Fuzzy rough bi-level multi-objective nonlinear programming problems

Fuzzy rough bi-level multi-objective nonlinear programming problem (FRBMNPP) moved toward becoming rise normally in various real applications. In this article we develop bi-level multi-objective nonlinear programming problem (BMNPP), in which the objective functions have fuzzy nature and the constra...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Alexandria engineering journal Ročník 58; číslo 4; s. 1471 - 1482
Hlavní autoři: Elsisy, M.A., El Sayed, M.A.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.12.2019
Elsevier
Témata:
ISSN:1110-0168
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Fuzzy rough bi-level multi-objective nonlinear programming problem (FRBMNPP) moved toward becoming rise normally in various real applications. In this article we develop bi-level multi-objective nonlinear programming problem (BMNPP), in which the objective functions have fuzzy nature and the constraints represented as a rough set. The fuzzy objective functions converted into deterministic ones by utilizing the α-cut methodology. Thus the FRBMNPP become a rough BMNPP which is transformed into two problems corresponding to the upper and lower approximation models. The Karush-Kuhn-Tucker (KKT) method and two models of technique of order preferences by similarity to ideal solution (TOPSIS) approach are developed to solve such problem. At last, applicability and efficiency of the two TOPSIS models and KKT method, suggested in this study, are presented through an algorithm and a numerical illustration.
ISSN:1110-0168
DOI:10.1016/j.aej.2019.12.002