On the Study of Starlike Functions Associated with the Generalized Sine Hyperbolic Function

Geometric function theory, a subfield of complex analysis that examines the geometrical characteristics of analytic functions, has seen a sharp increase in research in recent years. In particular, by employing subordination notions, the contributions of different subclasses of analytic functions ass...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) Jg. 11; H. 23; S. 4848
Hauptverfasser: Gul, Baseer, Arif, Muhammad, Alhefthi, Reem K., Breaz, Daniel, Cotîrlă, Luminiţa-Ioana, Rapeanu, Eleonora
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 01.12.2023
Schlagworte:
ISSN:2227-7390, 2227-7390
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Geometric function theory, a subfield of complex analysis that examines the geometrical characteristics of analytic functions, has seen a sharp increase in research in recent years. In particular, by employing subordination notions, the contributions of different subclasses of analytic functions associated with innovative image domains are of significant interest and are extensively investigated. Since ℜ(1+sinh(z))≯0, it implies that the class Ssinh* introduced in reference third by Kumar et al. is not a subclass of starlike functions. Now, we have introduced a parameter λ with the restriction 0≤λ≤ln(1+2), and by doing that, ℜ(1+sinh(λz))>0. The present research intends to provide a novel subclass of starlike functions in the open unit disk U, denoted as Ssinhλ*, and investigate its geometric nature. For this newly defined subclass, we obtain sharp upper bounds of the coefficients an for n=2,3,4,5. Then, we prove a lemma, in which the largest disk contained in the image domain of q0(z)=1+sinh(λz) and the smallest disk containing q0(U) are investigated. This lemma has a central role in proving our radius problems. We discuss radius problems of various known classes, including S*(β) and K(β) of starlike functions of order β and convex functions of order β. Investigating Ssinhλ* radii for several geometrically known classes and some classes of functions defined as ratios of functions are also part of the present research. The methodology used for finding Ssinhλ* radii of different subclasses is the calculation of that value of the radius r<1 for which the image domain of any function belonging to a specified class is contained in the largest disk of this lemma. A new representation of functions in this class, but for a more restricted range of λ, is also obtained.
AbstractList Geometric function theory, a subfield of complex analysis that examines the geometrical characteristics of analytic functions, has seen a sharp increase in research in recent years. In particular, by employing subordination notions, the contributions of different subclasses of analytic functions associated with innovative image domains are of significant interest and are extensively investigated. Since ℜ(1+ sinh (z))≯0, it implies that the class S sinh * introduced in reference third by Kumar et al. is not a subclass of starlike functions. Now, we have introduced a parameter λ with the restriction 0≤λ≤ ln (1+2), and by doing that, ℜ(1+ sinh (λz))>0. The present research intends to provide a novel subclass of starlike functions in the open unit disk U , denoted as S sinh λ* , and investigate its geometric nature. For this newly defined subclass, we obtain sharp upper bounds of the coefficients an for n=2,3,4,5. Then, we prove a lemma, in which the largest disk contained in the image domain of q0(z)=1+ sinh (λz) and the smallest disk containing q0( U ) are investigated. This lemma has a central role in proving our radius problems. We discuss radius problems of various known classes, including S*(β) and K (β) of starlike functions of order β and convex functions of order β . Investigating S sinh λ* radii for several geometrically known classes and some classes of functions defined as ratios of functions are also part of the present research. The methodology used for finding S sinh λ* radii of different subclasses is the calculation of that value of the radius r<1 for which the image domain of any function belonging to a specified class is contained in the largest disk of this lemma. A new representation of functions in this class, but for a more restricted range of λ , is also obtained.
Geometric function theory, a subfield of complex analysis that examines the geometrical characteristics of analytic functions, has seen a sharp increase in research in recent years. In particular, by employing subordination notions, the contributions of different subclasses of analytic functions associated with innovative image domains are of significant interest and are extensively investigated. Since ℜ(1+sinh(z))≯0, it implies that the class Ssinh* introduced in reference third by Kumar et al. is not a subclass of starlike functions. Now, we have introduced a parameter λ with the restriction 0≤λ≤ln(1+2), and by doing that, ℜ(1+sinh(λz))>0. The present research intends to provide a novel subclass of starlike functions in the open unit disk U, denoted as Ssinhλ*, and investigate its geometric nature. For this newly defined subclass, we obtain sharp upper bounds of the coefficients an for n=2,3,4,5. Then, we prove a lemma, in which the largest disk contained in the image domain of q0(z)=1+sinh(λz) and the smallest disk containing q0(U) are investigated. This lemma has a central role in proving our radius problems. We discuss radius problems of various known classes, including S*(β) and K(β) of starlike functions of order β and convex functions of order β. Investigating Ssinhλ* radii for several geometrically known classes and some classes of functions defined as ratios of functions are also part of the present research. The methodology used for finding Ssinhλ* radii of different subclasses is the calculation of that value of the radius r<1 for which the image domain of any function belonging to a specified class is contained in the largest disk of this lemma. A new representation of functions in this class, but for a more restricted range of λ, is also obtained.
Geometric function theory, a subfield of complex analysis that examines the geometrical characteristics of analytic functions, has seen a sharp increase in research in recent years. In particular, by employing subordination notions, the contributions of different subclasses of analytic functions associated with innovative image domains are of significant interest and are extensively investigated. Since ℜ(1+sinh(z))≯0, it implies that the class S[sub.sinh] [sup.*] introduced in reference third by Kumar et al. is not a subclass of starlike functions. Now, we have introduced a parameter λ with the restriction 0≤λ≤ln(1+[square root of 2]), and by doing that, ℜ(1+sinh(λz))>0. The present research intends to provide a novel subclass of starlike functions in the open unit disk U, denoted as S[sub.sinhλ] [sup.*] , and investigate its geometric nature. For this newly defined subclass, we obtain sharp upper bounds of the coefficients a[sub.n] for n=2,3,4,5. Then, we prove a lemma, in which the largest disk contained in the image domain of q[sub.0] (z)=1+sinh(λz) and the smallest disk containing q[sub.0] (U) are investigated. This lemma has a central role in proving our radius problems. We discuss radius problems of various known classes, including S[sup.*] (β) and K(β) of starlike functions of order β and convex functions of order β. Investigating S[sub.sinhλ] [sup.*] radii for several geometrically known classes and some classes of functions defined as ratios of functions are also part of the present research. The methodology used for finding S[sub.sinhλ] [sup.*] radii of different subclasses is the calculation of that value of the radius r<1 for which the image domain of any function belonging to a specified class is contained in the largest disk of this lemma. A new representation of functions in this class, but for a more restricted range of λ, is also obtained.
Audience Academic
Author Alhefthi, Reem K.
Cotîrlă, Luminiţa-Ioana
Gul, Baseer
Breaz, Daniel
Arif, Muhammad
Rapeanu, Eleonora
Author_xml – sequence: 1
  givenname: Baseer
  surname: Gul
  fullname: Gul, Baseer
– sequence: 2
  givenname: Muhammad
  orcidid: 0000-0003-1484-7643
  surname: Arif
  fullname: Arif, Muhammad
– sequence: 3
  givenname: Reem K.
  orcidid: 0000-0001-9344-2008
  surname: Alhefthi
  fullname: Alhefthi, Reem K.
– sequence: 4
  givenname: Daniel
  surname: Breaz
  fullname: Breaz, Daniel
– sequence: 5
  givenname: Luminiţa-Ioana
  orcidid: 0000-0002-0269-0688
  surname: Cotîrlă
  fullname: Cotîrlă, Luminiţa-Ioana
– sequence: 6
  givenname: Eleonora
  surname: Rapeanu
  fullname: Rapeanu, Eleonora
BookMark eNptUclqXDEQFMGBOI5v-YAHuWZsbU_LcTDxAgYfnJxyEHpaPJq8kSaShjD--rQ9wRgT6aCmuqrUdH1ER7nkgNBngs8Y0_h8Y_uKEMq44uodOqaUyoWExtGr-gM6bW2N4WjCFNfH6OddHvoqDPd95_dDiVDYOqdfYbjcZddTyW1YtlZcsj344U_qq2f-Vcih2jk9Anifchiu99tQpzIn96L8hN5HO7dw-u89QT8uv32_uF7c3l3dXCxvF45j0ReSq6iIFEoqxzhxBE9cWqzYSLyYoBPG6ANVQsQ4utGxUUoXtfcjnURgnJ2gm4OvL3ZttjVtbN2bYpN5Bkp9MLb25OZgQBKF9cIHK7gXeBKTxrAKz7Eb9YTB68vBa1vL711o3azLrmYY31ClNaecagmsswPrwYJpyrH0ah1cHzbJQS4xAb6UclSaEKxB8PUgcLW0VkN8GZNg8xSfeR0f0OkbukvdPu0U_knz_0V_Ad_tns4
CitedBy_id crossref_primary_10_3390_fractalfract9030179
Cites_doi 10.1142/S0129167X14500906
10.1090/S0002-9939-1963-0148892-5
10.1016/j.crma.2015.03.003
10.4064/ap-23-2-159-177
10.2140/pjm.1972.43.239
10.1007/s13324-017-0187-3
10.1007/s10473-024-0404-8
10.1515/ms-2017-0289
10.1090/S0002-9939-1964-0158985-5
10.1007/s40840-019-00784-y
10.1007/s13370-015-0387-7
10.1090/S0002-9939-1963-0148891-3
10.1142/S1793557117500644
10.1007/s40840-020-01016-4
10.5556/j.tkjm.25.1994.4448
10.1112/jlms/s2-1.1.431
10.1016/j.crma.2015.09.011
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOA
DOI 10.3390/math11234848
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2227-7390
ExternalDocumentID oai_doaj_org_article_52bf6ad6dea64d60b6b90138d40c59b0
A775891109
10_3390_math11234848
GeographicLocations Romania
GeographicLocations_xml – name: Romania
GroupedDBID -~X
5VS
85S
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABPPZ
ABUWG
ACIPV
ACIWK
ADBBV
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ITC
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
RNS
3V.
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c406t-748f8176878c341c10b47a08351d6b817e5fde2866ff5c5c3577cf9dd52b6e343
IEDL.DBID DOA
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001119202500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2227-7390
IngestDate Fri Oct 03 12:42:47 EDT 2025
Sun Jul 13 02:53:54 EDT 2025
Tue Nov 04 18:24:11 EST 2025
Tue Nov 18 22:21:17 EST 2025
Sat Nov 29 07:14:51 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-748f8176878c341c10b47a08351d6b817e5fde2866ff5c5c3577cf9dd52b6e343
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1484-7643
0000-0001-9344-2008
0000-0002-0269-0688
OpenAccessLink https://doaj.org/article/52bf6ad6dea64d60b6b90138d40c59b0
PQID 2899424297
PQPubID 2032364
ParticipantIDs doaj_primary_oai_doaj_org_article_52bf6ad6dea64d60b6b90138d40c59b0
proquest_journals_2899424297
gale_infotracacademiconefile_A775891109
crossref_primary_10_3390_math11234848
crossref_citationtrail_10_3390_math11234848
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Mathematics (Basel)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Sharma (ref_8) 2016; 27
MacGregor (ref_12) 1963; 14
Uralegaddi (ref_5) 1994; 25
MacGregor (ref_10) 1963; 14
ref_14
Deniz (ref_29) 2021; 44
Kaplan (ref_6) 1953; 1
Shah (ref_17) 1972; 43
Stankiewicz (ref_27) 1966; 20
Kumar (ref_30) 2016; 40
Gandhi (ref_23) 2017; 10
MacGregor (ref_13) 1964; 15
Janowski (ref_2) 1971; 23
Ali (ref_15) 2003; 26
Ali (ref_19) 2012; 128
Raina (ref_22) 2015; 353
Kargar (ref_26) 2019; 9
MacGregor (ref_11) 1963; 14
Ravichandran (ref_18) 1997; 33
Mendiratta (ref_21) 2014; 25
Stankiewicz (ref_20) 1996; 19
Read (ref_7) 1955; 3
ref_1
Ravichandran (ref_16) 2015; 353
ref_3
Ali (ref_9) 2013; 36
Kumar (ref_24) 2019; 69
Brannan (ref_28) 1969; 2
ref_4
Goel (ref_25) 2020; 43
References_xml – volume: 25
  start-page: 1450090
  year: 2014
  ident: ref_21
  article-title: A subclass of starlike functions associated with left-half of the lemniscate of Bernoulli
  publication-title: Int. J. Math.
  doi: 10.1142/S0129167X14500906
– volume: 14
  start-page: 521
  year: 1963
  ident: ref_12
  article-title: The radius of univalence of certain analytic functions, II
  publication-title: Proc. Am. Math. Soc.
  doi: 10.1090/S0002-9939-1963-0148892-5
– volume: 26
  start-page: 63
  year: 2003
  ident: ref_15
  article-title: Coefficients of the inverse of strongly starlike functions
  publication-title: Bull. Malays. Math. Sci. Soc.
– ident: ref_3
– volume: 128
  start-page: 6557
  year: 2012
  ident: ref_19
  article-title: Radii of starlikeness associated with the lemniscate of Bernoulli and the left-half plane
  publication-title: Appl. Math. Comput.
– volume: 353
  start-page: 505
  year: 2015
  ident: ref_16
  article-title: Bound for the fifth coefficient of certain starlike functions
  publication-title: Comptes Rendus Math.
  doi: 10.1016/j.crma.2015.03.003
– volume: 40
  start-page: 199
  year: 2016
  ident: ref_30
  article-title: A subclass of starlike functions associated with a rational function
  publication-title: Southeast Asian Bull. Math.
– volume: 19
  start-page: 101
  year: 1996
  ident: ref_20
  article-title: Radius of convexity of some subclasses of strongly starlike functions
  publication-title: Zesz. Nauk. Politech. Rzesz. Mat.
– ident: ref_14
– ident: ref_1
– volume: 23
  start-page: 159
  year: 1971
  ident: ref_2
  article-title: Extremal problems for a family of functions with positive real part and for some related families
  publication-title: Ann. Pol. Math.
  doi: 10.4064/ap-23-2-159-177
– volume: 1
  start-page: 169
  year: 1953
  ident: ref_6
  article-title: Close-to-convex schlicht functions
  publication-title: Mich. Math. J.
– volume: 14
  start-page: 71
  year: 1963
  ident: ref_10
  article-title: The radius of convexity for starlike functions of order 1/2
  publication-title: Proc. Am. Math. Soc.
– volume: 43
  start-page: 239
  year: 1972
  ident: ref_17
  article-title: On the univalence of some analytic functions
  publication-title: Pac. J. Math.
  doi: 10.2140/pjm.1972.43.239
– volume: 9
  start-page: 143
  year: 2019
  ident: ref_26
  article-title: On Booth lemniscate of starlike functions
  publication-title: Anal. Math. Phys.
  doi: 10.1007/s13324-017-0187-3
– volume: 36
  start-page: 23
  year: 2013
  ident: ref_9
  article-title: On the radius constants for classes of analytic functions
  publication-title: Bull. Malays. Math. Sci. Soc.
– ident: ref_4
  doi: 10.1007/s10473-024-0404-8
– volume: 69
  start-page: 1053
  year: 2019
  ident: ref_24
  article-title: Sharp coefficient bounds for starlike functions associated with the Bell numbers
  publication-title: Math. Slovaca
  doi: 10.1515/ms-2017-0289
– volume: 15
  start-page: 311
  year: 1964
  ident: ref_13
  article-title: A class of univalent functions
  publication-title: Proc. Am. Math. Soc.
  doi: 10.1090/S0002-9939-1964-0158985-5
– volume: 33
  start-page: 265
  year: 1997
  ident: ref_18
  article-title: Radius of convexity and radius of starlikeness for some classes of analytic functions
  publication-title: Complex Var. Theory Appl.
– volume: 43
  start-page: 957
  year: 2020
  ident: ref_25
  article-title: Certain class of starlike functions associated with modified sigmoid function
  publication-title: Bull. Malays. Math. Sci. Soc.
  doi: 10.1007/s40840-019-00784-y
– volume: 27
  start-page: 923
  year: 2016
  ident: ref_8
  article-title: Starlike functions associated with a cardioid
  publication-title: Afr. Math.
  doi: 10.1007/s13370-015-0387-7
– volume: 14
  start-page: 514
  year: 1963
  ident: ref_11
  article-title: The radius of univalence of certain analytic functions
  publication-title: Proc. Am. Math. Soc.
  doi: 10.1090/S0002-9939-1963-0148891-3
– volume: 10
  start-page: 1750064
  year: 2017
  ident: ref_23
  article-title: Starlike functions associated with a lune
  publication-title: Asian-Eur. J. Math.
  doi: 10.1142/S1793557117500644
– volume: 3
  start-page: 59
  year: 1955
  ident: ref_7
  article-title: On close-to-convex univalent functions
  publication-title: Mich. Math. J.
– volume: 20
  start-page: 59
  year: 1966
  ident: ref_27
  article-title: Quelques problemes extremaux dans les classes des fonctions α-angulairement etoilees
  publication-title: Ann. Univ. Mariae Curie-Skłodowska Sect. A
– volume: 44
  start-page: 1525
  year: 2021
  ident: ref_29
  article-title: Sharp coefficient bounds for starlike functions associated with generalized telephone numbers
  publication-title: Bull. Malays. Math. Sci. Soc.
  doi: 10.1007/s40840-020-01016-4
– volume: 25
  start-page: 225
  year: 1994
  ident: ref_5
  article-title: Univalent functions with positive coefficients
  publication-title: Tamkang J. Math.
  doi: 10.5556/j.tkjm.25.1994.4448
– volume: 2
  start-page: 431
  year: 1969
  ident: ref_28
  article-title: On some classes of bounded univalent functions
  publication-title: J. Lond. Math. Soc.
  doi: 10.1112/jlms/s2-1.1.431
– volume: 353
  start-page: 973
  year: 2015
  ident: ref_22
  article-title: Some properties related to a certain class of starlike functions
  publication-title: Comptes Rendus Math.
  doi: 10.1016/j.crma.2015.09.011
SSID ssj0000913849
Score 2.253553
Snippet Geometric function theory, a subfield of complex analysis that examines the geometrical characteristics of analytic functions, has seen a sharp increase in...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 4848
SubjectTerms Analysis
Analytic functions
Applied mathematics
Convex analysis
Domains
Functions, Exponential
Hyperbolic functions
Janowski starlike function
Mathematical analysis
Partial differential equations
radii problems
sine hyperbolic function
starlike functions
System theory
Trigonometric functions
Trigonometrical functions
Upper bounds
SummonAdditionalLinks – databaseName: Computer Science Database
  dbid: K7-
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZo6aE98CqIhQX5QNVDFW0SO3Z8QgWxWglRKrWVVurBiu1xWVHtttkFCX49M1lv6KVcuCX2RLI9Y8_Dk28Ye4cusgGAmAU0DjIpXJM5DUXmoYwe1ZepIHbFJvTJST2dmtMUcFumtMrNmdgd1GHhKUY-IsdAoj4x-v3NbUZVo-h2NZXQ2GIPi7IsSM4_66yPsRDmZS3NOt9doHc_QivwG1oYQtZU8OeOJuoA--87ljtdM378v6N8wh4lK5Mfr8XiKXsA82ds70sP0brcZ5df5xxfOSUS_uKLiA9Nez37DnyMqq6TRr7hHQRO8dqOPuFUz35j4xmaqHyCnmzrCF64__I5uxh_Ov84yVKlhcyjQl8RoGisC_Q8dO1Rrfkid1I3ZJ0VQTnsgSoGKGulYqx85UWltY8mhKp0CoQUL9j2fDGHl4w3TgnhcRmEMjKHvPHo88RCQqwcKb8BO9qsuvUJhpyqYVxbdEeIR_YujwbsoKe-WcNv3EP3gRjY0xBodtewaK9s2oMWBxtVE1SARsmgcqecoYvaIHNfGZcP2CGx39LWxiH5Jv2hgBMjkCx7rDXVYCxynMRww36b9vzS_uX9q393v2a7VLR-nRQzZNur9ge8YTv-52q2bN92IvwHJwr6xQ
  priority: 102
  providerName: ProQuest
Title On the Study of Starlike Functions Associated with the Generalized Sine Hyperbolic Function
URI https://www.proquest.com/docview/2899424297
https://doaj.org/article/52bf6ad6dea64d60b6b90138d40c59b0
Volume 11
WOSCitedRecordID wos001119202500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: K7-
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: M7S
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: BENPR
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: PIMPY
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1BT9swFLYQcGAHNDamFVjlw6Ydpoikduz4CFMrEKKrxiaBOFix_axVQwW1BQkO--2856RVL2gXLlFiv0j283Pe-5KX7zH2GSGyAYCYBQwOMilcnTkNReahFz26L1NCTMUm9HBYXV6a0UqpL8oJa-iBG8Udlj0XVR1UgFrJoHKnnKGva0HmvjQuoXWMelbAVHoGGxSRpsl0F4jrDzH--4OxhZAVlfpZ8UGJqv-lB3LyMoO3bLsND_lRM6wdtgaTd-zN-ZJbdfaeXf-YcLzklAH4yG8jntTTm_Ff4AP0UcmM-ELpEDi9aE3yLcH0-AkbLzC25CcIQaeOeIGXd-6y34P-r-8nWVsiIfPoiefEBBqrAiGDrjz6I1_kTuqawqoiKIc9UMYAvUqpGEtfelFq7aMJAdWqQEjxga1PbifwkfHaKSE8wi-hjMwhrz2ClVhIiKUjr9Vh3xZKs77lD6cyFjcWcQSp2K6quMO-LKXvGt6MF-SOSf9LGWK7Tg1oA7a1Afs_G-iwr7R6lvYkDsnX7a8FODFit7JHWlPxxCLHSRwsFti2m3VmCXNKDFWM3nuN0eyzLapJ3-S8HLD1-fQePrFN_zAfz6ZdtnHcH45-dpO94vFMZ11KOL2g478-9o9Oz0dXzw0Z83g
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qBQk4sCMGCvhAxQFFTWLHjg8IlWU01bQDEkWqxMHEWzuimimZAVR-FL-R9zJJ6KXceuCW2E7k5fNbvHwP4Bm6yDqEEBOPxkEiuK0Sq0KWuJBHh-pLFyE2wSbUZFIeHOgPa_C7uwtDxyo7mdgIaj93tEa-RY6BQH2i1auTbwlFjaLd1S6ExgoW43D6E122xcudtzi-m3k-fLf_ZpS0UQUSh8prSeSZsczQylalQxHustQKVZElknlpMScU0Ye8lDLGwhWOF0q5qL0vcisDFxz_ewkuC14q4uofq6Rf0yGOzVLo1fl6znW6hVbnEVo0XJQUYOiM5msCBJynBhrdNrz5v_XKLbjRWtFsewX727AWZnfg-l5PQbu4C5_fzxi-MjooecrmER-q-nj6NbAhqvJmtrEOm8EzWo9uyrc83NNfmPgRTXA2Qk-9tkSf3H95Dz5dSOvuw_psPgsPgFVWcu6w27nUIg1p5dCni5kIsbCk3Afwohtl41qadYr2cWzQ3SJMmLOYGMBmX_pkRS9yTrnXBJi-DJGCNwnz-tC0MsZgZaOsvPShksLL1EqraSPai9QV2qYDeE5wMyS6sEquam9gYMOIBMxsK0UxJrMUG7HRwc20Mm1h_mLt4b-zn8LV0f7ertndmYwfwbUczcLVAaANWF_W38NjuOJ-LKeL-kkzfRh8uWhk_gGXT1Yr
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VghAceCMWCvhAxQFFm8SOHR8QKpRVq4WlEiBV4uDGL7pqtVuyC6j8NH4dM3ksvZRbD9zycKI4_jzfjDP5BuAZhsg6hBATj85BIritEqtClriQR4f0pYsQm2ITajIp9_f13hr87v-FobTK3iY2htrPHa2RDykwEMgnWg1jlxaxtz16dfItoQpS9KW1L6fRQmQcTn9i-LZ4ubuNY72Z56O3n97sJF2FgcQhkS1JSDOWGXrcqnRozl2WWqEq8koyLy2eCUX0IS-ljLFwheOFUi5q74vcysAFx_tegsvIwgXNsbFKVus7pLdZCt3m2nOu0yF6oIfo3XBRUrGhMyzYFAs4jxIanhvd_J_f0C240XnXbKudDrdhLczuwPX3K2naxV348mHGcJdRAuUpm0fcqOrj6VFgI6T4ZhayHrPBM1qnbtp3-tzTX3jwI7rmbAcj-NqSrPLqynvw-UJ6dx_WZ_NZeACsspJzh0PApRZpSCuHsV7MRIiFJdIfwIt-xI3r5NepCsixwTCM8GHO4mMAm6vWJ63syDntXhN4Vm1ILLw5MK-_ms72GHzYKCsvfaik8DK10mr6QO1F6gpt0wE8J-gZMmn4SK7q_szAjpE4mNlSimpPZil2YqOHnuls3cL8xd3Df59-ClcRkObd7mT8CK7l6C22eUEbsL6sv4fHcMX9WE4X9ZNmJjE4uGhg_gEP-V7l
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Study+of+Starlike+Functions+Associated+with+the+Generalized+Sine+Hyperbolic+Function&rft.jtitle=Mathematics+%28Basel%29&rft.au=Baseer+Gul&rft.au=Muhammad+Arif&rft.au=Reem+K.+Alhefthi&rft.au=Daniel+Breaz&rft.date=2023-12-01&rft.pub=MDPI+AG&rft.eissn=2227-7390&rft.volume=11&rft.issue=23&rft.spage=4848&rft_id=info:doi/10.3390%2Fmath11234848&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_52bf6ad6dea64d60b6b90138d40c59b0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon