Optimizing Euclidean Distance Computation

This paper presents a comparative analysis of seventeen different approaches to optimizing Euclidean distance computations, which is a core mathematical operation that plays a critical role in a wide range of algorithms, particularly in machine learning and data analysis. The Euclidean distance, bei...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) Jg. 12; H. 23; S. 3787
1. Verfasser: Mussabayev, Rustam
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 01.12.2024
Schlagworte:
ISSN:2227-7390, 2227-7390
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This paper presents a comparative analysis of seventeen different approaches to optimizing Euclidean distance computations, which is a core mathematical operation that plays a critical role in a wide range of algorithms, particularly in machine learning and data analysis. The Euclidean distance, being a computational bottleneck in large-scale optimization problems, requires efficient computation techniques to improve the performance of various distance-dependent algorithms. To address this, several optimization strategies can be employed to accelerate distance computations. From spatial data structures and approximate nearest neighbor algorithms to dimensionality reduction, vectorization, and parallel computing, various approaches exist to accelerate Euclidean distance computation in different contexts. Such approaches are particularly important for speeding up key machine learning algorithms like K-means and K-nearest neighbors (KNNs). By understanding the trade-offs and assessing the effectiveness, complexity, and scalability of various optimization techniques, our findings help practitioners choose the most appropriate methods for improving Euclidean distance computations in specific contexts. These optimizations enable scalable and efficient processing for modern data-driven tasks, directly leading to reduced energy consumption and a minimized environmental impact.
AbstractList This paper presents a comparative analysis of seventeen different approaches to optimizing Euclidean distance computations, which is a core mathematical operation that plays a critical role in a wide range of algorithms, particularly in machine learning and data analysis. The Euclidean distance, being a computational bottleneck in large-scale optimization problems, requires efficient computation techniques to improve the performance of various distance-dependent algorithms. To address this, several optimization strategies can be employed to accelerate distance computations. From spatial data structures and approximate nearest neighbor algorithms to dimensionality reduction, vectorization, and parallel computing, various approaches exist to accelerate Euclidean distance computation in different contexts. Such approaches are particularly important for speeding up key machine learning algorithms like K-means and K-nearest neighbors (KNNs). By understanding the trade-offs and assessing the effectiveness, complexity, and scalability of various optimization techniques, our findings help practitioners choose the most appropriate methods for improving Euclidean distance computations in specific contexts. These optimizations enable scalable and efficient processing for modern data-driven tasks, directly leading to reduced energy consumption and a minimized environmental impact.
Audience Academic
Author Mussabayev, Rustam
Author_xml – sequence: 1
  givenname: Rustam
  orcidid: 0000-0001-7283-5144
  surname: Mussabayev
  fullname: Mussabayev, Rustam
BookMark eNptUUtPwzAMjtCQGGM3fsAkTkh05NE2yXEa4yFN2gXOUZrHyNQ2JU0P8OsJFKEJYR9s2d_32bLPwaT1rQHgEsElIRzeNjK-IowJoYyegCnGmGY0NSZH-RmY9_0BJuOIsJxPwfWui65xH67dLzaDqp02sl3cuT7KVpnF2jfdEGV0vr0Ap1bWvZn_xBl4ud88rx-z7e7hab3aZiqHZcxKyXnFIWKa47K0tqCV0pWsrNaFQtwUsNJYV4QjKjFDplDMQqMZw1ZZbnIyA0-jrvbyILrgGhnehZdOfBd82AsZolO1EWVJYc6MktbwXKWJJeMUE6uUZQUmKGldjVpd8G-D6aM4-CG0aX1BUJ6jgjBGE2o5ovYyibrW-hikSq5N41S6snWpvmKI8wLyHCbCzUhQwfd9MPZ3TQTF1zPE8TMSHP-BKzfeNM1x9f-kT0H1jiQ
CitedBy_id crossref_primary_10_1016_j_dcan_2025_06_011
crossref_primary_10_2478_amns_2025_0605
crossref_primary_10_1016_j_measurement_2025_118896
crossref_primary_10_1109_LCA_2025_3596970
crossref_primary_10_1016_j_eswa_2025_129642
crossref_primary_10_1002_qre_70075
crossref_primary_10_1007_s10462_025_11276_w
crossref_primary_10_1016_j_procs_2025_07_222
Cites_doi 10.1109/TPDS.2014.2355205
10.1109/ICECCO.2015.7416879
10.1016/j.procs.2015.07.392
10.1109/ICECCO.2018.8634692
10.1109/TSP.2015.7296368
10.1162/tacl_a_00051
10.1137/1.9781611972801.12
10.1109/LES.2017.2764542
10.1007/3-540-44503-X_27
10.1145/361002.361007
10.1109/ACCESS.2023.3235207
10.1016/j.patcog.2022.109269
10.1007/3-540-49257-7_15
10.1007/978-981-97-4985-0
10.1145/502512.502546
10.1038/s41586-020-2649-2
10.1007/978-3-030-27656-0
10.1007/978-3-662-52844-0
10.1145/3447755
10.1016/0167-8655(92)90064-7
10.1016/j.patrec.2019.11.024
10.1145/276698.276876
10.1186/s12859-023-05311-2
10.1007/978-3-319-60792-4
10.1023/B:MACH.0000033118.09057.80
10.1145/2786984.2786995
10.1111/jscm.12073
10.1038/s41598-024-74061-9
10.14778/2732219.2732225
10.1201/9780203739051
10.1186/s13638-021-02082-3
10.1016/j.ins.2020.10.045
10.1145/2833157.2833162
10.1109/TITS.2022.3210170
10.1038/s41592-018-0019-x
10.1016/j.ins.2022.11.082
10.1007/978-3-031-05744-1
10.1109/97.863145
10.1038/s41598-022-10358-x
10.1016/j.eswa.2008.01.039
10.1109/TSC.2024.3478730
10.1016/j.patcog.2018.12.022
10.1016/j.patcog.2019.04.014
10.1145/1327452.1327492
10.1007/s10462-022-10325-y
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOA
DOI 10.3390/math12233787
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2227-7390
ExternalDocumentID oai_doaj_org_article_667048ecafe94c8d9689723fccf85231
A819950940
10_3390_math12233787
GeographicLocations Germany
GeographicLocations_xml – name: Germany
GroupedDBID -~X
5VS
85S
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABPPZ
ABUWG
ACIPV
ACIWK
ADBBV
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ITC
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
RNS
3V.
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c406t-6a99b9018d9266ff57bcdbabfdd5c19e50bd2db3917a281e5c8f0ed882fcf9e43
IEDL.DBID K7-
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001376480700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2227-7390
IngestDate Mon Nov 10 04:30:56 EST 2025
Fri Jul 25 11:46:17 EDT 2025
Tue Nov 04 18:25:15 EST 2025
Sat Nov 29 07:12:04 EST 2025
Tue Nov 18 21:07:00 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-6a99b9018d9266ff57bcdbabfdd5c19e50bd2db3917a281e5c8f0ed882fcf9e43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7283-5144
OpenAccessLink https://www.proquest.com/docview/3144153887?pq-origsite=%requestingapplication%
PQID 3144153887
PQPubID 2032364
ParticipantIDs doaj_primary_oai_doaj_org_article_667048ecafe94c8d9689723fccf85231
proquest_journals_3144153887
gale_infotracacademiconefile_A819950940
crossref_primary_10_3390_math12233787
crossref_citationtrail_10_3390_math12233787
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Mathematics (Basel)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Hinton (ref_50) 2008; 9
Oyewole (ref_7) 2023; 56
Mussabayev (ref_26) 2023; 137
ref_13
ref_57
ref_56
ref_11
ref_55
ref_10
ref_51
Maitrey (ref_29) 2015; 57
Sieranoja (ref_38) 2019; 93
ref_19
Bock (ref_35) 2008; 4
Harris (ref_58) 2020; 585
ref_16
ref_59
Bentley (ref_33) 1975; 18
Jolliffe (ref_48) 2016; 374
ref_61
Ramasubramanian (ref_40) 1992; 13
Qi (ref_30) 2013; 7
Rodriguez (ref_53) 2018; 3
Lee (ref_54) 2017; 10
ref_21
ref_20
Bojanowski (ref_23) 2017; 5
Borodin (ref_52) 2004; 56
Ying (ref_36) 2012; 13
ref_28
ref_27
McNames (ref_46) 2000; 7
Tang (ref_12) 2020; 129
ref_34
Li (ref_24) 2021; 549
ref_32
ref_31
Varoquaux (ref_8) 2015; 19
ref_39
Shen (ref_41) 2023; 621
Gribel (ref_62) 2019; 88
ref_37
Rong (ref_17) 2022; 23
Altman (ref_25) 2018; 15
Dean (ref_60) 2008; 51
Mukhamediev (ref_22) 2023; 11
Jeon (ref_42) 2015; 26
ref_47
Sun (ref_15) 2024; 14
ref_45
ref_43
ref_1
ref_3
ref_2
ref_9
Wu (ref_18) 2022; 2022
ref_5
Carter (ref_14) 2015; 51
ref_4
Park (ref_44) 2009; 36
Gewers (ref_49) 2021; 54
ref_6
References_xml – volume: 26
  start-page: 2534
  year: 2015
  ident: ref_42
  article-title: Multi-Threaded Hierarchical Clustering by Parallel Nearest-Neighbor Chaining
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/TPDS.2014.2355205
– ident: ref_21
  doi: 10.1109/ICECCO.2015.7416879
– volume: 57
  start-page: 563
  year: 2015
  ident: ref_29
  article-title: MapReduce: Simplified data analysis of big data
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2015.07.392
– ident: ref_5
– ident: ref_32
– ident: ref_55
– ident: ref_10
  doi: 10.1109/ICECCO.2018.8634692
– ident: ref_59
  doi: 10.1109/TSP.2015.7296368
– volume: 4
  start-page: 1
  year: 2008
  ident: ref_35
  article-title: Origins and extensions of the k-means algorithm in cluster analysis
  publication-title: Electron. J. Hist. Probab. Stat.
– volume: 5
  start-page: 135
  year: 2017
  ident: ref_23
  article-title: Enriching word vectors with subword information
  publication-title: Trans. Assoc. Comput. Linguist.
  doi: 10.1162/tacl_a_00051
– ident: ref_39
  doi: 10.1137/1.9781611972801.12
– volume: 10
  start-page: 18
  year: 2017
  ident: ref_54
  article-title: Data-dependent loop approximations for performance-quality driven high-level synthesis
  publication-title: IEEE Embed. Syst. Lett.
  doi: 10.1109/LES.2017.2764542
– volume: 13
  start-page: 1
  year: 2012
  ident: ref_36
  article-title: Distance metric learning with eigenvalue optimization
  publication-title: J. Mach. Learn. Res.
– ident: ref_28
  doi: 10.1007/3-540-44503-X_27
– volume: 18
  start-page: 509
  year: 1975
  ident: ref_33
  article-title: Multidimensional binary search trees used for associative searching
  publication-title: Commun. ACM
  doi: 10.1145/361002.361007
– volume: 374
  start-page: 20150202
  year: 2016
  ident: ref_48
  article-title: Principal component analysis: A review and recent developments
  publication-title: Philos. Trans. R. Soc. Math. Phys. Eng. Sci.
– ident: ref_61
– volume: 11
  start-page: 5789
  year: 2023
  ident: ref_22
  article-title: Coverage path planning optimization of heterogeneous UAVs group for precision agriculture
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3235207
– volume: 137
  start-page: 109269
  year: 2023
  ident: ref_26
  article-title: How to use K-means for big data clustering?
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2022.109269
– ident: ref_47
  doi: 10.1007/3-540-49257-7_15
– ident: ref_3
  doi: 10.1007/978-981-97-4985-0
– ident: ref_51
  doi: 10.1145/502512.502546
– ident: ref_31
– volume: 585
  start-page: 357
  year: 2020
  ident: ref_58
  article-title: Array programming with NumPy
  publication-title: Nature
  doi: 10.1038/s41586-020-2649-2
– ident: ref_6
  doi: 10.1007/978-3-030-27656-0
– ident: ref_1
  doi: 10.1007/978-3-662-52844-0
– volume: 9
  start-page: 2579
  year: 2008
  ident: ref_50
  article-title: Visualizing Data using t-SNE
  publication-title: J. Mach. Learn. Res.
– ident: ref_13
– volume: 54
  start-page: 1
  year: 2021
  ident: ref_49
  article-title: Principal component analysis: A natural approach to data exploration
  publication-title: ACM Comput. Surv. (CSUR)
  doi: 10.1145/3447755
– volume: 13
  start-page: 471
  year: 1992
  ident: ref_40
  article-title: An efficient approximation-elimination algorithm for fast nearest-neighbour search based on a spherical distance coordinate formulation
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/0167-8655(92)90064-7
– volume: 129
  start-page: 123
  year: 2020
  ident: ref_12
  article-title: Integrating prediction and reconstruction for anomaly detection
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2019.11.024
– ident: ref_45
  doi: 10.1145/276698.276876
– ident: ref_20
  doi: 10.1186/s12859-023-05311-2
– ident: ref_4
  doi: 10.1007/978-3-319-60792-4
– volume: 56
  start-page: 153
  year: 2004
  ident: ref_52
  article-title: Subquadratic approximation algorithms for clustering problems in high dimensional spaces
  publication-title: Mach. Learn.
  doi: 10.1023/B:MACH.0000033118.09057.80
– volume: 19
  start-page: 29
  year: 2015
  ident: ref_8
  article-title: Scikit-learn: Machine learning without learning the machinery
  publication-title: Getmobile Mob. Comput. Commun.
  doi: 10.1145/2786984.2786995
– ident: ref_34
– volume: 51
  start-page: 89
  year: 2015
  ident: ref_14
  article-title: Toward the theory of the supply chain
  publication-title: J. Supply Chain. Manag.
  doi: 10.1111/jscm.12073
– volume: 14
  start-page: 1
  year: 2024
  ident: ref_15
  article-title: Profit Maximization of Independent Task Offloading in MEC-Enabled 5G Internet of Vehicles
  publication-title: IEEE Trans. Intell. Transp. Syst.
– ident: ref_37
– ident: ref_19
  doi: 10.1038/s41598-024-74061-9
– volume: 7
  start-page: 61
  year: 2013
  ident: ref_30
  article-title: Toward a distance oracle for billion-node graphs
  publication-title: Proc. VLDB Endow.
  doi: 10.14778/2732219.2732225
– volume: 3
  start-page: 1
  year: 2018
  ident: ref_53
  article-title: Lower numerical precision deep learning inference and training
  publication-title: Intel White Pap.
– ident: ref_11
  doi: 10.1201/9780203739051
– volume: 2022
  start-page: 4
  year: 2022
  ident: ref_18
  article-title: Single base station hybrid TOA/AOD/AOA localization algorithms with the synchronization error in dense multipath environment
  publication-title: Eurasip J. Wirel. Commun. Netw.
  doi: 10.1186/s13638-021-02082-3
– volume: 549
  start-page: 328
  year: 2021
  ident: ref_24
  article-title: Random walk based distributed representation learning and prediction on social networking services
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2020.10.045
– ident: ref_56
  doi: 10.1145/2833157.2833162
– volume: 23
  start-page: 24524
  year: 2022
  ident: ref_17
  article-title: Du-Bus: A Realtime Bus Waiting Time Estimation System Based On Multi-Source Data
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2022.3210170
– ident: ref_2
– volume: 15
  start-page: 399
  year: 2018
  ident: ref_25
  article-title: The curse (s) of dimensionality
  publication-title: Nat. Methods
  doi: 10.1038/s41592-018-0019-x
– volume: 621
  start-page: 611
  year: 2023
  ident: ref_41
  article-title: TC-DTW: Accelerating multivariate dynamic time warping through triangle inequality and point clustering
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2022.11.082
– ident: ref_9
  doi: 10.1007/978-3-031-05744-1
– volume: 7
  start-page: 244
  year: 2000
  ident: ref_46
  article-title: Rotated partial distance search for faster vector quantization encoding
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/97.863145
– ident: ref_27
  doi: 10.1038/s41598-022-10358-x
– volume: 36
  start-page: 3336
  year: 2009
  ident: ref_44
  article-title: A simple and fast algorithm for K-medoids clustering
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2008.01.039
– ident: ref_16
  doi: 10.1109/TSC.2024.3478730
– ident: ref_43
– ident: ref_57
– volume: 88
  start-page: 569
  year: 2019
  ident: ref_62
  article-title: HG-means: A scalable hybrid genetic algorithm for minimum sum-of-squares clustering
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2018.12.022
– volume: 93
  start-page: 95
  year: 2019
  ident: ref_38
  article-title: How much can k-means be improved by using better initialization and repeats?
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2019.04.014
– volume: 51
  start-page: 107
  year: 2008
  ident: ref_60
  article-title: MapReduce: Simplified data processing on large clusters
  publication-title: Commun. ACM
  doi: 10.1145/1327452.1327492
– volume: 56
  start-page: 6439
  year: 2023
  ident: ref_7
  article-title: Data clustering: Application and trends
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-022-10325-y
SSID ssj0000913849
Score 2.3548172
Snippet This paper presents a comparative analysis of seventeen different approaches to optimizing Euclidean distance computations, which is a core mathematical...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 3787
SubjectTerms Algorithms
Bioinformatics
Clustering
Comparative analysis
Computational linguistics
computational optimization
Data analysis
Data mining
Data structures
Datasets
Efficiency
Energy conservation
Energy consumption
Euclidean distance
Euclidean geometry
Euclidean space
Geospatial data
Germany
Information management
K-means clustering
K-nearest neighbors (KNNs)
Language processing
Linear algebra
Machine learning
Mathematical optimization
Methods
Natural language interfaces
Optimization
parallelization
Spatial data
Task complexity
vectorization
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQxQAD4lMECsoAQghFJLGT2GOBViwUBpC6WfHZFpVKQP1g4NdzdtIqS8XCanmw39m-96TzO0IuClGkoHLUJiyjEYM0iXhiAc-yQfpaJiAM-GYTxXDIRyPx0mr15WrCanvgGjjXrQ8PmYHSGsGAa5Fz1yjLAliOIsoLH2Q9LTHl32CRUM5EXelOUdffIv97TzAX0sJVz7VykLfqX_cg-ywz2CU7DT0Me_Wy9siGqfbJ9tPKW3V2QK6f8ZZ_jH8w54T9BUzG2pRV-OB4IAYwrNs0eLwPydug_3r_GDUNDyLAvDqP8lIIhQkad4l509qsUKBVqazWGSTCZLHSqVYUJVaZ8sRkwG1sNJJkC1YYRo9Ip_qszDEJbcoMDqW51jlTiB3PmNI0NnFepgyKgNwsIZDQuIG7phQTiarAASbbgAXkcjX7q3bBWDPvzqG5muO8q_0ARlQ2EZV_RTQgVy4W0t0wXBKUzUcB3JjzqpI97r6VO9-_gHSX4ZLN1ZtJ6iUixcfz5D9Wc0q2UuQxdQVLl3Tm04U5I5vwPR_Ppuf-1P0CgBPb9A
  priority: 102
  providerName: Directory of Open Access Journals
Title Optimizing Euclidean Distance Computation
URI https://www.proquest.com/docview/3144153887
https://doaj.org/article/667048ecafe94c8d9689723fccf85231
Volume 12
WOSCitedRecordID wos001376480700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: K7-
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: M7S
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: BENPR
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: PIMPY
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB5BywEOLa-KlBLtAYQQWjVr78M-VS2kAqGGiIdUTtZ6bEOkkpQk7aEHfjszXif0Ui5c9mDPwfa8veNvAJ43uhFoa8pNykrmJYoiV0VAkmVP4WtboPYYm000o5E6PdXjdOG2SGWVK5sYDbWbId-R78sY-UvSiYPzXzl3jeK_q6mFxm3YLIQoWM4_NPn6joUxL1Wpu3p3Sdn9PkWBP4hSyoZr6K55ogjYf5NZjr7mePt_V3kftlKUmR12YvEAbvnpQ7h3soZoXTyCVx_JWPycXJHryoYXeDZxvp1mbzmcJDnIum4PkW2P4evx8Mubd3nqm5AjuedlXrdaW_LzymlyvyFUjUVnWxucq7DQvhpYJ5yVlKm1QhW-QhUG3lGsHTBoX8od2JjOpv4JZEGUnoZE7Vxd2uC1qkrr5MAP6laU2PTg9eoMDSZQce5tcWYoueATN9dPvAcv1tTnHZjGDXRHzI41DUNgx4HZ_LtJGmXquiHr47GlVZVIe60Vd1ALiEFRdl304CUz07Ci0pKwTe8NaGMMeWUOFb9OZ_jAHuytmGmSBi_MX07u_nv6KdwVFOh0JS57sLGcX_hncAcvl5PFvA-bR8PR-FM_5vr9KJ59ri_9zN_fQ5ofvz8Zf_sDY1vwPA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VggQc-EYsFMiBCiEUNbGdxD4gVGirVtsuHIrUmxuPbVip7JbdLQh-FL-RmXwsvZRbD1wdK7IzzzNjZ_wewIvKVAJdSXsTVchUochTnUckLAdKX-scTcBGbKIajfTRkfm4Ar_7uzBcVtn7xMZR-ynyGfmGbDJ_SWvi7em3lFWj-O9qL6HRwmIYfv6gLdv8zd4W2XddiJ3tw_e7aacqkCIFr0Va1sY4ioLaGwpOMRaVQ-9qF70vMDehyJwX3knax9RC56FAHbPgKRONGE1Qkt57Ba4qqSvm6h9W6fJMhzk2tTJtfb2UJtugrPNLThFYVlyzdy7yNQIBF4WBJrbt3P7fvsoduNVl0clmC_u7sBIm9-DmwZKCdn4fXn0gZ_h1_ItCc7J9hidjH-pJssXpMuE8adUsGlg-gE-XMtaHsDqZTsIjSKJQgZpE6X2pXAxGF8p5mYWsrIXCagCve5tZ7EjTWbvjxNLmiS1sz1t4AOvL3qctWcgF_d6x-Zd9mOK7aZjOPtvOY9iyrMi7BqxpVApprqVmhbiIGHVBWfkAXjJ4LDsiGhLW3X0KmhhTetlNzbfvmR5xAGs9eGznoeb2L3Ie__vxc7i-e3iwb_f3RsMncENQUteW86zB6mJ2Fp7CNfy-GM9nz5rFkMDxZePsD3BZSi0
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VglB74F0RKLAHKoTQKrv2PuwDQoU0ogqEHkDqzazHdhupJG2SguCn8euY2Ufopdx64Oq1VvbON_PNeMczAM9LXQq0BcUmWS7jDEUaqzQgYdmT-1qlqD3WzSbK8VgdHuqDNfjd3YXhtMrOJtaG2s2Qz8j7svb8JelEP7RpEQeD4ZvTs5g7SPGf1q6dRgORkf_5g8K3xev9Acl6R4jh3ud37-O2w0CMRGTLuKi0tsSIymkiqhDy0qKzlQ3O5ZhqnyfWCWclxTSVUKnPUYXEO_JKAwbtM0nvvQbXiYVz1rFRGa_Od7jepsp0k2svpU765IEep8TGsuT8vQssWDcLuIwSap4b3v6fv9AduNV619Fuow53Yc1P78Hmx1Vp2sV9ePmJjOS3yS-i7GjvHE8mzlfTaMBuNOE_arpc1HB9AF-uZK1bsD6dTf1DiILIPA2Jwrkis8FrlWfWycQnRSUyLHvwqpOfwbaYOvf0ODEUVLG0zUVp92BnNfu0KSJyyby3DIXVHC79XQ_M5kemtSSmKEqyuh4rWlWGtNdCcee4gBhUTt56D14wkAwbKFoSVu09C9oYl_oyu4pv5XPZxB5sd0AyreVamL8oevTvx8_gJsHLfNgfjx7DhiBfr8ny2Yb15fzcP4Eb-H05Wcyf1noRwderhtkfLCtS5w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimizing+Euclidean+Distance+Computation&rft.jtitle=Mathematics+%28Basel%29&rft.au=Mussabayev%2C+Rustam&rft.date=2024-12-01&rft.pub=MDPI+AG&rft.issn=2227-7390&rft.eissn=2227-7390&rft.volume=12&rft.issue=23&rft_id=info:doi/10.3390%2Fmath12233787&rft.externalDocID=A819950940
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon