: Optimal proton exchange membrane fuel cell modelling based on hybrid Teaching Learning Based Optimization – differential Evolution algorithm
  publication-title: Ain Shams Engineering Journal
  doi: 10.1016/j.asej.2015.05.003
– volume: 5
  start-page: 463
  year: 2005
  ident: 10.1016/j.energy.2019.06.152_bib47
  article-title: Modelling and analysis of electro-chemical, thermal, and reactant flow dynamics for a PEM fuel cell system
  publication-title: Fuel Cells
  doi: 10.1002/fuce.200400072
– volume: 40
  start-page: 387
  year: 2012
  ident: 10.1016/j.energy.2019.06.152_bib21
  article-title: PEM fuel cell modeling using differential evolution
  publication-title: Energy
  doi: 10.1016/j.energy.2012.01.039
– volume: 39
  start-page: 3837
  year: 2014
  ident: 10.1016/j.energy.2019.06.152_bib41
  article-title: An improved TLBO with elite strategy for parameters identification of PEM fuel cell and solar cell models
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2013.12.110
– volume: 57
  start-page: 1882
  year: 2010
  ident: 10.1016/j.energy.2019.06.152_bib16
  article-title: From modeling to control of a PEM fuel cell using energetic macroscopic representation
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2009.2026760
– volume: 216
  start-page: 21
  year: 2018
  ident: 10.1016/j.energy.2019.06.152_bib10
  article-title: Real time adaptive efficient cold start strategy for proton exchange membrane fuel cells
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.02.071
– volume: 274
  start-page: 292
  year: 2016
  ident: 10.1016/j.energy.2019.06.152_bib49
  article-title: A hybrid PSO-GA algorithm for constrained optimization problems
  publication-title: Appl Math Comput
– start-page: 792
  year: 2015
  ident: 10.1016/j.energy.2019.06.152_bib23
  article-title: Metaheuristic optimization algorithms for approximate solutions to ordinary differential equations
– volume: 51
  start-page: 1103
  year: 2004
  ident: 10.1016/j.energy.2019.06.152_bib48
  article-title: An electrochemical-based fuel-cell model suitable for electrical engineering automation approach
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2004.834972
– volume: 173
  start-page: 457
  year: 2019
  ident: 10.1016/j.energy.2019.06.152_bib28
  article-title: Parameter estimation of proton exchange membrane fuel cells using eagle strategy based on JAYA algorithm and Nelder-Mead simplex method
  publication-title: Energy
  doi: 10.1016/j.energy.2019.02.106
– start-page: 111
  year: 2014
  ident: 10.1016/j.energy.2019.06.152_bib53
  article-title: Chapter 8 - firefly algorithms
– volume: 119
  start-page: 641
  year: 2018
  ident: 10.1016/j.energy.2019.06.152_bib30
  article-title: Extracting optimal parameters of PEM fuel cells using Salp Swarm Optimizer
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2017.12.051
– start-page: 2043
  year: 2018
  ident: 10.1016/j.energy.2019.06.152_bib8
  article-title: A novel online energy management strategy for multi fuel cell systems
– volume: 93
  start-page: 121
  year: 2018
  ident: 10.1016/j.energy.2019.06.152_bib26
  article-title: A comprehensive review on parameter estimation techniques for Proton Exchange Membrane fuel cell modelling
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2018.05.017
– volume: 56
  start-page: 64
  year: 2013
  ident: 10.1016/j.energy.2019.06.152_bib15
  article-title: Comparison of proton exchange membrane fuel cell static models
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2012.10.012
– volume: 38
  start-page: 129
  year: 2006
  ident: 10.1016/j.energy.2019.06.152_bib50
  article-title: Shuffled frog-leaping algorithm: a memetic meta-heuristic for discrete optimization
  publication-title: Eng Optim
  doi: 10.1080/03052150500384759
– volume: 30
  start-page: 585
  year: 2006
  ident: 10.1016/j.energy.2019.06.152_bib27
  article-title: Parameter optimization for a PEMFC model with a hybrid genetic algorithm
  publication-title: Int J Energy Res
  doi: 10.1002/er.1170
– volume: 138
  start-page: 437
  year: 2017
  ident: 10.1016/j.energy.2019.06.152_bib7
  article-title: Modeling and performance evaluation of PEM fuel cell by controlling its input parameters
  publication-title: Energy
  doi: 10.1016/j.energy.2017.07.070
– volume: 37
  start-page: 8465
  year: 2012
  ident: 10.1016/j.energy.2019.06.152_bib20
  article-title: A novel P systems based optimization algorithm for parameter estimation of proton exchange membrane fuel cell model
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2012.02.131
– start-page: 4661
  year: 2007
  ident: 10.1016/j.energy.2019.06.152_bib52
  article-title: Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition
– volume: 140
  start-page: 2178
  year: 1993
  ident: 10.1016/j.energy.2019.06.152_bib45
  article-title: A water and heat management model for proton-exchange-membrane fuel cells
  publication-title: J Electrochem Soc
  doi: 10.1149/1.2220792
– volume: 86
  start-page: 139
  year: 2015
  ident: 10.1016/j.energy.2019.06.152_bib40
  article-title: Parameter extraction of different fuel cell models with transferred adaptive differential evolution
  publication-title: Energy
  doi: 10.1016/j.energy.2015.03.117
– volume: 127
  start-page: 116
  year: 2017
  ident: 10.1016/j.energy.2019.06.152_bib1
  article-title: Prospects of renewable energy sources in India: prioritization of alternative sources in terms of Energy Index
  publication-title: Energy
  doi: 10.1016/j.energy.2017.03.110
– volume: 39
  start-page: 21165
  year: 2014
  ident: 10.1016/j.energy.2019.06.152_bib13
  article-title: Online identification of semi-empirical model parameters for PEMFCs
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2014.10.045
– volume: 59
  start-page: 3473
  year: 2012
  ident: 10.1016/j.energy.2019.06.152_bib22
  article-title: An innovative global harmony search algorithm for parameter identification of a PEM fuel cell model
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2011.2172173
– volume: 44
  start-page: 3075
  year: 2019
  ident: 10.1016/j.energy.2019.06.152_bib29
  article-title: Cuckoo search algorithm with explosion operator for modeling proton exchange membrane fuel cells
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.11.140
– volume: 4
  start-page: 668
  year: 2016
  ident: 10.1016/j.energy.2019.06.152_bib54
  article-title: Simplified mathematical model of proton exchange membrane fuel cell based on horizon fuel cell stack
  publication-title: Journal of Modern Power Systems and Clean Energy
  doi: 10.1007/s40565-016-0196-5
– volume: 11
  start-page: 548
  year: 2015
  ident: 10.1016/j.energy.2019.06.152_bib37
  article-title: Identification of a proton-exchange membrane fuel cell's model parameters by means of an evolution strategy
  publication-title: IEEE Transactions on Industrial Informatics
  doi: 10.1109/TII.2014.2317982
– volume: 132
  start-page: 0975
  year: 2015
  ident: 10.1016/j.energy.2019.06.152_bib24
  article-title: Optimization of LMS algorithm for adaptive filtering using global optimization techniques
  publication-title: Int J Comput Appl
– volume: 129
  start-page: 237
  year: 2017
  ident: 10.1016/j.energy.2019.06.152_bib3
  article-title: Biological conversion of hydrogen to electricity for energy storage
  publication-title: Energy
  doi: 10.1016/j.energy.2017.04.110
– volume: 380
  start-page: 92
  year: 2018
  ident: 10.1016/j.energy.2019.06.152_bib19
  article-title: Overview and benchmark analysis of fuel cell parameters estimation for energy management purposes
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2018.01.075
– volume: 12
  start-page: 46
  year: 2015
  ident: 10.1016/j.energy.2019.06.152_bib39
  article-title: A novel approach for fuel cell parameter estimation using simple Genetic Algorithm
  publication-title: Sustainable Energy Technologies and Assessments
  doi: 10.1016/j.seta.2015.09.001
– volume: 111
  start-page: 455
  year: 2017
  ident: 10.1016/j.energy.2019.06.152_bib32
  article-title: Effective parameters' identification for polymer electrolyte membrane fuel cell models using grey wolf optimizer
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2017.04.036
– volume: 38
  start-page: 7077
  year: 2013
  ident: 10.1016/j.energy.2019.06.152_bib12
  article-title: A review on model-based diagnosis methodologies for PEMFCs
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2013.03.106
– volume: 109
  start-page: 569
  year: 2016
  ident: 10.1016/j.energy.2019.06.152_bib33
  article-title: Modeling and optimization for proton exchange membrane fuel cell stack using aging and challenging P systems based optimization algorithm
  publication-title: Energy
  doi: 10.1016/j.energy.2016.04.093
– volume: 168
  start-page: 182
  year: 2019
  ident: 10.1016/j.energy.2019.06.152_bib6
  article-title: Contribution and investigation to compare models parameters of (PEMFC), comprehensives review of fuel cell models and their degradation
  publication-title: Energy
  doi: 10.1016/j.energy.2018.11.095
– volume: 111
  start-page: 307
  year: 2017
  ident: 10.1016/j.energy.2019.06.152_bib51
  article-title: Parameter estimation of photovoltaic system using imperialist competitive algorithm
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2017.04.014
– volume: 162
  start-page: 14
  year: 2019
  ident: 10.1016/j.energy.2019.06.152_bib5
  article-title: Modular energy systems in vehicular applications
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2019.04.003
– volume: 169
  start-page: 783
  year: 2019
  ident: 10.1016/j.energy.2019.06.152_bib2
  article-title: Feasibility of offshore wind energy as an alternative source for the state of Kuwait
  publication-title: Energy
  doi: 10.1016/j.energy.2018.11.140
– volume: 33
  start-page: 1735
  year: 2008
  ident: 10.1016/j.energy.2019.06.152_bib14
  article-title: Diagnostic tools in PEM fuel cell research: Part I Electrochemical techniques
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2008.01.013
– start-page: 1
  year: 2018
  ident: 10.1016/j.energy.2019.06.152_bib11
  article-title: Optimized fuzzy thermal management of an open cathode fuel cell system
– volume: 16
  start-page: 640
  year: 2016
  ident: 10.1016/j.energy.2019.06.152_bib35
  article-title: Parameter estimation for a proton exchange membrane fuel cell model using GRG technique
  publication-title: Fuel Cells
  doi: 10.1002/fuce.201500190
– volume: 90
  start-page: 1334
  year: 2015
  ident: 10.1016/j.energy.2019.06.152_bib36
  article-title: Parameter identification of PEMFC model based on hybrid adaptive differential evolution algorithm
  publication-title: Energy
  doi: 10.1016/j.energy.2015.06.081
– start-page: 1
  year: 1995
  ident: 10.1016/j.energy.2019.06.152_bib17
  article-title: Performance modeling of the Ballard Mark IV solid polymer electrolyte fuel cell. 1: mechanistic model development
  publication-title: J Electrochem Soc
  doi: 10.1149/1.2043866
– start-page: 1091
  year: 2018
  ident: 10.1016/j.energy.2019.06.152_bib4
  article-title: 33 - fuel-cell systems for transportations A2 - rashid, Muhammad H
– volume: 12
  start-page: 9
  year: 2018
  ident: 10.1016/j.energy.2019.06.152_bib31
  article-title: Electrical characterisation of proton exchange membrane fuel cells stack using grasshopper optimiser
  publication-title: IET Renew Power Gener
  doi: 10.1049/iet-rpg.2017.0232
– year: 2014
  ident: 10.1016/j.energy.2019.06.152_bib46
– volume: 18
  start-page: 347
  year: 2018
  ident: 10.1016/j.energy.2019.06.152_bib9
  article-title: Comparative analysis of two online identification algorithms in a fuel cell system
  publication-title: Fuel Cells
  doi: 10.1002/fuce.201800025
– volume: 62
  start-page: 189
  year: 2014
  ident: 10.1016/j.energy.2019.06.152_bib43
  article-title: Parameter fitting of PEMFC models based on adaptive differential evolution
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2014.04.043
– volume: 51
  start-page: 2492
  year: 2010
  ident: 10.1016/j.energy.2019.06.152_bib18
  article-title: Development of an empirical dynamic model for a Nexa PEM fuel cell power module
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2010.05.012
– volume: 6
  start-page: 1187
  year: 2015
  ident: 10.1016/j.energy.2019.06.152_bib38
  article-title: Comparative study of PEM fuel cell parameter extraction using Genetic Algorithm
  publication-title: Ain Shams Engineering Journal
  doi: 10.1016/j.asej.2015.05.007
– start-page: 565
  year: 2017
  ident: 10.1016/j.energy.2019.06.152_bib25
  article-title: On initialization of the Kalman filter
– volume: 27
  start-page: 28
  year: 2014
  ident: 10.1016/j.energy.2019.06.152_bib42
  article-title: Parameter optimization of PEMFC model with improved multi-strategy adaptive differential evolution
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2013.07.016
– volume: 86
  start-page: 173
  year: 2000
  ident: 10.1016/j.energy.2019.06.152_bib44
  article-title: Development and application of a generalised steady-state electrochemical model for a PEM fuel cell
  publication-title: J Power Sources
  doi: 10.1016/S0378-7753(99)00484-X
SSID ssj0005899
Score 2.6128242
Snippet Proton exchange membrane fuel cell (PEMFC) models are multivariate with different nonlinear elements which should be identified accurately to assure dependable...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 912
SubjectTerms Algorithms
Benchmarks
Case studies
Cell culture
Evolutionary algorithms
Fuel cells
Fuel technology
Heuristic methods
Mathematical models
Metaheuristic algorithms
Optimization
Parameters
PEMFC
Proton exchange membrane fuel cells
Protons
Semi-empirical modeling
Shuffled frog-leaping algorithm
Standard deviation
temperature
Variance
Title Benchmark of proton exchange membrane fuel cell parameters extraction with metaheuristic optimization algorithms
URI https://dx.doi.org/10.1016/j.energy.2019.06.152
https://www.proquest.com/docview/2293934552
https://www.proquest.com/docview/2286870749
Volume 183
WOSCitedRecordID wos000483005400077&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6785
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005899
  issn: 0360-5442
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELZKhwQvCAbTBgMZibcoU5PYSfxYUBE_xoTEkPoWObFDN6VN1aZT-SP4n7mL7aRsQgMkXqLKduK031f7fLrvjpBXZSRZolXsMy6Yz4I094XSzA95UUAX14XJrn-anJ2l06n4PBj8cFqYqypZLNLtViz_K9TQBmCjdPYv4O4eCg3wGUCHK8AO1z8C_jW8zGwuV23EOKZhqDGPvxH4enM9h-MxGJblRlceeu09TP49x6CYNQxrVrZ2eOufhWY50xuTzNmrYXWZW9mmJ6tv9QrG2GTnzrdvlISYwnRroub7WG7Uzyj5Xbc1pLxPJzu-8AujKht3bR9nspJN3hZIrBpTdmqnG4thm2iB05Ndt0XQxmUZ4abxpTk9TR-8ZDRcI58zdm19jnZWWGGjrs1mLYxq-sY-YFwSlye6_doYwScwTWvAw37f66IRv-C0OCsYs7hdp3fIXphwkQ7J3vj9ZPqhjxlK24Kk3Ws6LWYbMHhzrt_ZOtd2_daUOX9IHtgzCB0b7jwiA73YJ_ecRH29Tw4mvfwRBtr1f_2YLDty0bqkhlzUkYs6clEkF0Vy0Z5ctCcXRXLRX8hFd8lFe3I9IV_fTs7fvPNtzQ6_ANOw8ROuR1xJOCVHQqlUwHk1DgpWxiJSuYzzUVmqgueMB0WYyLAspeKSh1qGQsFhPo4OyHBRL_QhofDAUIJ9qYJYMSyrBpZtnMq0TEKVay6OSOR-3aywCe2xrkqVucjFy8xgkiEm2SjOAJMj4nd3LU1Cl1vGJw64zBqlxtjMgGu33HnscM7s-rDOQjCvRcQ4dr_sumFJR1AAoXqDY9IYttGEiaf_PPkzcr__1x2TYbPa6OfkbnHVXKxXLyyvfwKqvs8H
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Benchmark+of+proton+exchange+membrane+fuel+cell+parameters+extraction+with+metaheuristic+optimization+algorithms&rft.jtitle=Energy+%28Oxford%29&rft.au=Kandidayeni%2C+M.&rft.au=Macias%2C+A.&rft.au=Khalatbarisoltani%2C+A.&rft.au=Boulon%2C+L.&rft.date=2019-09-15&rft.pub=Elsevier+Ltd&rft.issn=0360-5442&rft.volume=183&rft.spage=912&rft.epage=925&rft_id=info:doi/10.1016%2Fj.energy.2019.06.152&rft.externalDocID=S0360544219312848
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon